/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #define DP_LINK_CHECK_TIMEOUT (10 * 1000) struct dp_link_dpll { int link_bw; struct dpll dpll; }; static const struct dp_link_dpll gen4_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, { DP_LINK_BW_2_7, { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } }; static const struct dp_link_dpll pch_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, { DP_LINK_BW_2_7, { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } }; static const struct dp_link_dpll vlv_dpll[] = { { DP_LINK_BW_1_62, { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, { DP_LINK_BW_2_7, { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } }; /** * is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ static bool is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.type == INTEL_OUTPUT_EDP; } static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.base.dev; } static struct intel_dp *intel_attached_dp(struct drm_connector *connector) { return enc_to_intel_dp(&intel_attached_encoder(connector)->base); } static void intel_dp_link_down(struct intel_dp *intel_dp); static int intel_dp_max_link_bw(struct intel_dp *intel_dp) { int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; switch (max_link_bw) { case DP_LINK_BW_1_62: case DP_LINK_BW_2_7: break; case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */ max_link_bw = DP_LINK_BW_2_7; break; default: WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n", max_link_bw); max_link_bw = DP_LINK_BW_1_62; break; } return max_link_bw; } /* * The units on the numbers in the next two are... bizarre. Examples will * make it clearer; this one parallels an example in the eDP spec. * * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: * * 270000 * 1 * 8 / 10 == 216000 * * The actual data capacity of that configuration is 2.16Gbit/s, so the * units are decakilobits. ->clock in a drm_display_mode is in kilohertz - * or equivalently, kilopixels per second - so for 1680x1050R it'd be * 119000. At 18bpp that's 2142000 kilobits per second. * * Thus the strange-looking division by 10 in intel_dp_link_required, to * get the result in decakilobits instead of kilobits. */ static int intel_dp_link_required(int pixel_clock, int bpp) { return (pixel_clock * bpp + 9) / 10; } static int intel_dp_max_data_rate(int max_link_clock, int max_lanes) { return (max_link_clock * max_lanes * 8) / 10; } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; if (is_edp(intel_dp) && fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; target_clock = fixed_mode->clock; } max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp)); max_lanes = drm_dp_max_lane_count(intel_dp->dpcd); max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, 18); if (mode_rate > max_rate) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; return MODE_OK; } static uint32_t pack_aux(uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } /* hrawclock is 1/4 the FSB frequency */ static int intel_hrawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t clkcfg; /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */ if (IS_VALLEYVIEW(dev)) return 200; clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100; case CLKCFG_FSB_533: return 133; case CLKCFG_FSB_667: return 166; case CLKCFG_FSB_800: return 200; case CLKCFG_FSB_1067: return 266; case CLKCFG_FSB_1333: return 333; /* these two are just a guess; one of them might be right */ case CLKCFG_FSB_1600: case CLKCFG_FSB_1600_ALT: return 400; default: return 133; } } static void intel_dp_init_panel_power_sequencer(struct drm_device *dev, struct intel_dp *intel_dp, struct edp_power_seq *out); static void intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, struct intel_dp *intel_dp, struct edp_power_seq *out); static enum pipe vlv_power_sequencer_pipe(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = intel_dig_port->base.base.crtc; struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; enum pipe pipe; /* modeset should have pipe */ if (crtc) return to_intel_crtc(crtc)->pipe; /* init time, try to find a pipe with this port selected */ for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) & PANEL_PORT_SELECT_MASK; if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B) return pipe; if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C) return pipe; } /* shrug */ return PIPE_A; } static u32 _pp_ctrl_reg(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (HAS_PCH_SPLIT(dev)) return PCH_PP_CONTROL; else return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp)); } static u32 _pp_stat_reg(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (HAS_PCH_SPLIT(dev)) return PCH_PP_STATUS; else return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp)); } static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; } static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0; } static void intel_dp_check_edp(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; if (!is_edp(intel_dp)) return; if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) { WARN(1, "eDP powered off while attempting aux channel communication.\n"); DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", I915_READ(_pp_stat_reg(intel_dp)), I915_READ(_pp_ctrl_reg(intel_dp))); } } static uint32_t intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; uint32_t status; bool done; #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) if (has_aux_irq) done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, msecs_to_jiffies_timeout(10)); else done = wait_for_atomic(C, 10) == 0; if (!done) DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n", has_aux_irq); #undef C return status; } static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; /* The clock divider is based off the hrawclk, * and would like to run at 2MHz. So, take the * hrawclk value and divide by 2 and use that * * Note that PCH attached eDP panels should use a 125MHz input * clock divider. */ if (IS_VALLEYVIEW(dev)) { return index ? 0 : 100; } else if (intel_dig_port->port == PORT_A) { if (index) return 0; if (HAS_DDI(dev)) return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000); else if (IS_GEN6(dev) || IS_GEN7(dev)) return 200; /* SNB & IVB eDP input clock at 400Mhz */ else return 225; /* eDP input clock at 450Mhz */ } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { /* Workaround for non-ULT HSW */ switch (index) { case 0: return 63; case 1: return 72; default: return 0; } } else if (HAS_PCH_SPLIT(dev)) { return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2); } else { return index ? 0 :intel_hrawclk(dev) / 2; } } static int intel_dp_aux_ch(struct intel_dp *intel_dp, uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; uint32_t ch_data = ch_ctl + 4; uint32_t aux_clock_divider; int i, ret, recv_bytes; uint32_t status; int try, precharge, clock = 0; bool has_aux_irq = HAS_AUX_IRQ(dev); uint32_t timeout; /* dp aux is extremely sensitive to irq latency, hence request the * lowest possible wakeup latency and so prevent the cpu from going into * deep sleep states. */ pm_qos_update_request(&dev_priv->pm_qos, 0); intel_dp_check_edp(intel_dp); if (IS_GEN6(dev)) precharge = 3; else precharge = 5; if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL) timeout = DP_AUX_CH_CTL_TIME_OUT_600us; else timeout = DP_AUX_CH_CTL_TIME_OUT_400us; intel_aux_display_runtime_get(dev_priv); /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = I915_READ_NOTRACE(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } if (try == 3) { WARN(1, "dp_aux_ch not started status 0x%08x\n", I915_READ(ch_ctl)); ret = -EBUSY; goto out; } /* Only 5 data registers! */ if (WARN_ON(send_bytes > 20 || recv_size > 20)) { ret = -E2BIG; goto out; } while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) { /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) I915_WRITE(ch_data + i, pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ I915_WRITE(ch_ctl, DP_AUX_CH_CTL_SEND_BUSY | (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | timeout | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); status = intel_dp_aux_wait_done(intel_dp, has_aux_irq); /* Clear done status and any errors */ I915_WRITE(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) continue; if (status & DP_AUX_CH_CTL_DONE) break; } if (status & DP_AUX_CH_CTL_DONE) break; } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); ret = -EBUSY; goto out; } /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); ret = -EIO; goto out; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); ret = -ETIMEDOUT; goto out; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) unpack_aux(I915_READ(ch_data + i), recv + i, recv_bytes - i); ret = recv_bytes; out: pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); intel_aux_display_runtime_put(dev_priv); return ret; } /* Write data to the aux channel in native mode */ static int intel_dp_aux_native_write(struct intel_dp *intel_dp, uint16_t address, uint8_t *send, int send_bytes) { int ret; uint8_t msg[20]; int msg_bytes; uint8_t ack; int retry; if (WARN_ON(send_bytes > 16)) return -E2BIG; intel_dp_check_edp(intel_dp); msg[0] = DP_AUX_NATIVE_WRITE << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = send_bytes - 1; memcpy(&msg[4], send, send_bytes); msg_bytes = send_bytes + 4; for (retry = 0; retry < 7; retry++) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1); if (ret < 0) return ret; ack >>= 4; if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) return send_bytes; else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) usleep_range(400, 500); else return -EIO; } DRM_ERROR("too many retries, giving up\n"); return -EIO; } /* Write a single byte to the aux channel in native mode */ static int intel_dp_aux_native_write_1(struct intel_dp *intel_dp, uint16_t address, uint8_t byte) { return intel_dp_aux_native_write(intel_dp, address, &byte, 1); } /* read bytes from a native aux channel */ static int intel_dp_aux_native_read(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { uint8_t msg[4]; int msg_bytes; uint8_t reply[20]; int reply_bytes; uint8_t ack; int ret; int retry; if (WARN_ON(recv_bytes > 19)) return -E2BIG; intel_dp_check_edp(intel_dp); msg[0] = DP_AUX_NATIVE_READ << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = recv_bytes - 1; msg_bytes = 4; reply_bytes = recv_bytes + 1; for (retry = 0; retry < 7; retry++) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret == 0) return -EPROTO; if (ret < 0) return ret; ack = reply[0] >> 4; if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) { memcpy(recv, reply + 1, ret - 1); return ret - 1; } else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) usleep_range(400, 500); else return -EIO; } DRM_ERROR("too many retries, giving up\n"); return -EIO; } static int intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct intel_dp *intel_dp = container_of(adapter, struct intel_dp, adapter); uint16_t address = algo_data->address; uint8_t msg[5]; uint8_t reply[2]; unsigned retry; int msg_bytes; int reply_bytes; int ret; ironlake_edp_panel_vdd_on(intel_dp); intel_dp_check_edp(intel_dp); /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[0] = DP_AUX_I2C_READ << 4; else msg[0] = DP_AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[0] |= DP_AUX_I2C_MOT << 4; msg[1] = address >> 8; msg[2] = address; switch (mode) { case MODE_I2C_WRITE: msg[3] = 0; msg[4] = write_byte; msg_bytes = 5; reply_bytes = 1; break; case MODE_I2C_READ: msg[3] = 0; msg_bytes = 4; reply_bytes = 2; break; default: msg_bytes = 3; reply_bytes = 1; break; } /* * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is * required to retry at least seven times upon receiving AUX_DEFER * before giving up the AUX transaction. */ for (retry = 0; retry < 7; retry++) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret < 0) { DRM_DEBUG_KMS("aux_ch failed %d\n", ret); goto out; } switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) { case DP_AUX_NATIVE_REPLY_ACK: /* I2C-over-AUX Reply field is only valid * when paired with AUX ACK. */ break; case DP_AUX_NATIVE_REPLY_NACK: DRM_DEBUG_KMS("aux_ch native nack\n"); ret = -EREMOTEIO; goto out; case DP_AUX_NATIVE_REPLY_DEFER: /* * For now, just give more slack to branch devices. We * could check the DPCD for I2C bit rate capabilities, * and if available, adjust the interval. We could also * be more careful with DP-to-Legacy adapters where a * long legacy cable may force very low I2C bit rates. */ if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) usleep_range(500, 600); else usleep_range(300, 400); continue; default: DRM_ERROR("aux_ch invalid native reply 0x%02x\n", reply[0]); ret = -EREMOTEIO; goto out; } switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) { case DP_AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) { *read_byte = reply[1]; } ret = reply_bytes - 1; goto out; case DP_AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("aux_i2c nack\n"); ret = -EREMOTEIO; goto out; case DP_AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("aux_i2c defer\n"); udelay(100); break; default: DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); ret = -EREMOTEIO; goto out; } } DRM_ERROR("too many retries, giving up\n"); ret = -EREMOTEIO; out: ironlake_edp_panel_vdd_off(intel_dp, false); return ret; } static int intel_dp_i2c_init(struct intel_dp *intel_dp, struct intel_connector *intel_connector, const char *name) { int ret; DRM_DEBUG_KMS("i2c_init %s\n", name); intel_dp->algo.running = false; intel_dp->algo.address = 0; intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch; memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter)); intel_dp->adapter.owner = THIS_MODULE; intel_dp->adapter.class = I2C_CLASS_DDC; strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; intel_dp->adapter.algo_data = &intel_dp->algo; intel_dp->adapter.dev.parent = intel_connector->base.kdev; ret = i2c_dp_aux_add_bus(&intel_dp->adapter); return ret; } static void intel_dp_set_clock(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config, int link_bw) { struct drm_device *dev = encoder->base.dev; const struct dp_link_dpll *divisor = NULL; int i, count = 0; if (IS_G4X(dev)) { divisor = gen4_dpll; count = ARRAY_SIZE(gen4_dpll); } else if (IS_HASWELL(dev)) { /* Haswell has special-purpose DP DDI clocks. */ } else if (HAS_PCH_SPLIT(dev)) { divisor = pch_dpll; count = ARRAY_SIZE(pch_dpll); } else if (IS_VALLEYVIEW(dev)) { divisor = vlv_dpll; count = ARRAY_SIZE(vlv_dpll); } if (divisor && count) { for (i = 0; i < count; i++) { if (link_bw == divisor[i].link_bw) { pipe_config->dpll = divisor[i].dpll; pipe_config->clock_set = true; break; } } } } bool intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *intel_crtc = encoder->new_crtc; struct intel_connector *intel_connector = intel_dp->attached_connector; int lane_count, clock; int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd); int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0; int bpp, mode_rate; static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; int link_avail, link_clock; if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A) pipe_config->has_pch_encoder = true; pipe_config->has_dp_encoder = true; if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { intel_fixed_panel_mode(intel_connector->panel.fixed_mode, adjusted_mode); if (!HAS_PCH_SPLIT(dev)) intel_gmch_panel_fitting(intel_crtc, pipe_config, intel_connector->panel.fitting_mode); else intel_pch_panel_fitting(intel_crtc, pipe_config, intel_connector->panel.fitting_mode); } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return false; DRM_DEBUG_KMS("DP link computation with max lane count %i " "max bw %02x pixel clock %iKHz\n", max_lane_count, bws[max_clock], adjusted_mode->crtc_clock); /* Walk through all bpp values. Luckily they're all nicely spaced with 2 * bpc in between. */ bpp = pipe_config->pipe_bpp; if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) { DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", dev_priv->vbt.edp_bpp); bpp = dev_priv->vbt.edp_bpp; } for (; bpp >= 6*3; bpp -= 2*3) { mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, bpp); for (clock = 0; clock <= max_clock; clock++) { for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { link_clock = drm_dp_bw_code_to_link_rate(bws[clock]); link_avail = intel_dp_max_data_rate(link_clock, lane_count); if (mode_rate <= link_avail) { goto found; } } } } return false; found: if (intel_dp->color_range_auto) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1) intel_dp->color_range = DP_COLOR_RANGE_16_235; else intel_dp->color_range = 0; } if (intel_dp->color_range) pipe_config->limited_color_range = true; intel_dp->link_bw = bws[clock]; intel_dp->lane_count = lane_count; pipe_config->pipe_bpp = bpp; pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw); DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n", intel_dp->link_bw, intel_dp->lane_count, pipe_config->port_clock, bpp); DRM_DEBUG_KMS("DP link bw required %i available %i\n", mode_rate, link_avail); intel_link_compute_m_n(bpp, lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, &pipe_config->dp_m_n); intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw); return true; } static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock); dpa_ctl = I915_READ(DP_A); dpa_ctl &= ~DP_PLL_FREQ_MASK; if (crtc->config.port_clock == 162000) { /* For a long time we've carried around a ILK-DevA w/a for the * 160MHz clock. If we're really unlucky, it's still required. */ DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n"); dpa_ctl |= DP_PLL_FREQ_160MHZ; intel_dp->DP |= DP_PLL_FREQ_160MHZ; } else { dpa_ctl |= DP_PLL_FREQ_270MHZ; intel_dp->DP |= DP_PLL_FREQ_270MHZ; } I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(500); } static void intel_dp_mode_set(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; /* * There are four kinds of DP registers: * * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ironlake_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; /* Handle DP bits in common between all three register formats */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count); if (intel_dp->has_audio) { DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", pipe_name(crtc->pipe)); intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; intel_write_eld(&encoder->base, adjusted_mode); } /* Split out the IBX/CPU vs CPT settings */ if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= crtc->pipe << 29; } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev)) intel_dp->DP |= intel_dp->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; if (crtc->pipe == 1) intel_dp->DP |= DP_PIPEB_SELECT; } else { intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; } if (port == PORT_A && !IS_VALLEYVIEW(dev)) ironlake_set_pll_cpu_edp(intel_dp); } #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) static void ironlake_wait_panel_status(struct intel_dp *intel_dp, u32 mask, u32 value) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp_stat_reg, pp_ctrl_reg; pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", mask, value, I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) { DRM_ERROR("Panel status timeout: status %08x control %08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); } DRM_DEBUG_KMS("Wait complete\n"); } static void ironlake_wait_panel_on(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power on\n"); ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); } static void ironlake_wait_panel_off(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power off time\n"); ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); } static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power cycle\n"); ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); } /* Read the current pp_control value, unlocking the register if it * is locked */ static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 control; control = I915_READ(_pp_ctrl_reg(intel_dp)); control &= ~PANEL_UNLOCK_MASK; control |= PANEL_UNLOCK_REGS; return control; } void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_stat_reg, pp_ctrl_reg; if (!is_edp(intel_dp)) return; WARN(intel_dp->want_panel_vdd, "eDP VDD already requested on\n"); intel_dp->want_panel_vdd = true; if (ironlake_edp_have_panel_vdd(intel_dp)) return; intel_runtime_pm_get(dev_priv); DRM_DEBUG_KMS("Turning eDP VDD on\n"); if (!ironlake_edp_have_panel_power(intel_dp)) ironlake_wait_panel_power_cycle(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_FORCE_VDD; pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); /* * If the panel wasn't on, delay before accessing aux channel */ if (!ironlake_edp_have_panel_power(intel_dp)) { DRM_DEBUG_KMS("eDP was not running\n"); msleep(intel_dp->panel_power_up_delay); } } static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_stat_reg, pp_ctrl_reg; WARN_ON(!mutex_is_locked(&dev->mode_config.mutex)); if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) { DRM_DEBUG_KMS("Turning eDP VDD off\n"); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_FORCE_VDD; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); /* Make sure sequencer is idle before allowing subsequent activity */ DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if ((pp & POWER_TARGET_ON) == 0) msleep(intel_dp->panel_power_cycle_delay); intel_runtime_pm_put(dev_priv); } } static void ironlake_panel_vdd_work(struct work_struct *__work) { struct intel_dp *intel_dp = container_of(to_delayed_work(__work), struct intel_dp, panel_vdd_work); struct drm_device *dev = intel_dp_to_dev(intel_dp); mutex_lock(&dev->mode_config.mutex); ironlake_panel_vdd_off_sync(intel_dp); mutex_unlock(&dev->mode_config.mutex); } void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) { if (!is_edp(intel_dp)) return; WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on"); intel_dp->want_panel_vdd = false; if (sync) { ironlake_panel_vdd_off_sync(intel_dp); } else { /* * Queue the timer to fire a long * time from now (relative to the power down delay) * to keep the panel power up across a sequence of operations */ schedule_delayed_work(&intel_dp->panel_vdd_work, msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5)); } } void ironlake_edp_panel_on(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP power on\n"); if (ironlake_edp_have_panel_power(intel_dp)) { DRM_DEBUG_KMS("eDP power already on\n"); return; } ironlake_wait_panel_power_cycle(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp = ironlake_get_pp_control(intel_dp); if (IS_GEN5(dev)) { /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } pp |= POWER_TARGET_ON; if (!IS_GEN5(dev)) pp |= PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); ironlake_wait_panel_on(intel_dp); if (IS_GEN5(dev)) { pp |= PANEL_POWER_RESET; /* restore panel reset bit */ I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } } void ironlake_edp_panel_off(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP power off\n"); pp = ironlake_get_pp_control(intel_dp); /* We need to switch off panel power _and_ force vdd, for otherwise some * panels get very unhappy and cease to work. */ pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); ironlake_wait_panel_off(intel_dp); } void ironlake_edp_backlight_on(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; if (!is_edp(intel_dp)) return; DRM_DEBUG_KMS("\n"); /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ msleep(intel_dp->backlight_on_delay); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); intel_panel_enable_backlight(intel_dp->attached_connector); } void ironlake_edp_backlight_off(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; u32 pp_ctrl_reg; if (!is_edp(intel_dp)) return; intel_panel_disable_backlight(intel_dp->attached_connector); DRM_DEBUG_KMS("\n"); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); msleep(intel_dp->backlight_off_delay); } static void ironlake_edp_pll_on(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = intel_dig_port->base.base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); DRM_DEBUG_KMS("\n"); dpa_ctl = I915_READ(DP_A); WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); /* We don't adjust intel_dp->DP while tearing down the link, to * facilitate link retraining (e.g. after hotplug). Hence clear all * enable bits here to ensure that we don't enable too much. */ intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); intel_dp->DP |= DP_PLL_ENABLE; I915_WRITE(DP_A, intel_dp->DP); POSTING_READ(DP_A); udelay(200); } static void ironlake_edp_pll_off(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_crtc *crtc = intel_dig_port->base.base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); dpa_ctl = I915_READ(DP_A); WARN((dpa_ctl & DP_PLL_ENABLE) == 0, "dp pll off, should be on\n"); WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); /* We can't rely on the value tracked for the DP register in * intel_dp->DP because link_down must not change that (otherwise link * re-training will fail. */ dpa_ctl &= ~DP_PLL_ENABLE; I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(200); } /* If the sink supports it, try to set the power state appropriately */ void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D3); if (ret != 1) DRM_DEBUG_DRIVER("failed to write sink power state\n"); } else { /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; msleep(1); } } } static bool intel_dp_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp = I915_READ(intel_dp->output_reg); if (!(tmp & DP_PORT_EN)) return false; if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { *pipe = PORT_TO_PIPE_CPT(tmp); } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { *pipe = PORT_TO_PIPE(tmp); } else { u32 trans_sel; u32 trans_dp; int i; switch (intel_dp->output_reg) { case PCH_DP_B: trans_sel = TRANS_DP_PORT_SEL_B; break; case PCH_DP_C: trans_sel = TRANS_DP_PORT_SEL_C; break; case PCH_DP_D: trans_sel = TRANS_DP_PORT_SEL_D; break; default: return true; } for_each_pipe(i) { trans_dp = I915_READ(TRANS_DP_CTL(i)); if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) { *pipe = i; return true; } } DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg); } return true; } static void intel_dp_get_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); u32 tmp, flags = 0; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = dp_to_dig_port(intel_dp)->port; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); int dotclock; if ((port == PORT_A) || !HAS_PCH_CPT(dev)) { tmp = I915_READ(intel_dp->output_reg); if (tmp & DP_SYNC_HS_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DP_SYNC_VS_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } else { tmp = I915_READ(TRANS_DP_CTL(crtc->pipe)); if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->adjusted_mode.flags |= flags; pipe_config->has_dp_encoder = true; intel_dp_get_m_n(crtc, pipe_config); if (port == PORT_A) { if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ) pipe_config->port_clock = 162000; else pipe_config->port_clock = 270000; } dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A) ironlake_check_encoder_dotclock(pipe_config, dotclock); pipe_config->adjusted_mode.crtc_clock = dotclock; if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; } } static bool