/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include #include #include #include #include #include #include #include #include "nvc0.h" #include "ramfuc.h" struct nve0_ramfuc { struct ramfuc base; struct nvbios_pll refpll; struct nvbios_pll mempll; struct ramfuc_reg r_gpioMV; u32 r_funcMV[2]; struct ramfuc_reg r_gpio2E; u32 r_func2E[2]; struct ramfuc_reg r_gpiotrig; struct ramfuc_reg r_0x132020; struct ramfuc_reg r_0x132028; struct ramfuc_reg r_0x132024; struct ramfuc_reg r_0x132030; struct ramfuc_reg r_0x132034; struct ramfuc_reg r_0x132000; struct ramfuc_reg r_0x132004; struct ramfuc_reg r_0x132040; struct ramfuc_reg r_0x10f248; struct ramfuc_reg r_0x10f290; struct ramfuc_reg r_0x10f294; struct ramfuc_reg r_0x10f298; struct ramfuc_reg r_0x10f29c; struct ramfuc_reg r_0x10f2a0; struct ramfuc_reg r_0x10f2a4; struct ramfuc_reg r_0x10f2a8; struct ramfuc_reg r_0x10f2ac; struct ramfuc_reg r_0x10f2cc; struct ramfuc_reg r_0x10f2e8; struct ramfuc_reg r_0x10f250; struct ramfuc_reg r_0x10f24c; struct ramfuc_reg r_0x10fec4; struct ramfuc_reg r_0x10fec8; struct ramfuc_reg r_0x10f604; struct ramfuc_reg r_0x10f614; struct ramfuc_reg r_0x10f610; struct ramfuc_reg r_0x100770; struct ramfuc_reg r_0x100778; struct ramfuc_reg r_0x10f224; struct ramfuc_reg r_0x10f870; struct ramfuc_reg r_0x10f698; struct ramfuc_reg r_0x10f694; struct ramfuc_reg r_0x10f6b8; struct ramfuc_reg r_0x10f808; struct ramfuc_reg r_0x10f670; struct ramfuc_reg r_0x10f60c; struct ramfuc_reg r_0x10f830; struct ramfuc_reg r_0x1373ec; struct ramfuc_reg r_0x10f800; struct ramfuc_reg r_0x10f82c; struct ramfuc_reg r_0x10f978; struct ramfuc_reg r_0x10f910; struct ramfuc_reg r_0x10f914; struct ramfuc_reg r_mr[16]; /* MR0 - MR8, MR15 */ struct ramfuc_reg r_0x62c000; struct ramfuc_reg r_0x10f200; struct ramfuc_reg r_0x10f210; struct ramfuc_reg r_0x10f310; struct ramfuc_reg r_0x10f314; struct ramfuc_reg r_0x10f318; struct ramfuc_reg r_0x10f090; struct ramfuc_reg r_0x10f69c; struct ramfuc_reg r_0x10f824; struct ramfuc_reg r_0x1373f0; struct ramfuc_reg r_0x1373f4; struct ramfuc_reg r_0x137320; struct ramfuc_reg r_0x10f65c; struct ramfuc_reg r_0x10f6bc; struct ramfuc_reg r_0x100710; struct ramfuc_reg r_0x10f750; }; struct nve0_ram { struct nouveau_ram base; struct nve0_ramfuc fuc; int from; int mode; int N1, fN1, M1, P1; int N2, M2, P2; }; /******************************************************************************* * GDDR5 ******************************************************************************/ static void train(struct nve0_ramfuc *fuc, u32 magic) { struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc); struct nouveau_fb *pfb = nouveau_fb(ram); const int mc = nv_rd32(pfb, 0x02243c); int i; ram_mask(fuc, 0x10f910, 0xbc0e0000, magic); ram_mask(fuc, 0x10f914, 0xbc0e0000, magic); for (i = 0; i < mc; i++) { const u32 addr = 0x110974 + (i * 0x1000); ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000); } } static void r1373f4_init(struct nve0_ramfuc *fuc) { struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc); const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2); const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1); const u32 runk0 = ram->fN1 << 