/* * Copyright (c) 2006 Luc Verhaegen (quirks list) * Copyright (c) 2007-2008 Intel Corporation * Jesse Barnes * Copyright 2010 Red Hat, Inc. * * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from * FB layer. * Copyright (C) 2006 Dennis Munsie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "drmP.h" #include "drm_edid.h" #define EDID_EST_TIMINGS 16 #define EDID_STD_TIMINGS 8 #define EDID_DETAILED_TIMINGS 4 /* * EDID blocks out in the wild have a variety of bugs, try to collect * them here (note that userspace may work around broken monitors first, * but fixes should make their way here so that the kernel "just works" * on as many displays as possible). */ /* First detailed mode wrong, use largest 60Hz mode */ #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) /* Reported 135MHz pixel clock is too high, needs adjustment */ #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) /* Prefer the largest mode at 75 Hz */ #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) /* Detail timing is in cm not mm */ #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) /* Detailed timing descriptors have bogus size values, so just take the * maximum size and use that. */ #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) /* Monitor forgot to set the first detailed is preferred bit. */ #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) /* use +hsync +vsync for detailed mode */ #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) #define LEVEL_DMT 0 #define LEVEL_GTF 1 #define LEVEL_GTF2 2 #define LEVEL_CVT 3 static struct edid_quirk { char *vendor; int product_id; u32 quirks; } edid_quirk_list[] = { /* Acer AL1706 */ { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, /* Acer F51 */ { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, /* Unknown Acer */ { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Belinea 10 15 55 */ { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, /* Envision Peripherals, Inc. EN-7100e */ { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, /* Envision EN2028 */ { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, /* Funai Electronics PM36B */ { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | EDID_QUIRK_DETAILED_IN_CM }, /* LG Philips LCD LP154W01-A5 */ { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, /* Philips 107p5 CRT */ { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Proview AY765C */ { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Samsung SyncMaster 205BW. Note: irony */ { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, /* Samsung SyncMaster 22[5-6]BW */ { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, }; /*** DDC fetch and block validation ***/ static const u8 edid_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; /* * Sanity check the EDID block (base or extension). Return 0 if the block * doesn't check out, or 1 if it's valid. */ static bool drm_edid_block_valid(u8 *raw_edid) { int i; u8 csum = 0; struct edid *edid = (struct edid *)raw_edid; if (raw_edid[0] == 0x00) { int score = 0; for (i = 0; i < sizeof(edid_header); i++) if (raw_edid[i] == edid_header[i]) score++; if (score == 8) ; else if (score >= 6) { DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); memcpy(raw_edid, edid_header, sizeof(edid_header)); } else { goto bad; } } for (i = 0; i < EDID_LENGTH; i++) csum += raw_edid[i]; if (csum) { DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum); /* allow CEA to slide through, switches mangle this */ if (raw_edid[0] != 0x02) goto bad; } /* per-block-type checks */ switch (raw_edid[0]) { case 0: /* base */ if (edid->version != 1) { DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version); goto bad; } if (edid->revision > 4) DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); break; default: break; } return 1; bad: if (raw_edid) { DRM_ERROR("Raw EDID:\n"); print_hex_dump_bytes(KERN_ERR, DUMP_PREFIX_NONE, raw_edid, EDID_LENGTH); printk("\n"); } return 0; } /** * drm_edid_is_valid - sanity check EDID data * @edid: EDID data * * Sanity-check an entire EDID record (including extensions) */ bool drm_edid_is_valid(struct edid *edid) { int i; u8 *raw = (u8 *)edid; if (!edid) return false; for (i = 0; i <= edid->extensions; i++) if (!drm_edid_block_valid(raw + i * EDID_LENGTH)) return false; return true; } EXPORT_SYMBOL(drm_edid_is_valid); #define DDC_ADDR 0x50 #define DDC_SEGMENT_ADDR 0x30 /** * Get EDID information via I2C. * * \param