is_edp_psr(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return dev_priv->psr.sink_support; } static bool intel_edp_is_psr_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_PSR(dev)) return false; return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; } static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp, struct edp_vsc_psr *vsc_psr) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder); u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder); uint32_t *data = (uint32_t *) vsc_psr; unsigned int i; /* As per BSPec (Pipe Video Data Island Packet), we need to disable the video DIP being updated before program video DIP data buffer registers for DIP being updated. */ I915_WRITE(ctl_reg, 0); POSTING_READ(ctl_reg); for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) { if (i < sizeof(struct edp_vsc_psr)) I915_WRITE(data_reg + i, *data++); else I915_WRITE(data_reg + i, 0); } I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); POSTING_READ(ctl_reg); } static void intel_edp_psr_setup(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct edp_vsc_psr psr_vsc; if (intel_dp->psr_setup_done) return; /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; psr_vsc.sdp_header.HB2 = 0x2; psr_vsc.sdp_header.HB3 = 0x8; intel_edp_psr_write_vsc(intel_dp, &psr_vsc); /* Avoid continuous PSR exit by masking memup and hpd */ I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP); intel_dp->psr_setup_done = true; } static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0); int precharge = 0x3; int msg_size = 5; /* Header(4) + Message(1) */ /* Enable PSR in sink */ if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG, DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); else intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG, DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); /* Setup AUX registers */ I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND); I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION); I915_WRITE(EDP_PSR_AUX_CTL(dev), DP_AUX_CH_CTL_TIME_OUT_400us | (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); } static void intel_edp_psr_enable_source(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; uint32_t max_sleep_time = 0x1f; uint32_t idle_frames = 1; uint32_t val = 0x0; const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) { val |= EDP_PSR_LINK_STANDBY; val |= EDP_PSR_TP2_TP3_TIME_0us; val |= EDP_PSR_TP1_TIME_0us; val |= EDP_PSR_SKIP_AUX_EXIT; } else val |= EDP_PSR_LINK_DISABLE; I915_WRITE(EDP_PSR_CTL(dev), val | IS_BROADWELL(dev) ? 0 : link_entry_time | max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | EDP_PSR_ENABLE); } static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dig_port->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj; struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; dev_priv->psr.source_ok = false; if (!HAS_PSR(dev)) { DRM_DEBUG_KMS("PSR not supported on this platform\n"); return false; } if ((intel_encoder->type != INTEL_OUTPUT_EDP) || (dig_port->port != PORT_A)) { DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); return false; } if (!i915_enable_psr) { DRM_DEBUG_KMS("PSR disable by flag\n"); return false; } crtc = dig_port->base.base.crtc; if (crtc == NULL) { DRM_DEBUG_KMS("crtc not active for PSR\n"); return false; } intel_crtc = to_intel_crtc(crtc); if (!intel_crtc_active(crtc)) { DRM_DEBUG_KMS("crtc not active for PSR\n"); return false; } obj = to_intel_framebuffer(crtc->fb)->obj; if (obj->tiling_mode != I915_TILING_X || obj->fence_reg == I915_FENCE_REG_NONE) { DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n"); return false; } if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) { DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n"); return false; } if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) & S3D_ENABLE) { DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); return false; } if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); return false; } dev_priv->psr.source_ok = true; return true; } static void intel_edp_psr_do_enable(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (!intel_edp_psr_match_conditions(intel_dp) || intel_edp_is_psr_enabled(dev)) return; /* Setup PSR once */ intel_edp_psr_setup(intel_dp); /* Enable PSR on the panel */ intel_edp_psr_enable_sink(intel_dp); /* Enable PSR on the host */ intel_edp_psr_enable_source(intel_dp); } void intel_edp_psr_enable(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); if (intel_edp_psr_match_conditions(intel_dp) && !intel_edp_is_psr_enabled(dev)) intel_edp_psr_do_enable(intel_dp); } void intel_edp_psr_disable(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; if (!intel_edp_is_psr_enabled(dev)) return; I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); /* Wait till PSR is idle */ if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) DRM_ERROR("Timed out waiting for PSR Idle State\n"); } void intel_edp_psr_update(struct drm_device *dev) { struct intel_encoder *encoder; struct intel_dp *intel_dp = NULL; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) if (encoder->type == INTEL_OUTPUT_EDP) { intel_dp = enc_to_intel_dp(&encoder->base); if (!is_edp_psr(dev)) return; if (!intel_edp_psr_match_conditions(intel_dp)) intel_edp_psr_disable(intel_dp); else if (!intel_edp_is_psr_enabled(dev)) intel_edp_psr_do_enable(intel_dp); } } static void intel_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct drm_device *dev = encoder->base.dev; /* Make sure the panel is off before trying to change the mode. But also * ensure that we have vdd while we switch off the panel. */ ironlake_edp_backlight_off(intel_dp); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); ironlake_edp_panel_off(intel_dp); /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */ if (!(port == PORT_A || IS_VALLEYVIEW(dev))) intel_dp_link_down(intel_dp); } static void intel_post_disable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = dp_to_dig_port(intel_dp)->port; struct drm_device *dev = encoder->base.dev; if (port == PORT_A || IS_VALLEYVIEW(dev)) { intel_dp_link_down(intel_dp); if (!IS_VALLEYVIEW(dev)) ironlake_edp_pll_off(intel_dp); } } static void intel_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dp_reg = I915_READ(intel_dp->output_reg); if (WARN_ON(dp_reg & DP_PORT_EN)) return; ironlake_edp_panel_vdd_on(intel_dp); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); ironlake_edp_panel_on(intel_dp); ironlake_edp_panel_vdd_off(intel_dp, true); intel_dp_complete_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); } static void g4x_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_enable_dp(encoder); ironlake_edp_backlight_on(intel_dp); } static void vlv_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); ironlake_edp_backlight_on(intel_dp); } static void g4x_pre_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); if (dport->port == PORT_A) ironlake_edp_pll_on(intel_dp); } static void vlv_pre_enable_dp(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; struct edp_power_seq power_seq; u32 val; mutex_lock(&dev_priv->dpio_lock); val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); val = 0; if (pipe) val |= (1<<21); else val &= ~(1<<21); val |= 0x001000c4; vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); mutex_unlock(&dev_priv->dpio_lock); if (is_edp(intel_dp)) { /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, &power_seq); } intel_enable_dp(encoder); vlv_wait_port_ready(dev_priv, dport); } static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; /* Program Tx lane resets to default */ mutex_lock(&dev_priv->dpio_lock); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | (1<dpio_lock); } /* * Native read with retry for link status and receiver capability reads for * cases where the sink may still be asleep. */ static bool intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { int ret, i; /* * Sinks are *supposed* to come up within 1ms from an off state, * but we're also supposed to retry 3 times per the spec. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_read(intel_dp, address, recv, recv_bytes); if (ret == recv_bytes) return true; msleep(1); } return false; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ static bool intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { return intel_dp_aux_native_read_retry(intel_dp, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); } /* * These are source-specific values; current Intel hardware supports * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB */ static uint8_t intel_dp_voltage_max(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); enum port port = dp_to_dig_port(intel_dp)->port; if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev)) return DP_TRAIN_VOLTAGE_SWING_1200; else if (IS_GEN7(dev) && port == PORT_A) return DP_TRAIN_VOLTAGE_SWING_800; else if (HAS_PCH_CPT(dev) && port != PORT_A) return DP_TRAIN_VOLTAGE_SWING_1200; else return DP_TRAIN_VOLTAGE_SWING_800; } static uint8_t intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) { struct drm_device *dev = intel_dp_to_dev(intel_dp); enum port port = dp_to_dig_port(intel_dp)->port; if (IS_BROADWELL(dev)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } else if (IS_HASWELL(dev)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_9_5; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } else if (IS_VALLEYVIEW(dev)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_9_5; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } else if (IS_GEN7(dev) && port == PORT_A) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; default: return DP_TRAIN_PRE_EMPHASIS_0; } } else { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } } static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); unsigned long demph_reg_value, preemph_reg_value, uniqtranscale_reg_value; uint8_t train_set = intel_dp->train_set[0]; enum dpio_channel port = vlv_dport_to_channel(dport); int pipe = intel_crtc->pipe; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPHASIS_0: preemph_reg_value = 0x0004000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x552AB83A; break; case DP_TRAIN_VOLTAGE_SWING_600: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5548B83A; break; case DP_TRAIN_VOLTAGE_SWING_800: demph_reg_value = 0x2B245555; uniqtranscale_reg_value = 0x5560B83A; break; case DP_TRAIN_VOLTAGE_SWING_1200: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x5598DA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPHASIS_3_5: preemph_reg_value = 0x0002000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5552B83A; break; case DP_TRAIN_VOLTAGE_SWING_600: demph_reg_value = 0x2B404848; uniqtranscale_reg_value = 0x5580B83A; break; case DP_TRAIN_VOLTAGE_SWING_800: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPHASIS_6: preemph_reg_value = 0x0000000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: demph_reg_value = 0x2B305555; uniqtranscale_reg_value = 0x5570B83A; break; case DP_TRAIN_VOLTAGE_SWING_600: demph_reg_value = 0x2B2B4040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPHASIS_9_5: preemph_reg_value = 0x0006000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: demph_reg_value = 0x1B405555; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; default: return 0; } mutex_lock(&dev_priv->dpio_lock); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), uniqtranscale_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000); mutex_unlock(&dev_priv->dpio_lock); return 0; } static void intel_get_adjust_train(struct intel_dp *intel_dp, const uint8_t link_status[DP_LINK_STATUS_SIZE]) { uint8_t v = 0; uint8_t p = 0; int lane; uint8_t voltage_max; uint8_t preemph_max; for (lane = 0; lane < intel_dp->lane_count; lane++) { uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane); uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } voltage_max = intel_dp_voltage_max(intel_dp); if (v >= voltage_max) v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); if (p >= preemph_max) p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static uint32_t intel_gen4_signal_levels(uint8_t train_set) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_600: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_800: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_1200: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPHASIS_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPHASIS_3_5: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPHASIS_6: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPHASIS_9_5: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } /* Gen6's DP voltage swing and pre-emphasis control */ static uint32_t intel_gen6_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } /* Gen7's DP voltage swing and pre-emphasis control */ static uint32_t intel_gen7_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */ static uint32_t intel_hsw_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_400MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_400MV_3_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_400MV_6DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5: return DDI_BUF_EMP_400MV_9_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_600MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_600MV_3_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_600MV_6DB_HSW; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_800MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_800MV_3_5DB_HSW; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return DDI_BUF_EMP_400MV_0DB_HSW; } } static uint32_t intel_bdw_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */ case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */ case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */ case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */ case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */ case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */ case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */ case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */ case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */ default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */ } } /* Properly updates "DP" with the correct signal levels. */ static void intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->port; struct drm_device *dev = intel_dig_port->base.base.dev; uint32_t signal_levels, mask; uint8_t train_set = intel_dp->train_set[0]; if (IS_BROADWELL(dev)) { signal_levels = intel_bdw_signal_levels(train_set); mask = DDI_BUF_EMP_MASK; } else if (IS_HASWELL(dev)) { signal_levels = intel_hsw_signal_levels(train_set); mask = DDI_BUF_EMP_MASK; } else if (IS_VALLEYVIEW(dev)) { signal_levels = intel_vlv_signal_levels(intel_dp); mask = 0; } else if (IS_GEN7(dev) && port == PORT_A) { signal_levels = intel_gen7_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; } else if (IS_GEN6(dev) && port == PORT_A) { signal_levels = intel_gen6_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; } else { signal_levels = intel_gen4_signal_levels(train_set); mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; } DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); *DP = (*DP & ~mask) | signal_levels; } static bool intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; uint8_t buf[sizeof(intel_dp->train_set) + 1]; int ret, len; if (HAS_DDI(dev)) { uint32_t temp = I915_READ(DP_TP_CTL(port)); if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) temp |= DP_TP_CTL_SCRAMBLE_DISABLE; else temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; break; case DP_TRAINING_PATTERN_1: temp |= DP_TP_CTL_LINK_TRAIN_PAT1; break; case DP_TRAINING_PATTERN_2: temp |= DP_TP_CTL_LINK_TRAIN_PAT2; break; case DP_TRAINING_PATTERN_3: temp |= DP_TP_CTL_LINK_TRAIN_PAT3; break; } I915_WRITE(DP_TP_CTL(port), temp); } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { *DP &= ~DP_LINK_TRAIN_MASK_CPT; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; case DP_TRAINING_PATTERN_3: DRM_ERROR("DP training pattern 3 not supported\n"); *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; } } else { *DP &= ~DP_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2; break; case DP_TRAINING_PATTERN_3: DRM_ERROR("DP training pattern 3 not supported\n"); *DP |= DP_LINK_TRAIN_PAT_2; break; } } I915_WRITE(intel_dp->output_reg, *DP); POSTING_READ(intel_dp->output_reg); buf[0] = dp_train_pat; if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_DISABLE) { /* don't write DP_TRAINING_LANEx_SET on disable */ len = 1; } else { /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count); len = intel_dp->lane_count + 1; } ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET, buf, len); return ret == len; } static bool intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); intel_dp_set_signal_levels(intel_dp, DP); return intel_dp_set_link_train(intel_dp, DP, dp_train_pat); } static bool intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP, const uint8_t link_status[DP_LINK_STATUS_SIZE]) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; intel_get_adjust_train(intel_dp, link_status); intel_dp_set_signal_levels(intel_dp, DP); I915_WRITE(intel_dp->output_reg, *DP); POSTING_READ(intel_dp->output_reg); ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET, intel_dp->train_set, intel_dp->lane_count); return ret == intel_dp->lane_count; } static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; uint32_t val; if (!HAS_DDI(dev)) return; val = I915_READ(DP_TP_CTL(port)); val &= ~DP_TP_CTL_LINK_TRAIN_MASK; val |= DP_TP_CTL_LINK_TRAIN_IDLE; I915_WRITE(DP_TP_CTL(port), val); /* * On PORT_A we can have only eDP in SST mode. There the only reason * we need to set idle transmission mode is to work around a HW issue * where we enable the pipe while not in idle link-training mode. * In this case there is requirement to wait for a minimum number of * idle patterns to be sent. */ if (port == PORT_A) return; if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE), 1)) DRM_ERROR("Timed out waiting for DP idle patterns\n"); } /* Enable corresponding port and start training pattern 1 */ void intel_dp_start_link_train(struct intel_dp *intel_dp) { struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base; struct