16; const u32 runk1 = ram->fN1; if (ram->from == 2) { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010); } else { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010); } ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000); /* (re)program refpll, if required */ if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef || (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) { ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000000); ram_wr32(fuc, 0x137320, 0x00000000); ram_mask(fuc, 0x132030, 0xffff0000, runk0); ram_mask(fuc, 0x132034, 0x0000ffff, runk1); ram_wr32(fuc, 0x132024, rcoef); ram_mask(fuc, 0x132028, 0x00080000, 0x00080000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); ram_mask(fuc, 0x132028, 0x00080000, 0x00000000); } /* (re)program mempll, if required */ if (ram->mode == 2) { ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000); ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132004, 0x103fffff, mcoef); ram_mask(fuc, 0x132000, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100); } else { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010100); } ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010); } static void r1373f4_fini(struct nve0_ramfuc *fuc, u32 ramcfg) { struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc); struct nouveau_bios *bios = nouveau_bios(ram); u8 v0 = (nv_ro08(bios, ramcfg + 0x03) & 0xc0) >> 6; u8 v1 = (nv_ro08(bios, ramcfg + 0x03) & 0x30) >> 4; u32 tmp; tmp = ram_rd32(fuc, 0x1373ec) & ~0x00030000; ram_wr32(fuc, 0x1373ec, tmp | (v1 << 16)); ram_mask(fuc, 0x1373f0, (~ram->mode & 3), 0x00000000); if (ram->mode == 2) { ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000002); ram_mask(fuc, 0x1373f4, 0x00001100, 0x000000000); } else { ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000001); ram_mask(fuc, 0x1373f4, 0x00010000, 0x000000000); } ram_mask(fuc, 0x10f800, 0x00000030, (v0 ^ v1) << 4); } static int nve0_ram_calc_gddr5(struct nouveau_fb *pfb, u32 freq) { struct nouveau_bios *bios = nouveau_bios(pfb); struct nve0_ram *ram = (void *)pfb->ram; struct nve0_ramfuc *fuc = &ram->fuc; const u32 rammap = ram->base.rammap.data; const u32 ramcfg = ram->base.ramcfg.data; const u32 timing = ram->base.timing.data; int vc = !(nv_ro08(bios, ramcfg + 0x02) & 0x08); int mv = 1; /*XXX*/ u32 mask, data; ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000); ram_wr32(fuc, 0x62c000, 0x0f0f0000); /* MR1: turn termination on early, for some reason.. */ if ((ram->base.mr[1] & 0x03c) != 0x030) ram_mask(fuc, mr[1], 0x03c, ram->base.mr[1] & 0x03c); if (vc == 1 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); ram_mask(fuc, 0x10f914, 0x01020000, 0x000c0000); ram_mask(fuc, 0x10f910, 0x01020000, 0x000c0000); ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */ ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_nsec(fuc, 1000); ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_wr32(fuc, 0x10f090, 0x00000061); ram_wr32(fuc, 0x10f090, 0xc000007f); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f698, 0x00000000); ram_wr32(fuc, 0x10f69c, 0x00000000); /*XXX: there does appear to be some kind of condition here, simply * modifying these bits