adapter : i2c device adaptor * \param buf : EDID data buffer to be filled * \param len : EDID data buffer length * \return 0 on success or -1 on failure. * * Try to fetch EDID information by calling i2c driver function. */ static int drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf, int block, int len) { unsigned char start = block * EDID_LENGTH; struct i2c_msg msgs[] = { { .addr = DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DDC_ADDR, .flags = I2C_M_RD, .len = len, .buf = buf + start, } }; if (i2c_transfer(adapter, msgs, 2) == 2) return 0; return -1; } static u8 * drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { int i, j = 0; u8 *block, *new; if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) return NULL; /* base block fetch */ for (i = 0; i < 4; i++) { if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH)) goto out; if (drm_edid_block_valid(block)) break; } if (i == 4) goto carp; /* if there's no extensions, we're done */ if (block[0x7e] == 0) return block; new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto out; block = new; for (j = 1; j <= block[0x7e]; j++) { for (i = 0; i < 4; i++) { if (drm_do_probe_ddc_edid(adapter, block, j, EDID_LENGTH)) goto out; if (drm_edid_block_valid(block + j * EDID_LENGTH)) break; } if (i == 4) goto carp; } return block; carp: dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n", drm_get_connector_name(connector), j); out: kfree(block); return NULL; } /** * Probe DDC presence. * * \param adapter : i2c device adaptor * \return 1 on success */ static bool drm_probe_ddc(struct i2c_adapter *adapter) { unsigned char out; return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); } /** * drm_get_edid - get EDID data, if available * @connector: connector we're probing * @adapter: i2c adapter to use for DDC * * Poke the given i2c channel to grab EDID data if possible. If found, * attach it to the connector. * * Return edid data or NULL if we couldn't find any. */ struct edid *drm_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct edid *edid = NULL; if (drm_probe_ddc(adapter)) edid = (struct edid *)drm_do_get_edid(connector, adapter); connector->display_info.raw_edid = (char *)edid; return edid; } EXPORT_SYMBOL(drm_get_edid); /*** EDID parsing ***/ /** * edid_vendor - match a string against EDID's obfuscated vendor field * @edid: EDID to match * @vendor: vendor string * * Returns true if @vendor is in @edid, false otherwise */ static bool edid_vendor(struct edid *edid, char *vendor) { char edid_vendor[3]; edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; return !strncmp(edid_vendor, vendor, 3); } /** * edid_get_quirks - return quirk flags for a given EDID * @edid: EDID to process * * This tells subsequent routines what fixes they need to apply. */ static u32 edid_get_quirks(struct edid *edid) { struct edid_quirk *quirk; int i; for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { quirk = &edid_quirk_list[i]; if (edid_vendor(edid, quirk->vendor) && (EDID_PRODUCT_ID(edid) == quirk->product_id)) return quirk->quirks; } return 0; } #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh)) /** * edid_fixup_preferred - set preferred modes based on quirk list * @connector: has mode list to fix up * @quirks: quirks list * * Walk the mode list for @connector, clearing the preferred status * on existing modes and setting it anew for the right mode ala @quirks. */ static void edid_fixup_preferred(struct drm_connector *connector, u32 quirks) { struct drm_display_mode *t, *cur_mode, *preferred_mode; int target_refresh = 0; if (list_empty(&connector->probed_modes)) return; if (quirks & EDID_QUIRK_PREFER_LARGE_60) target_refresh = 60; if (quirks & EDID_QUIRK_PREFER_LARGE_75) target_refresh = 75; preferred_mode = list_first_entry(&connector->probed_modes, struct drm_display_mode, head); list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; if (cur_mode == preferred_mode) continue; /* Largest mode is preferred */ if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) preferred_mode = cur_mode; /* At a given size, try to get closest to target refresh */ if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && MODE_REFRESH_DIFF(cur_mode, target_refresh) < MODE_REFRESH_DIFF(preferred_mode, target_refresh)) { preferred_mode = cur_mode; } } preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; } /* * Add the Autogenerated from the DMT spec. * This table is copied from xfree86/modes/xf86EdidModes.c. * But