/* * Copyright © 2009 * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Daniel Vetter * * Derived from Xorg ddx, xf86-video-intel, src/i830_video.c */ #include #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_reg.h" #include "intel_drv.h" /* Limits for overlay size. According to intel doc, the real limits are: * Y width: 4095, UV width (planar): 2047, Y height: 2047, * UV width (planar): * 1023. But the xorg thinks 2048 for height and width. Use * the mininum of both. */ #define IMAGE_MAX_WIDTH 2048 #define IMAGE_MAX_HEIGHT 2046 /* 2 * 1023 */ /* on 830 and 845 these large limits result in the card hanging */ #define IMAGE_MAX_WIDTH_LEGACY 1024 #define IMAGE_MAX_HEIGHT_LEGACY 1088 /* overlay register definitions */ /* OCMD register */ #define OCMD_TILED_SURFACE (0x1<<19) #define OCMD_MIRROR_MASK (0x3<<17) #define OCMD_MIRROR_MODE (0x3<<17) #define OCMD_MIRROR_HORIZONTAL (0x1<<17) #define OCMD_MIRROR_VERTICAL (0x2<<17) #define OCMD_MIRROR_BOTH (0x3<<17) #define OCMD_BYTEORDER_MASK (0x3<<14) /* zero for YUYV or FOURCC YUY2 */ #define OCMD_UV_SWAP (0x1<<14) /* YVYU */ #define OCMD_Y_SWAP (0x2<<14) /* UYVY or FOURCC UYVY */ #define OCMD_Y_AND_UV_SWAP (0x3<<14) /* VYUY */ #define OCMD_SOURCE_FORMAT_MASK (0xf<<10) #define OCMD_RGB_888 (0x1<<10) /* not in i965 Intel docs */ #define OCMD_RGB_555 (0x2<<10) /* not in i965 Intel docs */ #define OCMD_RGB_565 (0x3<<10) /* not in i965 Intel docs */ #define OCMD_YUV_422_PACKED (0x8<<10) #define OCMD_YUV_411_PACKED (0x9<<10) /* not in i965 Intel docs */ #define OCMD_YUV_420_PLANAR (0xc<<10) #define OCMD_YUV_422_PLANAR (0xd<<10) #define OCMD_YUV_410_PLANAR (0xe<<10) /* also 411 */ #define OCMD_TVSYNCFLIP_PARITY (0x1<<9) #define OCMD_TVSYNCFLIP_ENABLE (0x1<<7) #define OCMD_BUF_TYPE_MASK (0x1<<5) #define OCMD_BUF_TYPE_FRAME (0x0<<5) #define OCMD_BUF_TYPE_FIELD (0x1<<5) #define OCMD_TEST_MODE (0x1<<4) #define OCMD_BUFFER_SELECT (0x3<<2) #define OCMD_BUFFER0 (0x0<<2) #define OCMD_BUFFER1 (0x1<<2) #define OCMD_FIELD_SELECT (0x1<<2) #define OCMD_FIELD0 (0x0<<1) #define OCMD_FIELD1 (0x1<<1) #define OCMD_ENABLE (0x1<<0) /* OCONFIG register */ #define OCONF_PIPE_MASK (0x1<<18) #define OCONF_PIPE_A (0x0<<18) #define OCONF_PIPE_B (0x1<<18) #define OCONF_GAMMA2_ENABLE (0x1<<16) #define OCONF_CSC_MODE_BT601 (0x0<<5) #define OCONF_CSC_MODE_BT709 (0x1<<5) #define OCONF_CSC_BYPASS (0x1<<4) #define OCONF_CC_OUT_8BIT (0x1<<3) #define OCONF_TEST_MODE (0x1<<2) #define OCONF_THREE_LINE_BUFFER (0x1<<0) #define OCONF_TWO_LINE_BUFFER (0x0<<0) /* DCLRKM (dst-key) register */ #define DST_KEY_ENABLE (0x1<<31) #define CLK_RGB24_MASK 0x0 #define CLK_RGB16_MASK 0x070307 #define CLK_RGB15_MASK 0x070707 #define CLK_RGB8I_MASK 0xffffff #define RGB16_TO_COLORKEY(c) \ (((c & 0xF800) << 8) | ((c & 0x07E0) << 5) | ((c & 0x001F) << 3)) #define RGB15_TO_COLORKEY(c) \ (((c & 0x7c00) << 9) | ((c & 0x03E0) << 6) | ((c & 0x001F) << 3)) /* overlay flip addr flag */ #define OFC_UPDATE 0x1 /* polyphase filter coefficients */ #define N_HORIZ_Y_TAPS 5 #define N_VERT_Y_TAPS 3 #define N_HORIZ_UV_TAPS 3 #define N_VERT_UV_TAPS 3 #define N_PHASES 17 #define MAX_TAPS 5 /* memory bufferd overlay registers */ struct overlay_registers { u32 OBUF_0Y; u32 OBUF_1Y; u32 OBUF_0U; u32 OBUF_0V; u32 OBUF_1U; u32 OBUF_1V; u32 OSTRIDE; u32 YRGB_VPH; u32 UV_VPH; u32 HORZ_PH; u32 INIT_PHS; u32 DWINPOS; u32 DWINSZ; u32 SWIDTH; u32 SWIDTHSW; u32 SHEIGHT; u32 YRGBSCALE; u32 UVSCALE; u32 OCLRC0; u32 OCLRC1; u32 DCLRKV; u32 DCLRKM; u32 SCLRKVH; u32 SCLRKVL; u32 SCLRKEN; u32 OCONFIG; u32 OCMD; u32 RESERVED1; /* 0x6C */ u32 OSTART_0Y; u32 OSTART_1Y; u32 OSTART_0U; u32 OSTART_0V; u32 OSTART_1U; u32 OSTART_1V; u32 OTILEOFF_0Y; u32 OTILEOFF_1Y; u32 OTILEOFF_0U; u32 OTILEOFF_0V; u32 OTILEOFF_1U; u32 OTILEOFF_1V; u32 FASTHSCALE; /* 0xA0 */ u32 UVSCALEV; /* 0xA4 */ u32 RESERVEDC[(0x200 - 0xA8) / 4]; /* 0xA8 - 0x1FC */ u16 Y_VCOEFS[N_VERT_Y_TAPS * N_PHASES]; /* 0x200 */ u16 RESERVEDD[0x100 / 2 - N_VERT_Y_TAPS * N_PHASES]; u16 Y_HCOEFS[N_HORIZ_Y_TAPS * N_PHASES]; /* 0x300 */ u16 RESERVEDE[0x200 / 2 - N_HORIZ_Y_TAPS * N_PHASES]; u16 UV_VCOEFS[N_VERT_UV_TAPS * N_PHASES]; /* 0x500 */ u16 RESERVEDF[0x100 / 2 - N_VERT_UV_TAPS * N_PHASES]; u16 UV_HCOEFS[N_HORIZ_UV_TAPS * N_PHASES]; /* 0x600 */ u16 RESERVEDG[0x100 / 2 - N_HORIZ_UV_TAPS * N_PHASES]; }; /* overlay flip addr flag */ #define OFC_UPDATE 0x1 #define OVERLAY_NONPHYSICAL(dev) (IS_G33(dev) || IS_I965G(dev)) #define OVERLAY_EXISTS(dev) (!IS_G4X(dev) && !IS_IRONLAKE(dev) && !IS_GEN6(dev)) static struct overlay_registers *intel_overlay_map_regs_atomic(struct intel_overlay *overlay) { drm_i915_private_t *dev_priv = overlay->dev->dev_private; struct overlay_registers *regs; /* no recursive mappings */ BUG_ON(overlay->virt_addr); if (OVERLAY_NONPHYSICAL(overlay->dev)) { regs = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, overlay->reg_bo->gtt_offset); if (!regs) { DRM_ERROR("failed to map overlay regs in GTT\n"); return NULL; } } else regs = overlay->reg_bo->phys_obj->handle->vaddr; return overlay->virt_addr = regs; } static void intel_overlay_unmap_regs_atomic(struct intel_overlay *overlay) { if (OVERLAY_NONPHYSICAL(overlay->dev)) io_mapping_unmap_atomic(overlay->virt_addr); overlay->virt_addr = NULL; return; } /* overlay needs to be disable in OCMD reg */ static int intel_overlay_on(struct intel_overlay *overlay) { struct drm_device *dev = overlay->dev; int ret; drm_i915_private_t *dev_priv = dev->dev_private; BUG_ON(overlay->active); overlay->active = 1; overlay->hw_wedged = NEEDS_WAIT_FOR_FLIP; BEGIN_LP_RING(4); OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_ON); OUT_RING(overlay->flip_addr | OFC_UPDATE); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; ret = i915_do_wait_request(dev, overlay->last_flip_req, 1, &dev_priv->render_ring); if (ret != 0) return ret; overlay->hw_wedged = 0; overlay->last_flip_req = 0; return 0; } /* overlay needs to be enabled in OCMD reg */ static void intel_overlay_continue(struct intel_overlay *overlay, bool load_polyphase_filter) { struct drm_device *dev = overlay->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 flip_addr = overlay->flip_addr; u32 tmp; BUG_ON(!overlay->active); if (load_polyphase_filter) flip_addr |= OFC_UPDATE; /* check for underruns */ tmp = I915_READ(DOVSTA); if (tmp & (1 << 17)) DRM_DEBUG("overlay underrun, DOVSTA: %x\n", tmp); BEGIN_LP_RING(2); OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE); OUT_RING(flip_addr); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); } static int intel_overlay_wait_flip(struct intel_overlay *overlay) { struct drm_device *dev = overlay->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; u32 tmp; if (overlay->last_flip_req != 0) { ret = i915_do_wait_request(dev, overlay->last_flip_req, 1, &dev_priv->render_ring); if (ret == 0) { overlay->last_flip_req = 0; tmp = I915_READ(ISR); if (!(tmp & I915_OVERLAY_PLANE_FLIP_PENDING_INTERRUPT)) return 0; } } /* synchronous slowpath */ overlay->hw_wedged = RELEASE_OLD_VID; BEGIN_LP_RING(2); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; ret = i915_do_wait_request(dev, overlay->last_flip_req, 1, &dev_priv->render_ring); if (ret != 0) return ret; overlay->hw_wedged = 0; overlay->last_flip_req = 0; return 0; } /* overlay needs to be disabled in OCMD reg */ static int intel_overlay_off(struct intel_overlay *overlay) { u32 flip_addr = overlay->flip_addr; struct drm_device *dev = overlay->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; BUG_ON(!overlay->active); /* According to intel docs the overlay hw may hang (when switching * off) without loading the filter coeffs. It is however unclear whether * this applies to the disabling of the overlay or to the switching off * of the hw. Do it in both cases */ flip_addr |= OFC_UPDATE; /* wait for overlay to go idle */ overlay->hw_wedged = SWITCH_OFF_STAGE_1; BEGIN_LP_RING(4); OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE); OUT_RING(flip_addr); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; ret = i915_do_wait_request(dev, overlay->last_flip_req, 1, &dev_priv->render_ring); if (ret != 0) return ret; /* turn overlay off */ overlay->hw_wedged = SWITCH_OFF_STAGE_2; BEGIN_LP_RING(4); OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_OFF); OUT_RING(flip_addr); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; ret = i915_do_wait_request(dev, overlay->last_flip_req, 1, &dev_priv->render_ring); if (ret != 0) return ret; overlay->hw_wedged = 0; overlay->last_flip_req = 0; return ret; } static void intel_overlay_off_tail(struct intel_overlay *overlay) { struct drm_gem_object *obj; /* never have the overlay hw on without