in the vbios from the default pl0 * entries shows no change. however, the data does appear to * be correct and may be required for the transition back */ mask = 0x800f07e0; data = 0x00030000; if (ram_rd32(fuc, 0x10f978) & 0x00800000) data |= 0x00040000; if (1) { data |= 0x800807e0; switch (nv_ro08(bios, ramcfg + 0x03) & 0xc0) { case 0xc0: data &= ~0x00000040; break; case 0x80: data &= ~0x00000100; break; case 0x40: data &= ~0x80000000; break; case 0x00: data &= ~0x00000400; break; } switch (nv_ro08(bios, ramcfg + 0x03) & 0x30) { case 0x30: data &= ~0x00000020; break; case 0x20: data &= ~0x00000080; break; case 0x10: data &= ~0x00080000; break; case 0x00: data &= ~0x00000200; break; } } if (nv_ro08(bios, ramcfg + 0x02) & 0x80) mask |= 0x03000000; if (nv_ro08(bios, ramcfg + 0x02) & 0x40) mask |= 0x00002000; if (nv_ro08(bios, ramcfg + 0x07) & 0x10) mask |= 0x00004000; if (nv_ro08(bios, ramcfg + 0x07) & 0x08) mask |= 0x00000003; else { mask |= 0x34000000; if (ram_rd32(fuc, 0x10f978) & 0x00800000) mask |= 0x40000000; } ram_mask(fuc, 0x10f824, mask, data); ram_mask(fuc, 0x132040, 0x00010000, 0x00000000); if (ram->from == 2 && ram->mode != 2) { ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000); ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000); ram_mask(fuc, 0x10f800, 0x00000000, 0x00000004); ram_mask(fuc, 0x10f830, 0x00008000, 0x01040010); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); r1373f4_init(fuc); ram_mask(fuc, 0x1373f0, 0x00000002, 0x00000001); r1373f4_fini(fuc, ramcfg); ram_mask(fuc, 0x10f830, 0x00c00000, 0x00240001); } else if (ram->from != 2 && ram->mode != 2) { r1373f4_init(fuc); r1373f4_fini(fuc, ramcfg); } if (ram_have(fuc, gpioMV)) { u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]); if (temp != ram_rd32(fuc, gpioMV)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 64000); } } if ( (nv_ro08(bios, ramcfg + 0x02) & 0x40) || (nv_ro08(bios, ramcfg + 0x07) & 0x10)) { ram_mask(fuc, 0x132040, 0x00010000, 0x00010000); ram_nsec(fuc, 20000); } if (ram->from != 2 && ram->mode == 2) { ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000); ram_mask(fuc, 0x1373f0, 0x00000000, 0x00000002); ram_mask(fuc, 0x10f830, 0x00800001, 0x00408010); r1373f4_init(fuc); r1373f4_fini(fuc, ramcfg); ram_mask(fuc, 0x10f808, 0x00000000, 0x00080000); ram_mask(fuc, 0x10f200, 0x00808000, 0x00800000); } else if (ram->from == 2 && ram->mode == 2) { ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000); r1373f4_init(fuc); r1373f4_fini(fuc, ramcfg); } if (ram->mode != 2) /*XXX*/ { if (nv_ro08(bios, ramcfg + 0x07) & 0x40) ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000); } data = (nv_ro08(bios, rammap + 0x11) & 0x0c) >> 2; ram_wr32(fuc, 0x10f65c, 0x00000011 * data); ram_wr32(fuc, 0x10f6b8, 0x01010101 * nv_ro08(bios, ramcfg + 0x09)); ram_wr32(fuc, 0x10f6bc, 0x01010101 * nv_ro08(bios, ramcfg + 0x09)); data = nv_ro08(bios, ramcfg + 0x04); if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) { ram_wr32(fuc, 0x10f698, 0x01010101 * data); ram_wr32(fuc, 0x10f69c, 0x01010101 * data); } if (ram->mode != 2) { u32 temp = ram_rd32(fuc, 0x10f694) & ~0xff00ff00; ram_wr32(fuc, 0x10f694, temp | (0x01000100 * data)); } if (ram->mode == 2 && (nv_ro08(bios, ramcfg + 0x08) & 0x10)) data = 0x00000080; else data = 0x00000000; ram_mask(fuc, 0x10f60c, 0x00000080, data); mask = 0x00070000; data = 0x00000000; if (!