the mode with Reduced blank feature is deleted. */ static struct drm_display_mode drm_dmt_modes[] = { /* 640x350@85Hz */ { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 350, 382, 385, 445, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x400@85Hz */ { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 400, 401, 404, 445, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@85Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 828, 936, 0, 400, 401, 404, 446, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 640x480@60Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 489, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 492, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@85Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 752, 832, 0, 480, 481, 484, 509, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 800x600@56Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@85Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 896, 1048, 0, 600, 601, 604, 631, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 848x480@60Hz */ { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 976, 1088, 0, 480, 486, 494, 517, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@43Hz, interlace */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 1208, 1264, 0, 768, 768, 772, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@85Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 1168, 1376, 0, 768, 769, 772, 808, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x768@60Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1472, 1664, 0, 768, 771, 778, 798, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x768@75Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 1488, 1696, 0, 768, 771, 778, 805, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1280x768@85Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 1496, 1712, 0, 768, 771, 778, 809, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x800@60Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1480, 1680, 0, 800, 803, 809, 831, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1280x800@75Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 1488, 1696, 0, 800, 803, 809, 838, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x800@85Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 1496, 1712, 0, 800, 803, 809, 843, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x960@60Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1488, 1800, 0, 960, 961, 964, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x960@85Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 1504, 1728, 0, 960, 961, 964, 1011, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@60Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@85Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1360x768@60Hz */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1536, 1792, 0, 768, 771, 777, 795, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x1050@60Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x1050@75Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x1050@85Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x900@60Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1672, 1904, 0, 900, 903, 909, 934, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x900@75Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 1688, 1936, 0, 900, 903, 909, 942, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1440x900@85Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 1696, 1952, 0, 900, 903, 909, 948, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@60Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@65Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@70Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@75Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1600x1200@85Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1680x1050@60Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1680x1050@75Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1680x1050@85Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1792x1344@60Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1729x1344@75Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1853x1392@60Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1856x1392@75Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 2208, 2560, 0, 1392, 1395, 