showing a frame */ BUG_ON(!overlay->vid_bo); obj = &overlay->vid_bo->base; i915_gem_object_unpin(obj); drm_gem_object_unreference(obj); overlay->vid_bo = NULL; overlay->crtc->overlay = NULL; overlay->crtc = NULL; overlay->active = 0; } /* recover from an interruption due to a signal * We have to be careful not to repeat work forever an make forward progess. */ int intel_overlay_recover_from_interrupt(struct intel_overlay *overlay, int interruptible) { struct drm_device *dev = overlay->dev; struct drm_gem_object *obj; drm_i915_private_t *dev_priv = dev->dev_private; u32 flip_addr; int ret; if (overlay->hw_wedged == HW_WEDGED) return -EIO; if (overlay->last_flip_req == 0) { overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; } ret = i915_do_wait_request(dev, overlay->last_flip_req, interruptible, &dev_priv->render_ring); if (ret != 0) return ret; switch (overlay->hw_wedged) { case RELEASE_OLD_VID: obj = &overlay->old_vid_bo->base; i915_gem_object_unpin(obj); drm_gem_object_unreference(obj); overlay->old_vid_bo = NULL; break; case SWITCH_OFF_STAGE_1: flip_addr = overlay->flip_addr; flip_addr |= OFC_UPDATE; overlay->hw_wedged = SWITCH_OFF_STAGE_2; BEGIN_LP_RING(4); OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_OFF); OUT_RING(flip_addr); OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); overlay->last_flip_req = i915_add_request(dev, NULL, 0, &dev_priv->render_ring); if (overlay->last_flip_req == 0) return -ENOMEM; ret = i915_do_wait_request(dev, overlay->last_flip_req, interruptible, &dev_priv->render_ring); if (ret != 0) return ret; case SWITCH_OFF_STAGE_2: intel_overlay_off_tail(overlay); break; default: BUG_ON(overlay->hw_wedged != NEEDS_WAIT_FOR_FLIP); } overlay->hw_wedged = 0; overlay->last_flip_req = 0; return 0; } /* Wait for pending overlay flip and release old frame. * Needs to be called before the overlay register are changed * via intel_overlay_(un)map_regs_atomic */ static int intel_overlay_release_old_vid(struct intel_overlay *overlay) { int ret; struct drm_gem_object *obj; /* only wait if there is actually an old frame to release to * guarantee forward progress */ if (!overlay->old_vid_bo) return 0; ret = intel_overlay_wait_flip(overlay); if (ret != 0) return ret; obj = &overlay->old_vid_bo->base; i915_gem_object_unpin(obj); drm_gem_object_unreference(obj); overlay->old_vid_bo = NULL; return 0; } struct put_image_params { int format; short dst_x; short dst_y; short dst_w; short dst_h; short src_w; short src_scan_h; short src_scan_w; short src_h; short stride_Y; short stride_UV; int offset_Y; int offset_U; int offset_V; }; static int packed_depth_bytes(u32 format) { switch (format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV422: return 4; case I915_OVERLAY_YUV411: /* return 6; not implemented */ default: return -EINVAL; } } static int packed_width_bytes(u32 format, short width) { switch (format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV422: return width << 1; default: return -EINVAL; } } static int uv_hsubsampling(u32 format) { switch (format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV422: case I915_OVERLAY_YUV420: return 2; case I915_OVERLAY_YUV411: case I915_OVERLAY_YUV410: return 4; default: return -EINVAL; } } static int uv_vsubsampling(u32 format) { switch (format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV420: case I915_OVERLAY_YUV410: return 2; case I915_OVERLAY_YUV422: case I915_OVERLAY_YUV411: return 1; default: return -EINVAL; } } static u32 calc_swidthsw(struct drm_device *dev, u32 offset, u32 width) { u32 mask, shift, ret; if (IS_I9XX(dev)) { mask = 0x3f; shift = 6; } else { mask = 0x1f; shift = 5; } ret = ((offset + width + mask) >> shift) - (offset >> shift); if (IS_I9XX(dev)) ret <<= 1; ret -=1; return ret << 2; } static const u16 y_static_hcoeffs[N_HORIZ_Y_TAPS * N_PHASES] = { 0x3000, 0xb4a0, 0x1930, 0x1920, 0xb4a0, 0x3000, 0xb500, 0x19d0, 0x1880, 0xb440, 0x3000, 0xb540, 0x1a88, 0x2f80, 0xb3e0, 0x3000, 0xb580, 0x1b30, 0x2e20, 0xb380, 0x3000, 0xb5c0, 0x1bd8, 0x2cc0, 0xb320, 0x3020, 0xb5e0, 0x1c60, 0x2b80, 0xb2c0, 0x3020, 0xb5e0, 0x1cf8, 0x2a20, 0xb260, 0x3020, 0xb5e0, 0x1d80, 0x28e0, 0xb200, 0x3020, 0xb5c0, 0x1e08, 0x3f40, 0xb1c0, 0x3020, 0xb580, 0x1e78, 0x3ce0, 0xb160, 0x3040, 0xb520, 0x1ed8, 0x3aa0, 0xb120, 0x3040, 0xb4a0, 0x1f30, 0x3880, 0xb0e0, 