(nv_ro08(bios, ramcfg + 0x02) & 0x80)) data |= 0x03000000; if (!(nv_ro08(bios, ramcfg + 0x02) & 0x40)) data |= 0x00002000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x10)) data |= 0x00004000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) data |= 0x00000003; else data |= 0x74000000; ram_mask(fuc, 0x10f824, mask, data); if (nv_ro08(bios, ramcfg + 0x01) & 0x08) data = 0x00000000; else data = 0x00001000; ram_mask(fuc, 0x10f200, 0x00001000, data); if (ram_rd32(fuc, 0x10f670) & 0x80000000) { ram_nsec(fuc, 10000); ram_mask(fuc, 0x10f670, 0x80000000, 0x00000000); } if (nv_ro08(bios, ramcfg + 0x08) & 0x01) data = 0x00100000; else data = 0x00000000; ram_mask(fuc, 0x10f82c, 0x00100000, data); data = 0x00000000; if (nv_ro08(bios, ramcfg + 0x08) & 0x08) data |= 0x00002000; if (nv_ro08(bios, ramcfg + 0x08) & 0x04) data |= 0x00001000; if (nv_ro08(bios, ramcfg + 0x08) & 0x02) data |= 0x00004000; ram_mask(fuc, 0x10f830, 0x00007000, data); /* PFB timing */ ram_mask(fuc, 0x10f248, 0xffffffff, nv_ro32(bios, timing + 0x28)); ram_mask(fuc, 0x10f290, 0xffffffff, nv_ro32(bios, timing + 0x00)); ram_mask(fuc, 0x10f294, 0xffffffff, nv_ro32(bios, timing + 0x04)); ram_mask(fuc, 0x10f298, 0xffffffff, nv_ro32(bios, timing + 0x08)); ram_mask(fuc, 0x10f29c, 0xffffffff, nv_ro32(bios, timing + 0x0c)); ram_mask(fuc, 0x10f2a0, 0xffffffff, nv_ro32(bios, timing + 0x10)); ram_mask(fuc, 0x10f2a4, 0xffffffff, nv_ro32(bios, timing + 0x14)); ram_mask(fuc, 0x10f2a8, 0xffffffff, nv_ro32(bios, timing + 0x18)); ram_mask(fuc, 0x10f2ac, 0xffffffff, nv_ro32(bios, timing + 0x1c)); ram_mask(fuc, 0x10f2cc, 0xffffffff, nv_ro32(bios, timing + 0x20)); ram_mask(fuc, 0x10f2e8, 0xffffffff, nv_ro32(bios, timing + 0x24)); data = (nv_ro08(bios, ramcfg + 0x02) & 0x03) << 8; if (nv_ro08(bios, ramcfg + 0x01) & 0x10) data |= 0x70000000; ram_mask(fuc, 0x10f604, 0x70000300, data); data = (nv_ro08(bios, timing + 0x30) & 0x07) << 28; if (nv_ro08(bios, ramcfg + 0x01) & 0x01) data |= 0x00000100; ram_mask(fuc, 0x10f614, 0x70000000, data); data = (nv_ro08(bios, timing + 0x30) & 0x07) << 28; if (nv_ro08(bios, ramcfg + 0x01) & 0x02) data |= 0x00000100; ram_mask(fuc, 0x10f610, 0x70000000, data); mask = 0x33f00000; data = 0x00000000; if (!(nv_ro08(bios, ramcfg + 0x01) & 0x04)) data |= 0x20200000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80)) data |= 0x12800000; /*XXX: see note above about there probably being some condition * for the 10f824 stuff that uses ramcfg 3... */ if ( (nv_ro08(bios, ramcfg + 0x03) & 0xf0)) { if (nv_ro08(bios, rammap + 0x08) & 0x0c) { if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80)) mask |= 0x00000020; else data |= 0x00000020; mask |= 0x00000004; } } else { mask |= 0x40000020; data |= 0x00000004; } ram_mask(fuc, 0x10f808, mask, data); data = nv_ro08(bios, ramcfg + 0x03) & 0x0f; ram_wr32(fuc, 0x10f870, 0x11111111 * data); data = nv_ro08(bios, ramcfg + 0x02) & 0x03; if (nv_ro08(bios, ramcfg + 0x01) & 0x10) data |= 0x00000004; if ((nv_rd32(bios, 0x100770) & 0x00000004) != (data & 0x00000004)) { ram_wr32(fuc, 0x10f750, 0x04000009); ram_wr32(fuc, 0x100710, 0x00000000); ram_wait(fuc, 0x100710, 0x80000000, 0x80000000, 200000); } ram_mask(fuc, 0x100770, 0x00000007, data); data = (nv_ro08(bios, timing + 0x30) & 0x07) << 8; if (nv_ro08(bios, ramcfg + 0x01) & 0x01) data |= 0x80000000; ram_mask(fuc, 0x100778, 0x00000700, data); data = nv_ro16(bios, timing + 0x2c); ram_mask(fuc, 0x10f250, 0x000003f0, (data & 0x003f) << 4); ram_mask(fuc, 0x10f24c, 0x7f000000, (data & 0x1fc0) << 18); data = nv_ro08(bios, timing + 0x30); ram_mask(fuc, 0x10f224, 0x001f0000, (data & 0xf8) << 13); data = nv_ro16(bios, timing + 0x31); ram_mask(fuc, 0x10fec4, 0x041e0f07, (data & 0x0800) << 15 | (data & 0x0780) << 10 | (data & 0x0078) << 5 | (data & 0x0007)); ram_mask(fuc, 0x10fec8, 0x00000027, (data & 0x8000) >> 10 | (data & 0x7000) >> 12); ram_wr32(fuc, 0x10f090, 0x4000007e); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_nsec(fuc, 2000); ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */ if ((nv_ro08(bios, ramcfg + 0x08) & 0x10) && (ram->mode == 2) /*XXX*/) { u32 temp = ram_mask(fuc, 0x10f294, 0xff000000, 0x24000000); train(fuc, 0xa4010000); /*XXX*/ ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f294, temp); } ram_mask(fuc, mr[3], 0xfff, ram->base.mr[3]); ram_wr32(fuc, mr[0], ram->base.mr[0]); ram_mask(fuc, mr[8], 0xfff, ram->base.mr[8]); ram_nsec(fuc, 1000); ram_mask(fuc, mr[1], 0xfff, ram->base.mr[1]); ram_mask(fuc, mr[5], 0xfff, ram->base.mr[5]); ram_mask(fuc, mr[6], 0xfff, ram->base.mr[6]); ram_mask(fuc, mr[7], 0xfff, ram->base.mr[7]); if (vc == 0 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); data = ram_rd32(fuc, 0x10f978); data &= ~0x00046144; data |= 0x0000000b; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) { if (!(nv_ro08(bios, ramcfg + 0x07) & 0x04)) data |= 0x0000200c; else data |= 0x00000000; } else { data |= 0x00040044; } ram_wr32(fuc, 0x10f978, data); if (ram->mode == 1) { data = ram_rd32(fuc, 0x10f830) | 0x00000001; ram_wr32(fuc, 0x10f830, data); } if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) { data = 0x88020000; if ( (nv_ro08(bios, ramcfg + 0x07) & 0x04)) data |= 0x10000000; if (!(nv_ro08(bios, rammap + 0x08) & 0x10)) data |= 0x00080000; } else { data = 0xa40e0000; } train(fuc, data); ram_nsec(fuc, 1000); if (ram->mode == 2) { /*XXX*/ ram_mask(fuc, 0x10f800, 0x00000004, 0x00000004); } /* MR5: (re)enable LP3 if necessary * XXX: need to find the switch, keeping off for now */ ram_mask(fuc, mr[5], 0x00000004, 0x00000000); if (ram->mode != 2) { ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); } if (nv_ro08(bios, ramcfg + 0x07) & 0x02) { ram_mask(fuc, 0x10f910, 0x80020000, 0x01000000); ram_mask(fuc, 0x10f914, 0x80020000, 0x01000000); } ram_wr32(fuc, 0x62c000, 0x0f0f0f00); if (nv_ro08(bios, rammap + 0x08) & 0x01) data = 0x00000800; else data = 0x00000000; ram_mask(fuc, 0x10f200, 0x00000800, data); return 0; } /******************************************************************************* * DDR3 ******************************************************************************/ static int nve0_ram_calc_sddr3(struct nouveau_fb *pfb, u32 freq) { struct nouveau_bios *bios = nouveau_bios(pfb); struct nve0_ram *ram = (void *)pfb->ram; struct nve0_ramfuc *fuc = &ram->fuc; const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1); const u32 runk0 = ram->fN1 << 16; const u32 runk1 = ram->fN1; const u32 rammap = ram->base.rammap.data; const u32 ramcfg = ram->base.ramcfg.data; const u32 timing = ram->base.timing.data; int vc = !