1399, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1200@60Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1200@75Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1200@85Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1440@60Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1920x1440@75Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2560x1600@60Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2560x1600@75HZ */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 2560x1600@85HZ */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, }; static const int drm_num_dmt_modes = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode); struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, int hsize, int vsize, int fresh) { int i; struct drm_display_mode *ptr, *mode; mode = NULL; for (i = 0; i < drm_num_dmt_modes; i++) { ptr = &drm_dmt_modes[i]; if (hsize == ptr->hdisplay && vsize == ptr->vdisplay && fresh == drm_mode_vrefresh(ptr)) { /* get the expected default mode */ mode = drm_mode_duplicate(dev, ptr); break; } } return mode; } EXPORT_SYMBOL(drm_mode_find_dmt); typedef void detailed_cb(struct detailed_timing *timing, void *closure); static void drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) { int i; struct edid *edid = (struct edid *)raw_edid; if (edid == NULL) return; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) cb(&(edid->detailed_timings[i]), closure); /* XXX extension block walk */ } static void is_rb(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE) if (r[15] & 0x10) *(bool *)data = true; } /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ static bool drm_monitor_supports_rb(struct edid *edid) { if (edid->revision >= 4) { bool ret; drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); return ret; } return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); } static void find_gtf2(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) *(u8 **)data = r; } /* Secondary GTF curve kicks in above some break frequency */ static int drm_gtf2_hbreak(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[12] * 2) : 0; } static int drm_gtf2_2c(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[13] : 0; } static int drm_gtf2_m(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[15] << 8) + r[14] : 0; } static int drm_gtf2_k(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[16] : 0; } static int drm_gtf2_2j(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[17] : 0; } /** * standard_timing_level - get std. timing level(CVT/GTF/DMT) * @edid: EDID block to scan */ static int standard_timing_level(struct edid *edid) { if (edid->revision >= 2) { if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) return LEVEL_CVT; if (drm_gtf2_hbreak(edid)) return LEVEL_GTF2; return LEVEL_GTF; } return LEVEL_DMT; } /* * 0 is reserved. The spec says 0x01 fill for unused timings. Some old * monitors fill with ascii space (0x20) instead. */ static int bad_std_timing(u8 a, u8 b) { return (a == 0x00 && b == 0x00) || (a == 0x01 && b == 0x01) || (a == 0x20 && b == 0x20); } /** * drm_mode_std - convert standard mode info (width, height, refresh) into mode * @t: standard timing params * @timing_level: standard timing level * * Take the standard timing params (in this case width, aspect, and refresh) * and convert them into a real mode using CVT/GTF/DMT. */ static struct drm_display_mode * drm_mode_std(struct drm_connector *connector, struct edid *edid, struct std_timing *t, int revision) { struct drm_device *dev = connector->dev; struct drm_display_mode *m, *mode = NULL; int hsize, vsize; int vrefresh_rate; unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) >> EDID_TIMING_ASPECT_SHIFT; unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) >> EDID_TIMING_VFREQ_SHIFT; int timing_level = standard_timing_level(edid); if (bad_std_timing(t->hsize, t->vfreq_aspect)) return NULL; /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ hsize = t->hsize * 8 + 248; /* vrefresh_rate = vfreq + 60 */ vrefresh_rate = vfreq + 60; /* the vdisplay is calculated based on the aspect ratio */ if (aspect_ratio == 0) { if (revision < 3) vsize = hsize; else vsize = (hsize * 10) / 16; } else if (aspect_ratio == 1) vsize = (hsize * 3) / 4; else if (aspect_ratio == 2) vsize = (hsize * 4) / 5; else vsize = (hsize * 9) / 16; /* HDTV hack, part 1 */ if (vrefresh_rate == 60 && ((hsize == 1360 && vsize == 765) || (hsize == 1368 && vsize == 769))) { hsize = 1366; vsize = 768; } /* * If this connector already has