drm_device *dev = encoder->dev; int i; uint8_t voltage; int voltage_tries, loop_tries; uint32_t DP = intel_dp->DP; uint8_t link_config[2]; if (HAS_DDI(dev)) intel_ddi_prepare_link_retrain(encoder); /* Write the link configuration data */ link_config[0] = intel_dp->link_bw; link_config[1] = intel_dp->lane_count; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2); link_config[0] = 0; link_config[1] = DP_SET_ANSI_8B10B; intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2); DP |= DP_PORT_EN; /* clock recovery */ if (!intel_dp_reset_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) { DRM_ERROR("failed to enable link training\n"); return; } voltage = 0xff; voltage_tries = 0; loop_tries = 0; for (;;) { uint8_t link_status[DP_LINK_STATUS_SIZE]; drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); if (!intel_dp_get_link_status(intel_dp, link_status)) { DRM_ERROR("failed to get link status\n"); break; } if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { DRM_DEBUG_KMS("clock recovery OK\n"); break; } /* Check to see if we've tried the max voltage */ for (i = 0; i < intel_dp->lane_count; i++) if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == intel_dp->lane_count) { ++loop_tries; if (loop_tries == 5) { DRM_ERROR("too many full retries, give up\n"); break; } intel_dp_reset_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE); voltage_tries = 0; continue; } /* Check to see if we've tried the same voltage 5 times */ if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++voltage_tries; if (voltage_tries == 5) { DRM_ERROR("too many voltage retries, give up\n"); break; } } else voltage_tries = 0; voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Update training set as requested by target */ if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { DRM_ERROR("failed to update link training\n"); break; } } intel_dp->DP = DP; } void intel_dp_complete_link_train(struct intel_dp *intel_dp) { bool channel_eq = false; int tries, cr_tries; uint32_t DP = intel_dp->DP; /* channel equalization */ if (!intel_dp_set_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_2 | DP_LINK_SCRAMBLING_DISABLE)) { DRM_ERROR("failed to start channel equalization\n"); return; } tries = 0; cr_tries = 0; channel_eq = false; for (;;) { uint8_t link_status[DP_LINK_STATUS_SIZE]; if (cr_tries > 5) { DRM_ERROR("failed to train DP, aborting\n"); break; } drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); if (!intel_dp_get_link_status(intel_dp, link_status)) { DRM_ERROR("failed to get link status\n"); break; } /* Make sure clock is still ok */ if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { intel_dp_start_link_train(intel_dp); intel_dp_set_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_2 | DP_LINK_SCRAMBLING_DISABLE); cr_tries++; continue; } if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { channel_eq = true; break; } /* Try 5 times, then try clock recovery if that fails */ if (tries > 5) { intel_dp_link_down(intel_dp); intel_dp_start_link_train(intel_dp); intel_dp_set_link_train(intel_dp, &DP, DP_TRAINING_PATTERN_2 | DP_LINK_SCRAMBLING_DISABLE); tries = 0; cr_tries++; continue; } /* Update training set as requested by target */ if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { DRM_ERROR("failed to update link training\n"); break; } ++tries; } intel_dp_set_idle_link_train(intel_dp); intel_dp->DP = DP; if (channel_eq) DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n"); } void intel_dp_stop_link_train(struct intel_dp *intel_dp) { intel_dp_set_link_train(intel_dp, &intel_dp->DP, DP_TRAINING_PATTERN_DISABLE); } static void intel_dp_link_down(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->port; struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(intel_dig_port->base.base.crtc); uint32_t DP = intel_dp->DP; /* * DDI code has a strict mode set sequence and we should try to respect * it, otherwise we might hang the machine in many different ways. So we * really should be disabling the port only on a complete crtc_disable * sequence. This function is just called under two conditions on DDI * code: * - Link train failed while doing crtc_enable, and on this case we * really should respect the mode set sequence and wait for a * crtc_disable. * - Someone turned the monitor off and intel_dp_check_link_status * called us. We don't need to disable the whole port on this case, so * when someone turns the monitor on again, * intel_ddi_prepare_link_retrain will take care of redoing the link * train. */ if (HAS_DDI(dev)) return; if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) return; DRM_DEBUG_KMS("\n"); if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { DP &= ~DP_LINK_TRAIN_MASK_CPT; I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT); } else { DP &= ~DP_LINK_TRAIN_MASK; I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); } POSTING_READ(intel_dp->output_reg); /* We don't really know why we're doing this */ intel_wait_for_vblank(dev, intel_crtc->pipe); if (HAS_PCH_IBX(dev) && I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) { struct drm_crtc *crtc = intel_dig_port->base.base.crtc; /* Hardware workaround: leaving our transcoder select * set to transcoder B while it's off will prevent the * corresponding HDMI output on transcoder A. * * Combine this with another hardware workaround: * transcoder select bit can only be cleared while the * port is enabled. */ DP &= ~DP_PIPEB_SELECT; I915_WRITE(intel_dp->output_reg, DP); /* Changes to enable or select take place the vblank * after being written. */ if (WARN_ON(crtc == NULL)) { /* We should never try to disable a port without a crtc * attached. For paranoia keep the code around for a * bit. */ POSTING_READ(intel_dp->output_reg); msleep(50); } else intel_wait_for_vblank(dev, intel_crtc->pipe); } DP &= ~DP_AUDIO_OUTPUT_ENABLE; I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); POSTING_READ(intel_dp->output_reg); msleep(intel_dp->panel_power_down_delay); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3]; if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd, sizeof(intel_dp->dpcd)) == 0) return false; /* aux transfer failed */ hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd), 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false); DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump); if (intel_dp->dpcd[DP_DPCD_REV] == 0) return false; /* DPCD not present */ /* Check if the panel supports PSR */ memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd)); if (is_edp(intel_dp)) { intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { dev_priv->psr.sink_support = true; DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); } } if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) return true; /* native DP sink */ if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) return true; /* no per-port downstream info */ if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0, intel_dp->downstream_ports, DP_MAX_DOWNSTREAM_PORTS) == 0) return false; /* downstream port status fetch failed */ return true; } static void intel_dp_probe_oui(struct intel_dp *intel_dp) { u8 buf[3]; if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) return; ironlake_edp_panel_vdd_on(intel_dp); if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3)) DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3)) DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); ironlake_edp_panel_vdd_off(intel_dp, false); } static bool intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) { int ret; ret = intel_dp_aux_native_read_retry(intel_dp, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector, 1); if (!ret) return false; return true; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { /* NAK by default */ intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK); } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt */ void intel_dp_check_link_status(struct intel_dp *intel_dp) { struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; u8 sink_irq_vector; u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_encoder->connectors_active) return; if (WARN_ON(!intel_encoder->base.crtc)) return; /* Try to read receiver status if the link appears to be up */ if (!intel_dp_get_link_status(intel_dp, link_status)) { return; } /* Now read the DPCD to see if it's actually running */ if (!intel_dp_get_dpcd(intel_dp)) { return; } /* Try to read the source of the interrupt */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { /* Clear interrupt source */ intel_dp_aux_native_write_1(intel_dp, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector); if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); } if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", drm_get_encoder_name(&intel_encoder->base)); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); } } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { uint8_t *dpcd = intel_dp->dpcd; uint8_t type; if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; /* if there's no downstream port, we're done */ if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { uint8_t reg; if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT, ®, 1)) return connector_status_unknown; return DP_GET_SINK_COUNT(reg) ? connector_status_connected : connector_status_disconnected; } /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->adapter)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status ironlake_dp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum drm_connector_status status; /* Can't disconnect eDP, but you can close the lid... */ if (is_edp(intel_dp)) { status = intel_panel_detect(dev); if (status == connector_status_unknown) status = connector_status_connected; return status; } if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) return connector_status_disconnected; return intel_dp_detect_dpcd(intel_dp); } static enum drm_connector_status g4x_dp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); uint32_t bit; /* Can't disconnect eDP, but you can close the lid... */ if (is_edp(intel_dp)) { enum drm_connector_status status; status = intel_panel_detect(dev); if (status == connector_status_unknown) status = connector_status_connected; return status; } if (IS_VALLEYVIEW(dev)) { switch (intel_dig_port->port) { case PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_VLV; break; case PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_VLV; break; case PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_VLV; break; default: return connector_status_unknown; } } else { switch (intel_dig_port->port) { case PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; break; case PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; break; case PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; break; default: return connector_status_unknown; } } if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) return connector_status_disconnected; return intel_dp_detect_dpcd(intel_dp); } static struct edid * intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct intel_connector *intel_connector = to_intel_connector(connector); /* use cached edid if we have one */ if (intel_connector->edid) { /* invalid edid */ if (IS_ERR(intel_connector->edid)) return NULL; return drm_edid_duplicate(intel_connector->edid); } return drm_get_edid(connector, adapter); } static int intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter) { struct intel_connector *intel_connector = to_intel_connector(connector); /* use cached edid if we have one */ if (intel_connector->edid) { /* invalid edid */ if (IS_ERR(intel_connector->edid)) return 0; return intel_connector_update_modes(connector, intel_connector->edid); } return intel_ddc_get_modes(connector, adapter); } static enum drm_connector_status intel_dp_detect(struct drm_connector *connector, bool force) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum drm_connector_status status; struct edid *edid = NULL; intel_runtime_pm_get(dev_priv); DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, drm_get_connector_name(connector)); intel_dp->has_audio = false; if (HAS_PCH_SPLIT(dev)) status = ironlake_dp_detect(intel_dp); else status = g4x_dp_detect(intel_dp); if (status != connector_status_connected) goto out; intel_dp_probe_oui(intel_dp); if (intel_dp->force_audio != HDMI_AUDIO_AUTO) { intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON); } else { edid = intel_dp_get_edid(connector, &intel_dp->adapter); if (edid) { intel_dp->has_audio = drm_detect_monitor_audio(edid); kfree(edid); } } if (intel_encoder->type != INTEL_OUTPUT_EDP) intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; status = connector_status_connected; out: intel_runtime_pm_put(dev_priv); return status; } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_device *dev = connector->dev; int ret; /* We should parse the EDID data and find out if it has an audio sink */ ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter); if (ret) return ret; /* if eDP has no EDID, fall back to fixed mode */ if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { struct drm_display_mode *mode; mode = drm_mode_duplicate(dev, intel_connector->panel.fixed_mode); if (mode) { drm_mode_probed_add(connector, mode); return 1; } } return 0; } static bool intel_dp_detect_audio(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct edid *edid; bool has_audio = false; edid = intel_dp_get_edid(connector, &intel_dp->adapter); if (edid) { has_audio = drm_detect_monitor_audio(edid); kfree(edid); } return has_audio; } static int intel_dp_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_i915_private *dev_priv = connector->dev->dev_private; struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); int ret; ret = drm_object_property_set_value(&connector->base, property, val); if (ret) return ret; if (property == dev_priv->force_audio_property) { int i = val; bool has_audio; if (i == intel_dp->force_audio) return 0; intel_dp->force_audio = i; if (i == HDMI_AUDIO_AUTO) has_audio = intel_dp_detect_audio(connector); else has_audio = (i == HDMI_AUDIO_ON); if (has_audio == intel_dp->has_audio) return 0; intel_dp->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { bool old_auto = intel_dp->color_range_auto; uint32_t old_range = intel_dp->color_range; switch (val) { case INTEL_BROADCAST_RGB_AUTO: intel_dp->color_range_auto = true; break; case INTEL_BROADCAST_RGB_FULL: intel_dp->color_range_auto = false; intel_dp->color_range = 0; break; case INTEL_BROADCAST_RGB_LIMITED: intel_dp->color_range_auto = false; intel_dp->color_range = DP_COLOR_RANGE_16_235; break; default: return -EINVAL; } if (old_auto == intel_dp->color_range_auto && old_range == intel_dp->color_range) return 0; goto done; } if (is_edp(intel_dp) && property == connector->dev->mode_config.scaling_mode_property) { if (val == DRM_MODE_SCALE_NONE) { DRM_DEBUG_KMS("no scaling not supported\n"); return -EINVAL; } if (intel_connector->panel.fitting_mode == val) { /* the eDP scaling property is not changed */ return 0; } intel_connector->panel.fitting_mode = val; goto done; } return -EINVAL; done: if (intel_encoder->base.crtc) intel_crtc_restore_mode(intel_encoder->base.crtc); return 0; } static void intel_dp_connector_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); if (!IS_ERR_OR_NULL(intel_connector->edid)) kfree(intel_connector->edid); /* Can't call is_edp() since the encoder may have been destroyed * already. */ if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) intel_panel_fini(&intel_connector->panel); drm_connector_cleanup(connector); kfree(connector); } void intel_dp_encoder_destroy(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = &intel_dig_port->dp; struct drm_device *dev = intel_dp_to_dev(intel_dp); i2c_del_adapter(&intel_dp->adapter); drm_encoder_cleanup(encoder); if (is_edp(intel_dp)) { cancel_delayed_work_sync(&intel_dp->panel_vdd_work); mutex_lock(&dev->mode_config.mutex); ironlake_panel_vdd_off_sync(intel_dp); mutex_unlock(&dev->mode_config.mutex); } kfree(intel_dig_port); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .dpms = intel_connector_dpms, .detect = intel_dp_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_dp_set_property, .destroy = intel_dp_connector_destroy, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_encoder_funcs intel_dp_enc_funcs = { .destroy = intel_dp_encoder_destroy, }; static void intel_dp_hot_plug(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); intel_dp_check_link_status(intel_dp); } /* Return which DP Port should be selected for Transcoder DP control */ int intel_trans_dp_port_sel(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *intel_encoder; struct intel_dp *intel_dp; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { intel_dp = enc_to_intel_dp(&intel_encoder->base); if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || intel_encoder->type == INTEL_OUTPUT_EDP) return intel_dp->output_reg; } return -1; } /* check the VBT to see whether the eDP is on DP-D port */ bool intel_dp_is_edp(struct drm_device *dev, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; union child_device_config *p_child; int i; static const short port_mapping[] = { [PORT_B] = PORT_IDPB, [PORT_C] = PORT_IDPC, [PORT_D] = PORT_IDPD, }; if (port == PORT_A) return true; if (!dev_priv->vbt.child_dev_num) return false; for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { p_child = dev_priv->vbt.child_dev + i; if (p_child->common.dvo_port == port_mapping[port] && (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) return true; } return false; } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); intel_dp->color_range_auto = true; if (is_edp(intel_dp)) { drm_mode_create_scaling_mode_property(connector->dev); drm_object_attach_property( &connector->base, connector->dev->mode_config.scaling_mode_property, DRM_MODE_SCALE_ASPECT); intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT; } } static void intel_dp_init_panel_power_sequencer(struct drm_device *dev, struct intel_dp *intel_dp, struct edp_power_seq *out) { struct drm_i915_private *dev_priv = dev->dev_private; struct edp_power_seq cur, vbt, spec, final; u32 pp_on, pp_off, pp_div, pp; int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg; if (HAS_PCH_SPLIT(dev)) { pp_ctrl_reg = PCH_PP_CONTROL; pp_on_reg = PCH_PP_ON_DELAYS; pp_off_reg = PCH_PP_OFF_DELAYS; pp_div_reg = PCH_PP_DIVISOR; } else { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); } /* Workaround: Need to write PP_CONTROL with the unlock key as * the very first thing. */ pp = ironlake_get_pp_control(intel_dp); I915_WRITE(pp_ctrl_reg, pp); pp_on = I915_READ(pp_on_reg); pp_off = I915_READ(pp_off_reg); pp_div = I915_READ(pp_div_reg); /* Pull timing values out of registers */ cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> PANEL_POWER_UP_DELAY_SHIFT; cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> PANEL_LIGHT_ON_DELAY_SHIFT; cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> PANEL_LIGHT_OFF_DELAY_SHIFT; cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> PANEL_POWER_DOWN_DELAY_SHIFT; cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); vbt = dev_priv->vbt.edp_pps; /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of * our hw here, which are all in 100usec. */ spec.t1_t3 = 210 * 10; spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ spec.t10 = 500 * 10; /* This one is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ spec.t11_t12 = (510 + 100) * 10; DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); /* Use the max of the register settings and vbt. If both are * unset, fall back to the spec limits. */ #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \ spec.field : \ max(cur.field, vbt.field)) assign_final(t1_t3); assign_final(t8); assign_final(t9); assign_final(t10); assign_final(t11_t12); #undef assign_final #define get_delay(field) (DIV_ROUND_UP(final.field, 10)) intel_dp->panel_power_up_delay = get_delay(t1_t3); intel_dp->backlight_on_delay = get_delay(t8); intel_dp->backlight_off_delay = get_delay(t9); intel_dp->panel_power_down_delay = get_delay(t10); intel_dp->panel_power_cycle_delay = get_delay(t11_t12); #undef get_delay DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, intel_dp->panel_power_cycle_delay); DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); if (out) *out = final; } static void intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, struct intel_dp *intel_dp, struct edp_power_seq *seq) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp_on, pp_off, pp_div, port_sel = 0; int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev); int pp_on_reg, pp_off_reg, pp_div_reg; if (HAS_PCH_SPLIT(dev)) { pp_on_reg = PCH_PP_ON_DELAYS; pp_off_reg = PCH_PP_OFF_DELAYS; pp_div_reg = PCH_PP_DIVISOR; } else { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); } /* And finally store the new values in the power sequencer. */ pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT); pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) | (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); /* Compute the divisor for the pp clock, simply match the Bspec * formula. */ pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) << PANEL_POWER_CYCLE_DELAY_SHIFT); /* Haswell doesn't have any port selection bits for the panel * power sequencer any more. */ if (IS_VALLEYVIEW(dev)) { if (dp_to_dig_port(intel_dp)->port == PORT_B) port_sel = PANEL_PORT_SELECT_DPB_VLV; else port_sel = PANEL_PORT_SELECT_DPC_VLV; } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { if (dp_to_dig_port(intel_dp)->port == PORT_A) port_sel = PANEL_PORT_SELECT_DPA; else port_sel = PANEL_PORT_SELECT_DPD; } pp_on |= port_sel; I915_WRITE(pp_on_reg, pp_on); I915_WRITE(pp_off_reg, pp_off); I915_WRITE(pp_div_reg, pp_div); DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", I915_READ(pp_on_reg), I915_READ(pp_off_reg), I915_READ(pp_div_reg)); } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *fixed_mode = NULL; struct edp_power_seq power_seq = { 0 }; bool has_dpcd; struct drm_display_mode *scan; struct edid *edid; if (!is_edp(intel_dp)) return true; intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); /* Cache DPCD and EDID for edp. */ ironlake_edp_panel_vdd_on(intel_dp); has_dpcd = intel_dp_get_dpcd(intel_dp); ironlake_edp_panel_vdd_off(intel_dp, false); if (has_dpcd) { if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_NO_AUX_HANDSHAKE_LINK_TRAINING; } else { /* if this fails, presume the device is a ghost */ DRM_INFO("failed to retrieve link info, disabling eDP\n"); return false; } /* We now know it's not a ghost, init power sequence regs. */ intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, &power_seq); edid = drm_get_edid(connector, &intel_dp->adapter); if (edid) { if (drm_add_edid_modes(connector, edid)) { drm_mode_connector_update_edid_property(connector, edid); drm_edid_to_eld(connector, edid); } else { kfree(edid); edid = ERR_PTR(-EINVAL); } } else { edid = ERR_PTR(-ENOENT); } intel_connector->edid = edid; /* prefer fixed mode from EDID if available */ list_for_each_entry(scan, &connector->probed_modes, head) { if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { fixed_mode = drm_mode_duplicate(dev, scan); break; } } /* fallback to VBT if available for eDP */ if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { fixed_mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode); if (fixed_mode) fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; } intel_panel_init(&intel_connector->panel, fixed_mode); intel_panel_setup_backlight(connector); return true; } bool intel_dp_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &intel_dig_port->dp; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_dig_port->port; const char *name = NULL; int type, error; /* Preserve the current hw state. */ intel_dp->DP = I915_READ(intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (intel_dp_is_edp(dev, port)) type = DRM_MODE_CONNECTOR_eDP; else type = DRM_MODE_CONNECTOR_DisplayPort; /* * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but * for DP the encoder type can be set by the caller to * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. */ if (type == DRM_MODE_CONNECTOR_eDP) intel_encoder->type = INTEL_OUTPUT_EDP; DRM_DEBUG_KMS("Adding %s connector on port %c\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", port_name(port)); drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); connector->interlace_allowed = true; connector->doublescan_allowed = 0; INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, ironlake_panel_vdd_work); intel_connector_attach_encoder(intel_connector, intel_encoder); drm_sysfs_connector_add(connector); if (HAS_DDI(dev)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10; if (HAS_DDI(dev)) { switch (intel_dig_port->port) { case PORT_A: intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL; break; case PORT_B: intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL; break; case PORT_C: intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL; break; case PORT_D: intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL; break; default: BUG(); } } /* Set up the DDC bus. */ switch (port) { case PORT_A: intel_encoder->hpd_pin = HPD_PORT_A; name = "DPDDC-A"; break; case PORT_B: intel_encoder->hpd_pin = HPD_PORT_B; name = "DPDDC-B"; break; case PORT_C: intel_encoder->hpd_pin = HPD_PORT_C; name = "DPDDC-C"; break; case PORT_D: intel_encoder->hpd_pin = HPD_PORT_D; name = "DPDDC-D"; break; default: BUG(); } error = intel_dp_i2c_init(intel_dp, intel_connector, name); WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n", error, port_name(port)); intel_dp->psr_setup_done = false; if (!intel_edp_init_connector(intel_dp, intel_connector)) { i2c_del_adapter(&intel_dp->adapter); if (is_edp(intel_dp)) { cancel_delayed_work_sync(&intel_dp->panel_vdd_work); mutex_lock(&dev->mode_config.mutex); ironlake_panel_vdd_off_sync(intel_dp); mutex_unlock(&dev->mode_config.mutex); } drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); return false; } intel_dp_add_properties(intel_dp, connector); /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } return true; } void intel_dp_init(struct drm_device *dev, int output_reg, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); if (!intel_connector) { kfree(intel_dig_port); return; } intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS); intel_encoder->compute_config = intel_dp_compute_config; intel_encoder->mode_set = intel_dp_mode_set; intel_encoder->disable = intel_disable_dp; intel_encoder->post_disable = intel_post_disable_dp; intel_encoder->get_hw_state = intel_dp_get_hw_state; intel_encoder->get_config = intel_dp_get_config; if (IS_VALLEYVIEW(dev)) { intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; intel_encoder->pre_enable = vlv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; } else { intel_encoder->pre_enable = g4x_pre_enable_dp; intel_encoder->enable = g4x_enable_dp; } intel_dig_port->port = port; intel_dig_port->dp.output_reg = output_reg; intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); intel_encoder->cloneable = false; intel_encoder->hot_plug = intel_dp_hot_plug; if (!intel_dp_init_connector(intel_dig_port, intel_connector)) { drm_encoder_cleanup(encoder); kfree(intel_dig_port); kfree(intel_connector); } }