0x3040, 0xb400, 0x1f78, 0x3680, 0xb0a0, 0x3020, 0xb340, 0x1fb8, 0x34a0, 0xb060, 0x3020, 0xb240, 0x1fe0, 0x32e0, 0xb040, 0x3020, 0xb140, 0x1ff8, 0x3160, 0xb020, 0xb000, 0x3000, 0x0800, 0x3000, 0xb000}; static const u16 uv_static_hcoeffs[N_HORIZ_UV_TAPS * N_PHASES] = { 0x3000, 0x1800, 0x1800, 0xb000, 0x18d0, 0x2e60, 0xb000, 0x1990, 0x2ce0, 0xb020, 0x1a68, 0x2b40, 0xb040, 0x1b20, 0x29e0, 0xb060, 0x1bd8, 0x2880, 0xb080, 0x1c88, 0x3e60, 0xb0a0, 0x1d28, 0x3c00, 0xb0c0, 0x1db8, 0x39e0, 0xb0e0, 0x1e40, 0x37e0, 0xb100, 0x1eb8, 0x3620, 0xb100, 0x1f18, 0x34a0, 0xb100, 0x1f68, 0x3360, 0xb0e0, 0x1fa8, 0x3240, 0xb0c0, 0x1fe0, 0x3140, 0xb060, 0x1ff0, 0x30a0, 0x3000, 0x0800, 0x3000}; static void update_polyphase_filter(struct overlay_registers *regs) { memcpy(regs->Y_HCOEFS, y_static_hcoeffs, sizeof(y_static_hcoeffs)); memcpy(regs->UV_HCOEFS, uv_static_hcoeffs, sizeof(uv_static_hcoeffs)); } static bool update_scaling_factors(struct intel_overlay *overlay, struct overlay_registers *regs, struct put_image_params *params) { /* fixed point with a 12 bit shift */ u32 xscale, yscale, xscale_UV, yscale_UV; #define FP_SHIFT 12 #define FRACT_MASK 0xfff bool scale_changed = false; int uv_hscale = uv_hsubsampling(params->format); int uv_vscale = uv_vsubsampling(params->format); if (params->dst_w > 1) xscale = ((params->src_scan_w - 1) << FP_SHIFT) /(params->dst_w); else xscale = 1 << FP_SHIFT; if (params->dst_h > 1) yscale = ((params->src_scan_h - 1) << FP_SHIFT) /(params->dst_h); else yscale = 1 << FP_SHIFT; /*if (params->format & I915_OVERLAY_YUV_PLANAR) {*/ xscale_UV = xscale/uv_hscale; yscale_UV = yscale/uv_vscale; /* make the Y scale to UV scale ratio an exact multiply */ xscale = xscale_UV * uv_hscale; yscale = yscale_UV * uv_vscale; /*} else { xscale_UV = 0; yscale_UV = 0; }*/ if (xscale != overlay->old_xscale || yscale != overlay->old_yscale) scale_changed = true; overlay->old_xscale = xscale; overlay->old_yscale = yscale; regs->YRGBSCALE = ((yscale & FRACT_MASK) << 20) | ((xscale >> FP_SHIFT) << 16) | ((xscale & FRACT_MASK) << 3); regs->UVSCALE = ((yscale_UV & FRACT_MASK) << 20) | ((xscale_UV >> FP_SHIFT) << 16) | ((xscale_UV & FRACT_MASK) << 3); regs->UVSCALEV = ((yscale >> FP_SHIFT) << 16) | ((yscale_UV >> FP_SHIFT) << 0); if (scale_changed) update_polyphase_filter(regs); return scale_changed; } static void update_colorkey(struct intel_overlay *overlay, struct overlay_registers *regs) { u32 key = overlay->color_key; switch (overlay->crtc->base.fb->bits_per_pixel) { case 8: regs->DCLRKV = 0; regs->DCLRKM = CLK_RGB8I_MASK | DST_KEY_ENABLE; case 16: if (overlay->crtc->base.fb->depth == 15) { regs->DCLRKV = RGB15_TO_COLORKEY(key); regs->DCLRKM = CLK_RGB15_MASK | DST_KEY_ENABLE; } else { regs->DCLRKV = RGB16_TO_COLORKEY(key); regs->DCLRKM = CLK_RGB16_MASK | DST_KEY_ENABLE; } case 24: case 32: regs->DCLRKV = key; regs->DCLRKM = CLK_RGB24_MASK | DST_KEY_ENABLE; } } static u32 overlay_cmd_reg(struct put_image_params *params) { u32 cmd = OCMD_ENABLE | OCMD_BUF_TYPE_FRAME | OCMD_BUFFER0; if (params->format & I915_OVERLAY_YUV_PLANAR) { switch (params->format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV422: cmd |= OCMD_YUV_422_PLANAR; break; case I915_OVERLAY_YUV420: cmd |= OCMD_YUV_420_PLANAR; break; case I915_OVERLAY_YUV411: case I915_OVERLAY_YUV410: cmd |= OCMD_YUV_410_PLANAR; break; } } else { /* YUV packed */ switch (params->format & I915_OVERLAY_DEPTH_MASK) { case I915_OVERLAY_YUV422: cmd |= OCMD_YUV_422_PACKED; break; case I915_OVERLAY_YUV411: cmd |= OCMD_YUV_411_PACKED; break; } switch (params->format & I915_OVERLAY_SWAP_MASK) { case I915_OVERLAY_NO_SWAP: break; case I915_OVERLAY_UV_SWAP: cmd |= OCMD_UV_SWAP; break; case I915_OVERLAY_Y_SWAP: cmd |= OCMD_Y_SWAP; break; case I915_OVERLAY_Y_AND_UV_SWAP: cmd |= OCMD_Y_AND_UV_SWAP; break; } } return cmd; } int intel_overlay_do_put_image(struct intel_overlay *overlay, struct drm_gem_object *new_bo, struct put_image_params *params) { int ret, tmp_width; struct overlay_registers *regs; bool scale_changed = false; struct drm_i915_gem_object *bo_priv = to_intel_bo(new_bo); struct drm_device *dev = overlay->dev; BUG_ON(!mutex_is_locked(&dev->struct_mutex)); BUG_ON(!mutex_is_locked(&dev->mode_config.mutex)); BUG_ON(!overlay); ret = intel_overlay_release_old_vid(overlay); if (ret != 0) return ret; ret = i915_gem_object_pin(new_bo, PAGE_SIZE); if (ret != 0) return ret; ret = i915_gem_object_set_to_gtt_domain(new_bo, 0); if (ret != 0) goto out_unpin; if (!overlay->active) { regs = intel_overlay_map_regs_atomic(overlay); if (!regs) { ret = -ENOMEM; goto out_unpin; } regs->OCONFIG = OCONF_CC_OUT_8BIT; if (IS_I965GM(overlay->dev)) regs->OCONFIG |= OCONF_CSC_MODE_BT709; regs->OCONFIG |= overlay->crtc->pipe == 0 ? OCONF_PIPE_A : OCONF_PIPE_B; intel_overlay_unmap_regs_atomic(overlay); ret = intel_overlay_on(overlay); if (ret != 0) goto out_unpin; } regs = intel_overlay_map_regs_atomic(overlay); if (!regs) { ret = -ENOMEM; goto out_unpin; } regs->DWINPOS = (params->dst_y << 16) | params->dst_x; regs->DWINSZ = (params->dst_h << 16) | params->dst_w; if (params->format & I915_OVERLAY_YUV_PACKED) tmp_width = packed_width_bytes(params->format, params->src_w); else tmp_width = params->src_w; regs->SWIDTH = params->src_w; regs->SWIDTHSW = calc_swidthsw(overlay->dev, params->offset_Y, tmp_width); regs->SHEIGHT = params->src_h; regs->OBUF_0Y = bo_priv->gtt_offset + params-> offset_Y; regs->OSTRIDE = params->stride_Y; if (params->format & I915_OVERLAY_YUV_PLANAR) { int uv_hscale = uv_hsubsampling(params->format); int uv_vscale = uv_vsubsampling(params->format); u32 tmp_U, tmp_V; regs->SWIDTH |= (params->src_w/uv_hscale) << 16; tmp_U = calc_swidthsw(overlay->dev, params->offset_U, params->src_w/uv_hscale); tmp_V = calc_swidthsw(overlay->dev, params->offset_V, params->src_w/uv_hscale); regs->SWIDTHSW |= max_t(u32, tmp_U, tmp_V) << 16; regs->SHEIGHT |= (params->src_h/uv_vscale) << 16; regs->OBUF_0U = bo_priv->gtt_offset + params->offset_U; regs->OBUF_0V = bo_priv->gtt_offset + params->offset_V; regs->OSTRIDE |= params->stride_UV << 16; } scale_changed = update_scaling_factors(overlay, regs, params); update_colorkey(overlay, regs); regs->OCMD = overlay_cmd_reg(params); intel_overlay_unmap_regs_atomic(overlay); intel_overlay_continue(overlay, scale_changed); overlay->old_vid_bo = overlay->vid_bo; overlay->vid_bo = to_intel_bo(new_bo); return 0; out_unpin: i915_gem_object_unpin(new_bo); return ret; } int intel_overlay_switch_off(struct intel_overlay *overlay) { int ret; struct overlay_registers *regs; struct drm_device *dev = overlay->dev; BUG_ON(!mutex_is_locked(&dev->struct_mutex)); BUG_ON(!mutex_is_locked(&dev->mode_config.mutex)); if (overlay->hw_wedged) { ret = intel_overlay_recover_from_interrupt(overlay, 1); if (ret != 0) return ret; } if (!overlay->active) return 0; ret = intel_overlay_release_old_vid(overlay); if (ret != 0) return ret; regs = intel_overlay_map_regs_atomic(overlay); regs->OCMD = 0; intel_overlay_unmap_regs_atomic(overlay); ret = intel_overlay_off(overlay); if (ret != 0) return ret; intel_overlay_off_tail(overlay); return 0; } static int check_overlay_possible_on_crtc(struct intel_overlay *overlay, struct intel_crtc *crtc) { drm_i915_private_t *dev_priv = overlay->dev->dev_private; u32 pipeconf; int pipeconf_reg = (crtc->pipe == 0) ? PIPEACONF : PIPEBCONF; if (!crtc->base.enabled || crtc->dpms_mode != DRM_MODE_DPMS_ON) return -EINVAL; pipeconf = I915_READ(pipeconf_reg); /* can't use the overlay with double wide pipe */ if (!IS_I965G(overlay->dev) && pipeconf & PIPEACONF_DOUBLE_WIDE) return -EINVAL; return 0; } static void update_pfit_vscale_ratio(struct intel_overlay *overlay) { struct drm_device *dev = overlay->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 ratio; u32 pfit_control = I915_READ(PFIT_CONTROL); /* XXX: This is not the same logic as in the xorg driver, but more in * line with the intel documentation for the i965 */ if (!IS_I965G(dev) && (pfit_control & VERT_AUTO_SCALE)) { ratio = I915_READ(PFIT_AUTO_RATIOS) >> PFIT_VERT_SCALE_SHIFT; } else { /* on i965 use the PGM reg to read out the autoscaler values */ ratio = I915_READ(PFIT_PGM_RATIOS); if (IS_I965G(dev)) ratio >>= PFIT_VERT_SCALE_SHIFT_965; else ratio >>= PFIT_VERT_SCALE_SHIFT; } overlay->pfit_vscale_ratio = ratio; } static int check_overlay_dst(struct intel_overlay *overlay, struct drm_intel_overlay_put_image *rec) { struct drm_display_mode *mode = &overlay->crtc->base.mode; if ((rec->dst_x < mode->crtc_hdisplay) && (rec->dst_x + rec->dst_width <= mode->crtc_hdisplay) && (rec->dst_y < mode->crtc_vdisplay) && (rec->dst_y + rec->dst_height <= mode->crtc_vdisplay)) return 