a mode for this size and refresh * rate (because it came from detailed or CVT info), use that * instead. This way we don't have to guess at interlace or * reduced blanking. */ list_for_each_entry(m, &connector->probed_modes, head) if (m->hdisplay == hsize && m->vdisplay == vsize && drm_mode_vrefresh(m) == vrefresh_rate) return NULL; /* HDTV hack, part 2 */ if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, false); mode->hdisplay = 1366; mode->hsync_start = mode->hsync_start - 1; mode->hsync_end = mode->hsync_end - 1; return mode; } /* check whether it can be found in default mode table */ mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate); if (mode) return mode; switch (timing_level) { case LEVEL_DMT: break; case LEVEL_GTF: mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); break; case LEVEL_GTF2: /* * This is potentially wrong if there's ever a monitor with * more than one ranges section, each claiming a different * secondary GTF curve. Please don't do that. */ mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { kfree(mode); mode = drm_gtf_mode_complex(dev, hsize, vsize, vrefresh_rate, 0, 0, drm_gtf2_m(edid), drm_gtf2_2c(edid), drm_gtf2_k(edid), drm_gtf2_2j(edid)); } break; case LEVEL_CVT: mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, false); break; } return mode; } /* * EDID is delightfully ambiguous about how interlaced modes are to be * encoded. Our internal representation is of frame height, but some * HDTV detailed timings are encoded as field height. * * The format list here is from CEA, in frame size. Technically we * should be checking refresh rate too. Whatever. */ static void drm_mode_do_interlace_quirk(struct drm_display_mode *mode, struct detailed_pixel_timing *pt) { int i; static const struct { int w, h; } cea_interlaced[] = { { 1920, 1080 }, { 720, 480 }, { 1440, 480 }, { 2880, 480 }, { 720, 576 }, { 1440, 576 }, { 2880, 576 }, }; static const int n_sizes = sizeof(cea_interlaced)/sizeof(cea_interlaced[0]); if (!(pt->misc & DRM_EDID_PT_INTERLACED)) return; for (i = 0; i < n_sizes; i++) { if ((mode->hdisplay == cea_interlaced[i].w) && (mode->vdisplay == cea_interlaced[i].h / 2)) { mode->vdisplay *= 2; mode->vsync_start *= 2; mode->vsync_end *= 2; mode->vtotal *= 2; mode->vtotal |= 1; } } mode->flags |= DRM_MODE_FLAG_INTERLACE; } /** * drm_mode_detailed - create a new mode from an EDID detailed timing section * @dev: DRM device (needed to create new mode) * @edid: EDID block * @timing: EDID detailed timing info * @quirks: quirks to apply * * An EDID detailed timing block contains enough info for us to create and * return a new struct drm_display_mode. */ static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, struct edid *edid, struct detailed_timing *timing, u32 quirks) { struct drm_display_mode *mode; struct detailed_pixel_timing *pt = &timing->data.pixel_data; unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4; unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); /* ignore tiny modes */ if (hactive < 64 || vactive < 64) return NULL; if (pt->misc & DRM_EDID_PT_STEREO) { printk(KERN_WARNING "stereo mode not supported\n"); return NULL; } if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { printk(KERN_WARNING "composite sync not supported\n"); } /* it is incorrect if hsync/vsync width is zero */ if (!hsync_pulse_width || !vsync_pulse_width) { DRM_DEBUG_KMS("Incorrect Detailed timing. " "Wrong Hsync/Vsync pulse width\n"); return NULL; } mode = drm_mode_create(dev); if (!mode) return NULL; mode->type = DRM_MODE_TYPE_DRIVER; if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) timing->pixel_clock = cpu_to_le16(1088); mode->clock = le16_to_cpu(timing->pixel_clock) * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync_offset; mode->hsync_end = mode->hsync_start + hsync_pulse_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync_offset; mode->vsync_end = mode->vsync_start + vsync_pulse_width; mode->vtotal = mode->vdisplay + vblank; /* Some EDIDs have bogus h/vtotal values */ if (mode->hsync_end > mode->htotal) mode->htotal = mode->hsync_end + 1; if (mode->vsync_end > mode->vtotal) mode->vtotal = mode->vsync_end + 1; drm_mode_do_interlace_quirk(mode, pt); drm_mode_set_name(mode); if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; } mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; if (quirks & EDID_QUIRK_DETAILED_IN_CM) { mode->width_mm *= 10; mode->height_mm *= 