(nv_ro08(bios, ramcfg + 0x02) & 0x08); int mv = 1; /*XXX*/ u32 mask, data; ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000); ram_wr32(fuc, 0x62c000, 0x0f0f0000); if (vc == 1 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); if ((nv_ro08(bios, ramcfg + 0x03) & 0xf0)) ram_mask(fuc, 0x10f808, 0x04000000, 0x04000000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f090, 0x00000060); ram_wr32(fuc, 0x10f090, 0xc000007e); /*XXX: there does appear to be some kind of condition here, simply * modifying these bits in the vbios from the default pl0 * entries shows no change. however, the data does appear to * be correct and may be required for the transition back */ mask = 0x00010000; data = 0x00010000; if (1) { mask |= 0x800807e0; data |= 0x800807e0; switch (nv_ro08(bios, ramcfg + 0x03) & 0xc0) { case 0xc0: data &= ~0x00000040; break; case 0x80: data &= ~0x00000100; break; case 0x40: data &= ~0x80000000; break; case 0x00: data &= ~0x00000400; break; } switch (nv_ro08(bios, ramcfg + 0x03) & 0x30) { case 0x30: data &= ~0x00000020; break; case 0x20: data &= ~0x00000080; break; case 0x10: data &= ~0x00080000; break; case 0x00: data &= ~0x00000200; break; } } if (nv_ro08(bios, ramcfg + 0x02) & 0x80) mask |= 0x03000000; if (nv_ro08(bios, ramcfg + 0x02) & 0x40) mask |= 0x00002000; if (nv_ro08(bios, ramcfg + 0x07) & 0x10) mask |= 0x00004000; if (nv_ro08(bios, ramcfg + 0x07) & 0x08) mask |= 0x00000003; else mask |= 0x14000000; ram_mask(fuc, 0x10f824, mask, data); ram_mask(fuc, 0x132040, 0x00010000, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010); data = ram_rd32(fuc, 0x1373ec) & ~0x00030000; data |= (nv_ro08(bios, ramcfg + 0x03) & 0x30) << 12; ram_wr32(fuc, 0x1373ec, data); ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000); /* (re)program refpll, if required */ if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef || (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) { ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000000); ram_wr32(fuc, 0x137320, 0x00000000); ram_mask(fuc, 0x132030, 0xffff0000, runk0); ram_mask(fuc, 0x132034, 0x0000ffff, runk1); ram_wr32(fuc, 0x132024, rcoef); ram_mask(fuc, 0x132028, 0x00080000, 0x00080000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); ram_mask(fuc, 0x132028, 0x00080000, 0x00000000); } ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000010); ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001); ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000); if (ram_have(fuc, gpioMV)) { u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]); if (temp != ram_rd32(fuc, gpioMV)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 64000); } } if ( (nv_ro08(bios, ramcfg + 0x02) & 0x40) || (nv_ro08(bios, ramcfg + 0x07) & 0x10)) { ram_mask(fuc, 0x132040, 0x00010000, 0x00010000); ram_nsec(fuc, 20000); } if (ram->mode != 2) /*XXX*/ { if (nv_ro08(bios, ramcfg + 0x07) & 0x40) ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000); } data = (nv_ro08(bios, rammap + 0x11) & 0x0c) >> 2; ram_wr32(fuc, 0x10f65c, 0x00000011 * data); ram_wr32(fuc, 0x10f6b8, 0x01010101 * nv_ro08(bios, ramcfg + 0x09)); ram_wr32(fuc, 0x10f6bc, 0x01010101 * nv_ro08(bios, ramcfg + 0x09)); mask = 0x00010000; data = 0x00000000; if (!