0; else return -EINVAL; } static int check_overlay_scaling(struct put_image_params *rec) { u32 tmp; /* downscaling limit is 8.0 */ tmp = ((rec->src_scan_h << 16) / rec->dst_h) >> 16; if (tmp > 7) return -EINVAL; tmp = ((rec->src_scan_w << 16) / rec->dst_w) >> 16; if (tmp > 7) return -EINVAL; return 0; } static int check_overlay_src(struct drm_device *dev, struct drm_intel_overlay_put_image *rec, struct drm_gem_object *new_bo) { u32 stride_mask; int depth; int uv_hscale = uv_hsubsampling(rec->flags); int uv_vscale = uv_vsubsampling(rec->flags); size_t tmp; /* check src dimensions */ if (IS_845G(dev) || IS_I830(dev)) { if (rec->src_height > IMAGE_MAX_HEIGHT_LEGACY || rec->src_width > IMAGE_MAX_WIDTH_LEGACY) return -EINVAL; } else { if (rec->src_height > IMAGE_MAX_HEIGHT || rec->src_width > IMAGE_MAX_WIDTH) return -EINVAL; } /* better safe than sorry, use 4 as the maximal subsampling ratio */ if (rec->src_height < N_VERT_Y_TAPS*4 || rec->src_width < N_HORIZ_Y_TAPS*4) return -EINVAL; /* check alignment constraints */ switch (rec->flags & I915_OVERLAY_TYPE_MASK) { case I915_OVERLAY_RGB: /* not implemented */ return -EINVAL; case I915_OVERLAY_YUV_PACKED: depth = packed_depth_bytes(rec->flags); if (uv_vscale != 1) return -EINVAL; if (depth < 0) return depth; /* ignore UV planes */ rec->stride_UV = 0; rec->offset_U = 0; rec->offset_V = 0; /* check pixel alignment */ if (rec->offset_Y % depth) return -EINVAL; break; case I915_OVERLAY_YUV_PLANAR: if (uv_vscale < 0 || uv_hscale < 0) return -EINVAL; /* no offset restrictions for planar formats */ break; default: return -EINVAL; } if (rec->src_width % uv_hscale) return -EINVAL; /* stride checking */ if (IS_I830(dev) || IS_845G(dev)) stride_mask = 255; else stride_mask = 63; if (rec->stride_Y & stride_mask || rec->stride_UV & stride_mask) return -EINVAL; if (IS_I965G(dev) && rec->stride_Y < 512) return -EINVAL; tmp = (rec->flags & I915_OVERLAY_TYPE_MASK) == I915_OVERLAY_YUV_PLANAR ? 4 : 8; if (rec->stride_Y > tmp*1024 || rec->stride_UV > 2*1024) return -EINVAL; /* check buffer dimensions */ switch (rec->flags & I915_OVERLAY_TYPE_MASK) { case I915_OVERLAY_RGB: case I915_OVERLAY_YUV_PACKED: /* always 4 Y values per depth pixels */ if (packed_width_bytes(rec->flags, rec->src_width) > rec->stride_Y) return -EINVAL; tmp = rec->stride_Y*rec->src_height; if (rec->offset_Y + tmp > new_bo->size) return -EINVAL; break; case I915_OVERLAY_YUV_PLANAR: if (rec->src_width > rec->stride_Y) return -EINVAL; if (rec->src_width/uv_hscale > rec->stride_UV) return -EINVAL; tmp = rec->stride_Y*rec->src_height; if (rec->offset_Y + tmp > new_bo->size) return -EINVAL; tmp = rec->stride_UV*rec->src_height; tmp /= uv_vscale; if (rec->offset_U + tmp > new_bo->size || rec->offset_V + tmp > new_bo->size) return -EINVAL; break; } return 0; } int intel_overlay_put_image(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_intel_overlay_put_image *put_image_rec = data; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_overlay *overlay; struct drm_mode_object *drmmode_obj; struct intel_crtc *crtc; struct drm_gem_object *new_bo; struct put_image_params *params; int ret; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } overlay = dev_priv->overlay; if (!overlay) { DRM_DEBUG("userspace bug: no overlay\n"); return -ENODEV; } if (!(put_image_rec->flags & I915_OVERLAY_ENABLE)) { mutex_lock(&dev->mode_config.mutex); mutex_lock(&dev->struct_mutex); ret = intel_overlay_switch_off(overlay); mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->mode_config.mutex); return ret; } params = kmalloc(sizeof(struct put_image_params), GFP_KERNEL); if (!params) return -ENOMEM; drmmode_obj = drm_mode_object_find(dev, put_image_rec->crtc_id, DRM_MODE_OBJECT_CRTC); if (!drmmode_obj) { ret = -ENOENT; goto out_free; } crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); new_bo = drm_gem_object_lookup(dev, file_priv, put_image_rec->bo_handle); if (!new_bo) { ret = -ENOENT; goto out_free; } mutex_lock(&dev->mode_config.mutex); mutex_lock(&dev->struct_mutex); if (overlay->hw_wedged) { ret = intel_overlay_recover_from_interrupt(overlay, 1); if (ret != 0) goto out_unlock; } if (overlay->crtc != crtc) { struct drm_display_mode *mode = &crtc->base.mode; ret = intel_overlay_switch_off(overlay); if (ret != 0) goto out_unlock; ret = check_overlay_possible_on_crtc(overlay, crtc); if (ret != 0) goto out_unlock; overlay->crtc = crtc; crtc->overlay = overlay; if (intel_panel_fitter_pipe(dev) == crtc->pipe /* and line to wide, i.e. one-line-mode */ && mode->hdisplay > 1024) { overlay->pfit_active = 1; update_pfit_vscale_ratio(overlay); } else overlay->pfit_active = 0; } ret = check_overlay_dst(overlay, put_image_rec); if (ret != 0) goto out_unlock; if (overlay->pfit_active) { params->dst_y = ((((u32)put_image_rec->dst_y) << 12) / overlay->pfit_vscale_ratio); /* shifting right rounds downwards, so add 1 */ params->dst_h = ((((u32)put_image_rec->dst_height) << 12) / overlay->pfit_vscale_ratio) + 1; } else { params->dst_y = put_image_rec->dst_y; params->dst_h = put_image_rec->dst_height; } params->dst_x = put_image_rec->dst_x; params->dst_w = put_image_rec->dst_width; params->src_w = put_image_rec->src_width; params->src_h = put_image_rec->src_height; params->src_scan_w = put_image_rec->src_scan_width; params->src_scan_h = put_image_rec->src_scan_height; if (params->src_scan_h > params->src_h || params->src_scan_w > params->src_w) { ret = -EINVAL; goto out_unlock; } ret = check_overlay_src(dev, put_image_rec, new_bo); if (ret != 0) goto out_unlock; params->format = put_image_rec->flags & ~I915_OVERLAY_FLAGS_MASK; params->stride_Y = put_image_rec->stride_Y; params->stride_UV = put_image_rec->stride_UV; params->offset_Y = put_image_rec->offset_Y; params->offset_U = put_image_rec->offset_U; params->offset_V = put_image_rec->offset_V; /* Check scaling after src size to prevent a divide-by-zero. */ ret = check_overlay_scaling(params); if (ret != 0) goto out_unlock; ret = intel_overlay_do_put_image(overlay, new_bo, params); if (ret != 0) goto out_unlock; mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->mode_config.mutex); kfree(params); return 0; out_unlock: mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->mode_config.mutex); drm_gem_object_unreference_unlocked(new_bo); out_free: kfree(params); return ret; } static void update_reg_attrs(struct intel_overlay *overlay, struct overlay_registers *regs) { regs->OCLRC0 = (overlay->contrast << 18) | (overlay->brightness & 0xff); regs->OCLRC1 = overlay->saturation; } static bool check_gamma_bounds(u32 gamma1, u32 gamma2) { int i; if (gamma1 & 0xff000000 || gamma2 & 0xff000000) return false; for (i = 0; i < 3; i++) { if (((gamma1 >> i * 8) & 0xff) >= ((gamma2 >> i*8) & 0xff)) return false; } return true; } static bool check_gamma5_errata(u32 gamma5) { int i; for (i = 0; i < 3; i++) { if (((gamma5 >> i*8) & 0xff) == 0x80) return false; } return true; } static int check_gamma(struct drm_intel_overlay_attrs *attrs) { if (!check_gamma_bounds(0, attrs->gamma0) || !check_gamma_bounds(attrs->gamma0, attrs->gamma1) || !check_gamma_bounds(attrs->gamma1, attrs->gamma2) || !check_gamma_bounds(attrs->gamma2, attrs->gamma3) || !check_gamma_bounds(attrs->gamma3, attrs->gamma4) || !check_gamma_bounds(attrs->gamma4, attrs->gamma5) || !check_gamma_bounds(attrs->gamma5, 0x00ffffff)) return -EINVAL; if (!check_gamma5_errata(attrs->gamma5)) return -EINVAL; return 0; } int intel_overlay_attrs(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_intel_overlay_attrs *attrs = data; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_overlay *overlay; struct overlay_registers *regs; int ret; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } overlay = dev_priv->overlay; if (!overlay) { DRM_DEBUG("userspace bug: no overlay\n"); return -ENODEV; } mutex_lock(&dev->mode_config.mutex); mutex_lock(&dev->struct_mutex); if (!(attrs->flags & I915_OVERLAY_UPDATE_ATTRS)) { attrs->color_key = overlay->color_key; attrs->brightness = overlay->brightness; attrs->contrast = overlay->contrast; attrs->saturation = overlay->saturation; if (IS_I9XX(dev)) { attrs->gamma0 = I915_READ(OGAMC0); attrs->gamma1 = I915_READ(OGAMC1); attrs->gamma2 = I915_READ(OGAMC2); attrs->gamma3 = I915_READ(OGAMC3); attrs->gamma4 = I915_READ(OGAMC4); attrs->gamma5 = I915_READ(OGAMC5); } ret = 0; } else { overlay->color_key = attrs->color_key; if (attrs->brightness >= -128 && attrs->brightness <= 127) { overlay->brightness = attrs->brightness; } else { ret = -EINVAL; goto out_unlock; } if (attrs->contrast <= 255) { overlay->contrast = attrs->contrast; } else { ret = -EINVAL; goto out_unlock; } if (attrs->saturation <= 1023) { overlay->saturation = attrs->saturation; } else { ret = -EINVAL; goto out_unlock; } regs = intel_overlay_map_regs_atomic(overlay); if (!regs) { ret = -ENOMEM; goto out_unlock; } update_reg_attrs(overlay, regs); intel_overlay_unmap_regs_atomic(overlay); if (attrs->flags & I915_OVERLAY_UPDATE_GAMMA) { if (!IS_I9XX(dev)) { ret = -EINVAL; goto out_unlock; } if (overlay->active) { ret = -EBUSY; goto out_unlock; } ret = check_gamma(attrs); if (ret != 0) goto out_unlock; I915_WRITE(OGAMC0, attrs->gamma0); I915_WRITE(OGAMC1, attrs->gamma1); I915_WRITE(OGAMC2, attrs->gamma2); I915_WRITE(OGAMC3, attrs->gamma3); I915_WRITE(OGAMC4, attrs->gamma4); I915_WRITE(OGAMC5, attrs->gamma5); } ret = 0; } out_unlock: mutex_unlock(&dev->struct_mutex); mutex_unlock(&dev->mode_config.mutex); return ret; } void intel_setup_overlay(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_overlay *overlay; struct drm_gem_object *reg_bo; struct overlay_registers *regs; int ret; if (!OVERLAY_EXISTS(dev)) return; overlay = kzalloc(sizeof(struct intel_overlay), GFP_KERNEL); if (!overlay) return; overlay->dev = dev; reg_bo = i915_gem_alloc_object(dev, PAGE_SIZE); if (!reg_bo) goto out_free; overlay->reg_bo = to_intel_bo(reg_bo); if (OVERLAY_NONPHYSICAL(dev)) { ret = i915_gem_object_pin(reg_bo, PAGE_SIZE); if (ret) { DRM_ERROR("failed to pin overlay register bo\n"); goto out_free_bo; } overlay->flip_addr = overlay->reg_bo->gtt_offset; } else { ret = i915_gem_attach_phys_object(dev, reg_bo, I915_GEM_PHYS_OVERLAY_REGS, 0); if (ret) { DRM_ERROR("failed to attach phys overlay regs\n"); goto out_free_bo; } overlay->flip_addr = overlay->reg_bo->phys_obj->handle->busaddr; } /* init all values */ overlay->color_key = 0x0101fe; overlay->brightness = -19; overlay->contrast = 75; overlay->saturation = 146; regs = intel_overlay_map_regs_atomic(overlay); if (!regs) goto out_free_bo; memset(regs, 0, sizeof(struct overlay_registers)); update_polyphase_filter(regs); update_reg_attrs(overlay, regs); intel_overlay_unmap_regs_atomic(overlay); dev_priv->overlay = overlay; DRM_INFO("initialized overlay support\n"); return; out_free_bo: drm_gem_object_unreference(reg_bo); out_free: kfree(overlay); return; } void intel_cleanup_overlay(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (dev_priv->overlay) { /* The bo's should be free'd by the generic code already. * Furthermore modesetting teardown happens beforehand so the * hardware should be off already */ BUG_ON(dev_priv->overlay->active); kfree(dev_priv->overlay); } } struct intel_overlay_error_state { struct overlay_registers regs; unsigned long base; u32 dovsta; u32 isr; }; struct intel_overlay_error_state * intel_overlay_capture_error_state(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_overlay *overlay = dev_priv->overlay; struct intel_overlay_error_state *error; struct overlay_registers __iomem *regs; if (!overlay || !overlay->active) return NULL; error = kmalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; error->dovsta = I915_READ(DOVSTA); error->isr = I915_READ(ISR); if (OVERLAY_NONPHYSICAL(overlay->dev)) error->base = (long) overlay->reg_bo->gtt_offset; else error->base = (long) overlay->reg_bo->phys_obj->handle->vaddr; regs = intel_overlay_map_regs_atomic(overlay); if (!regs) goto err; memcpy_fromio(&error->regs, regs, sizeof(struct overlay_registers)); intel_overlay_unmap_regs_atomic(overlay); return error; err: kfree(error); return NULL; } void intel_overlay_print_error_state(struct seq_file *m, struct intel_overlay_error_state *error) { seq_printf(m, "Overlay, status: 0x%08x, interrupt: 0x%08x\n", error->dovsta, error->isr); seq_printf(m, " Register file at 0x%08lx:\n", error->base); #define P(x) seq_printf(m, " " #x ": 0x%08x\n", error->regs.x) P(OBUF_0Y); P(OBUF_1Y); P(OBUF_0U); P(OBUF_0V); P(OBUF_1U); P(OBUF_1V); P(OSTRIDE); P(YRGB_VPH); P(UV_VPH); P(HORZ_PH); P(INIT_PHS); P(DWINPOS); P(DWINSZ); P(SWIDTH); P(SWIDTHSW); P(SHEIGHT); P(YRGBSCALE); P(UVSCALE); P(OCLRC0); P(OCLRC1); P(DCLRKV); P(DCLRKM); P(SCLRKVH); P(SCLRKVL); P(SCLRKEN); P(OCONFIG); P(OCMD); P(OSTART_0Y); P(OSTART_1Y); P(OSTART_0U); P(OSTART_0V); P(OSTART_1U); P(OSTART_1V); P(OTILEOFF_0Y); P(OTILEOFF_1Y); P(OTILEOFF_0U); P(OTILEOFF_0V); P(OTILEOFF_1U); P(OTILEOFF_1V); P(FASTHSCALE); P(UVSCALEV); #undef P }