10; } if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { mode->width_mm = edid->width_cm * 10; mode->height_mm = edid->height_cm * 10; } return mode; } /* * Detailed mode info for the EDID "established modes" data to use. */ static struct drm_display_mode edid_est_modes[] = { { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 768, 864, 0, 480, 483, 486, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 846, 900, 0, 400, 421, 423, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 846, 900, 0, 400, 412, 414, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 928, 1152, 0, 624, 625, 628, 667, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ }; /** * add_established_modes - get est. modes from EDID and add them * @edid: EDID block to scan * * Each EDID block contains a bitmap of the supported "established modes" list * (defined above). Tease them out and add them to the global modes list. */ static int add_established_modes(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; unsigned long est_bits = edid->established_timings.t1 | (edid->established_timings.t2 << 8) | ((edid->established_timings.mfg_rsvd & 0x80) << 9); int i, modes = 0; for (i = 0; i <= EDID_EST_TIMINGS; i++) if (est_bits & (1<standard_timings[i], edid->revision); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } return modes; } static bool mode_is_rb(struct drm_display_mode *mode) { return (mode->htotal - mode->hdisplay == 160) && (mode->hsync_end - mode->hdisplay == 80) && (mode->hsync_end - mode->hsync_start == 32) && (mode->vsync_start - mode->vdisplay == 3); } static bool mode_in_hsync_range(struct drm_display_mode *mode, struct edid *edid, u8 *t) { int hsync, hmin, hmax; hmin = t[7]; if (edid->revision >= 4) hmin += ((t[4] & 0x04) ? 255 : 0); hmax = t[8]; if (edid->revision >= 4) hmax += ((t[4] & 0x08) ? 255 : 0); hsync = drm_mode_hsync(mode); return (hsync <= hmax && hsync >= hmin); } static bool mode_in_vsync_range(struct drm_display_mode *mode, struct edid *edid, u8 *t) { int vsync, vmin, vmax; vmin = t[5]; if (edid->revision >= 4) vmin += ((t[4] & 0x01) ? 255 : 0); vmax = t[6]; if (edid->revision >= 4) vmax += ((t[4] & 0x02) ? 255 : 0); vsync = drm_mode_vrefresh(mode); return (vsync <= vmax && vsync >= vmin); } static u32 range_pixel_clock(struct edid *edid, u8 *t) { /* unspecified */ if (t[9] == 0 || t[9] == 255) return 0; /* 1.4 with CVT support gives us real precision, yay */ if (edid->revision >= 4 && t[10] == 0x04) return (t[9] * 10000) - ((t[12] >> 2) * 250); /* 1.3 is pathetic, so fuzz up a bit */ return t[9] * 10000 + 5001; } static bool mode_in_range(struct drm_display_mode *mode, struct edid *edid, struct detailed_timing *timing) { u32 max_clock; u8 *t = (u8 *)timing; if (!mode_in_hsync_range(mode, edid, t)) return false; if (!mode_in_vsync_range(mode, edid, t)) return false; if ((max_clock = range_pixel_clock(edid, t))) if (mode->clock > max_clock) return false; /* 1.4 max horizontal check */ if (edid->revision >= 4 && t[10] == 0x04) if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) return false; if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) return false; return true; } /* * XXX If drm_dmt_modes ever regrows the CVT-R modes (and it will) this will * need to account for them. */ static int drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < drm_num_dmt_modes; i++) { if (mode_in_range(drm_dmt_modes + i, edid, timing)) { newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } return modes; } static int drm_cvt_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; struct cvt_timing *cvt; const int rates[] = { 60, 85, 75, 60, 50 }; const u8 empty[3] = { 0, 0, 0 }; for (i = 0; i < 4; i++) { int uninitialized_var(width), height; cvt = &(timing->data.other_data.data.cvt[i]); if (!memcmp(cvt->code, empty, 3)) continue; height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; switch (cvt->code[1] & 0x0c) { case 0x00: width = height * 4 / 3; break; case 0x04: width = height * 16 / 9; break; case 0x08: width = height * 16 / 10; break; case 0x0c: width = height * 15 / 9; break; } for (j = 1; j < 5; j++) { if (cvt->code[2] & (1 << j)) { newmode = drm_cvt_mode(dev, width, height, rates[j], j == 0, false, false); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } } return modes; } static const struct { short w; short h; short r; short rb; } est3_modes[] = { /* byte 6 */ { 640, 350, 85, 0 }, { 640, 400, 85, 0 }, { 720, 400, 85, 0 }, { 640, 480, 85, 0 }, { 848, 480, 60, 0 }, { 800, 600, 85, 0 }, { 1024, 768, 85, 0 }, { 1152, 864, 75, 0 }, /* byte 7 */ { 1280, 768, 60, 1 }, { 1280, 768, 60, 0 }, { 1280, 768, 75, 0 }, { 1280, 768, 85, 0 }, { 1280, 960, 60, 0 }, { 1280, 960, 85, 0 }, { 1280, 1024, 60, 0 }, { 1280, 1024, 85, 0 }, /* byte 8 */ { 1360, 768, 60, 0 }, { 1440, 900, 60, 1 }, { 1440, 900, 60, 0 }, { 1440, 900, 75, 0 }, { 1440, 900, 85, 0 }, { 1400, 1050, 60, 1 }, { 1400, 1050, 60, 0 }, { 1400, 1050, 75, 0 }, /* byte 9 */ { 1400, 1050, 85, 0 }, { 1680, 1050, 60, 1 }, { 1680, 1050, 60, 0 }, { 1680, 1050, 75, 0 }, { 1680, 1050, 85, 0 }, { 1600, 1200, 60, 0 }, { 1600, 1200, 65, 0 }, { 1600, 1200, 70, 0 }, /* byte 10 */ { 1600, 1200, 75, 0 }, { 1600, 1200, 85, 0 }, { 1792, 1344, 60, 0 }, { 1792, 1344, 85, 0 }, { 1856, 1392, 60, 0 }, { 1856, 1392, 75, 0 }, { 1920, 1200, 60, 1 }, { 1920, 1200, 60, 0 }, /* byte 11 */ { 1920, 1200, 75, 0 }, { 1920, 1200, 85, 0 }, { 1920, 1440, 60, 0 }, { 1920, 1440, 75, 0 }, }; static const int num_est3_modes = sizeof(est3_modes) / sizeof(est3_modes[0]); static int drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, m, modes = 0; struct drm_display_mode *mode; u8 *est = ((u8 *)timing) + 5; for (i = 0; i < 6; i++) { for (j = 7; j > 0; j--) { m = (i * 8) + (7 - j); if (m >= num_est3_modes) break; if (est[i] & (1 << j)) { mode = drm_mode_find_dmt(connector->dev, est3_modes[m].w, est3_modes[m].h, est3_modes[m].r /*, est3_modes[m].rb */); if (mode) { drm_mode_probed_add(connector, mode); modes++; } } } } return modes; } static int add_detailed_modes(struct drm_connector *connector, struct detailed_timing *timing, struct edid *edid, u32 quirks, int preferred) { int i, modes = 0; struct detailed_non_pixel *data = &timing->data.other_data; int gtf = (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF); struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; if (timing->pixel_clock) { newmode = drm_mode_detailed(dev, edid, timing, quirks); if (!newmode) return 0; if (preferred) newmode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(connector, newmode); return 1; } /* other timing types */ switch (data->type) { case EDID_DETAIL_MONITOR_RANGE: if (gtf) modes += drm_gtf_modes_for_range(connector, edid, timing); break; case EDID_DETAIL_STD_MODES: /* Six modes per detailed section */ for (i = 0; i < 6; i++) { struct std_timing *std; struct drm_display_mode *newmode; std = &data->data.timings[i]; newmode = drm_mode_std(connector, edid, std, edid->revision); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } break; case EDID_DETAIL_CVT_3BYTE: modes += drm_cvt_modes(connector, timing); break; case EDID_DETAIL_EST_TIMINGS: modes += drm_est3_modes(connector, timing); break; default: break; } return modes; } /** * add_detailed_info - get detailed mode info from EDID data * @connector: attached connector * @edid: EDID block to scan * @quirks: quirks to apply * * Some of the detailed timing sections may contain mode information. Grab * it and add it to the list. */ static int add_detailed_info(struct drm_connector *connector, struct edid *edid, u32 quirks) { int i, modes = 0; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) { struct detailed_timing *timing = &edid->detailed_timings[i]; int preferred = (i == 0); if (preferred && edid->version == 1 && edid->revision < 4) preferred = (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); /* In 1.0, only timings are allowed */ if (!timing->pixel_clock && edid->version == 1 && edid->revision == 0) continue; modes += add_detailed_modes(connector, timing, edid, quirks, preferred); } return modes; } /** * add_detailed_mode_eedid - get detailed mode info from addtional timing * EDID block * @connector: attached connector * @edid: EDID block to scan(It is only to get addtional timing EDID block) * @quirks: quirks to apply * * Some of the detailed timing sections may contain mode information. Grab * it and add it to the list. */ static int add_detailed_info_eedid(struct drm_connector *connector, struct edid *edid, u32 quirks) { int i, modes = 0; char *edid_ext = NULL; struct detailed_timing *timing; int start_offset, end_offset; if (edid->version == 1 && edid->revision < 3) return 0; if (!edid->extensions) return 0; /* Find CEA extension */ for (i = 0; i < edid->extensions; i++) { edid_ext = (char *)edid + EDID_LENGTH * (i + 1); if (edid_ext[0] == 0x02) break; } if (i == edid->extensions) return 0; /* Get the start offset of detailed timing block */ start_offset = edid_ext[2]; if (start_offset == 0) { /* If the start_offset is zero, it means that neither detailed * info nor data block exist. In such case it is also * unnecessary to parse the detailed timing info. */ return 0; } end_offset = EDID_LENGTH; end_offset -= sizeof(struct detailed_timing); for (i = start_offset; i < end_offset; i += sizeof(struct detailed_timing)) { timing = (struct detailed_timing *)(edid_ext + i); modes += add_detailed_modes(connector, timing, edid, quirks, 0); } return modes; } #define HDMI_IDENTIFIER 0x000C03 #define VENDOR_BLOCK 0x03 /** * drm_detect_hdmi_monitor - detect whether monitor is hdmi. * @edid: monitor EDID information * * Parse the CEA extension according to CEA-861-B. * Return true if HDMI, false if not or unknown. */ bool drm_detect_hdmi_monitor(struct edid *edid) { char *edid_ext = NULL; int i, hdmi_id; int start_offset, end_offset; bool is_hdmi = false; /* No EDID or EDID extensions */ if (edid == NULL || edid->extensions == 0) goto end; /* Find CEA extension */ for (i = 0; i < edid->extensions; i++) { edid_ext = (char *)edid + EDID_LENGTH * (i + 1); /* This block is CEA extension */ if (edid_ext[0] == 0x02) break; } if (i == edid->extensions) goto end; /* Data block offset in CEA extension block */ start_offset = 4; end_offset = edid_ext[2]; /* * Because HDMI identifier is in Vendor Specific Block, * search it from all data blocks of CEA extension. */ for (i = start_offset; i < end_offset; /* Increased by data block len */ i += ((edid_ext[i] & 0x1f) + 1)) { /* Find vendor specific block */ if ((edid_ext[i] >> 5) == VENDOR_BLOCK) { hdmi_id = edid_ext[i + 1] | (edid_ext[i + 2] << 8) | edid_ext[i + 3] << 16; /* Find HDMI identifier */ if (hdmi_id == HDMI_IDENTIFIER) is_hdmi = true; break; } } end: return is_hdmi; } EXPORT_SYMBOL(drm_detect_hdmi_monitor); /** * drm_add_edid_modes - add modes from EDID data, if available * @connector: connector we're probing * @edid: edid data * * Add the specified modes to the connector's mode list. * * Return number of modes added or 0 if we couldn't find any. */ int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) { int num_modes = 0; u32 quirks; if (edid == NULL) { return 0; } if (!drm_edid_is_valid(edid)) { dev_warn(connector->dev->dev, "%s: EDID invalid.\n", drm_get_connector_name(connector)); return 0; } quirks = edid_get_quirks(edid); /* * EDID spec says modes should be preferred in this order: * - preferred detailed mode * - other detailed modes from base block * - detailed modes from extension blocks * - CVT 3-byte code modes * - standard timing codes * - established timing codes * - modes inferred from GTF or CVT range information * * We don't quite implement this yet, but we're close. * * XXX order for additional mode types in extension blocks? */ num_modes += add_detailed_info(connector, edid, quirks); num_modes += add_detailed_info_eedid(connector, edid, quirks); num_modes += add_standard_modes(connector, edid); num_modes += add_established_modes(connector, edid); if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) edid_fixup_preferred(connector, quirks); connector->display_info.width_mm = edid->width_cm * 10; connector->display_info.height_mm = edid->height_cm * 10; return num_modes; } EXPORT_SYMBOL(drm_add_edid_modes); /** * drm_add_modes_noedid - add modes for the connectors without EDID * @connector: connector we're probing * @hdisplay: the horizontal display limit * @vdisplay: the vertical display limit * * Add the specified modes to the connector's mode list. Only when the * hdisplay/vdisplay is not beyond the given limit, it will be added. * * Return number of modes added or 0 if we couldn't find any. */ int drm_add_modes_noedid(struct drm_connector *connector, int hdisplay, int vdisplay) { int i, count, num_modes = 0; struct drm_display_mode *mode, *ptr; struct drm_device *dev = connector->dev; count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode); if (hdisplay < 0) hdisplay = 0; if (vdisplay < 0) vdisplay = 0; for (i = 0; i < count; i++) { ptr = &drm_dmt_modes[i]; if (hdisplay && vdisplay) { /* * Only when two are valid, they will be used to check * whether the mode should be added to the mode list of * the connector. */ if (ptr->hdisplay > hdisplay || ptr->vdisplay > vdisplay) continue; } if (drm_mode_vrefresh(ptr) > 61) continue; mode = drm_mode_duplicate(dev, ptr); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } EXPORT_SYMBOL(drm_add_modes_noedid);