(nv_ro08(bios, ramcfg + 0x02) & 0x80)) data |= 0x03000000; if (!(nv_ro08(bios, ramcfg + 0x02) & 0x40)) data |= 0x00002000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x10)) data |= 0x00004000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) data |= 0x00000003; else data |= 0x14000000; ram_mask(fuc, 0x10f824, mask, data); ram_nsec(fuc, 1000); if (nv_ro08(bios, ramcfg + 0x08) & 0x01) data = 0x00100000; else data = 0x00000000; ram_mask(fuc, 0x10f82c, 0x00100000, data); /* PFB timing */ ram_mask(fuc, 0x10f248, 0xffffffff, nv_ro32(bios, timing + 0x28)); ram_mask(fuc, 0x10f290, 0xffffffff, nv_ro32(bios, timing + 0x00)); ram_mask(fuc, 0x10f294, 0xffffffff, nv_ro32(bios, timing + 0x04)); ram_mask(fuc, 0x10f298, 0xffffffff, nv_ro32(bios, timing + 0x08)); ram_mask(fuc, 0x10f29c, 0xffffffff, nv_ro32(bios, timing + 0x0c)); ram_mask(fuc, 0x10f2a0, 0xffffffff, nv_ro32(bios, timing + 0x10)); ram_mask(fuc, 0x10f2a4, 0xffffffff, nv_ro32(bios, timing + 0x14)); ram_mask(fuc, 0x10f2a8, 0xffffffff, nv_ro32(bios, timing + 0x18)); ram_mask(fuc, 0x10f2ac, 0xffffffff, nv_ro32(bios, timing + 0x1c)); ram_mask(fuc, 0x10f2cc, 0xffffffff, nv_ro32(bios, timing + 0x20)); ram_mask(fuc, 0x10f2e8, 0xffffffff, nv_ro32(bios, timing + 0x24)); mask = 0x33f00000; data = 0x00000000; if (!(nv_ro08(bios, ramcfg + 0x01) & 0x04)) data |= 0x20200000; if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80)) data |= 0x12800000; /*XXX: see note above about there probably being some condition * for the 10f824 stuff that uses ramcfg 3... */ if ( (nv_ro08(bios, ramcfg + 0x03) & 0xf0)) { if (nv_ro08(bios, rammap + 0x08) & 0x0c) { if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80)) mask |= 0x00000020; else data |= 0x00000020; mask |= 0x08000004; } data |= 0x04000000; } else { mask |= 0x44000020; data |= 0x08000004; } ram_mask(fuc, 0x10f808, mask, data); data = nv_ro08(bios, ramcfg + 0x03) & 0x0f; ram_wr32(fuc, 0x10f870, 0x11111111 * data); data = nv_ro16(bios, timing + 0x2c); ram_mask(fuc, 0x10f250, 0x000003f0, (data & 0x003f) << 4); if (((nv_ro32(bios, timing + 0x2c) & 0x00001fc0) >> 6) > ((nv_ro32(bios, timing + 0x28) & 0x7f000000) >> 24)) data = (nv_ro32(bios, timing + 0x2c) & 0x00001fc0) >> 6; else data = (nv_ro32(bios, timing + 0x28) & 0x1f000000) >> 24; ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24); data = nv_ro08(bios, timing + 0x30); ram_mask(fuc, 0x10f224, 0x001f0000, (data & 0xf8) << 13); ram_wr32(fuc, 0x10f090, 0x4000007f); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */ ram_nsec(fuc, 1000); ram_nuke(fuc, mr[0]); ram_mask(fuc, mr[0], 0x100, 0x100); ram_mask(fuc, mr[0], 0x100, 0x000); ram_mask(fuc, mr[2], 0xfff, ram->base.mr[2]); ram_wr32(fuc, mr[0], ram->base.mr[0]); ram_nsec(fuc, 1000); ram_nuke(fuc, mr[0]); ram_mask(fuc, mr[0], 0x100, 0x100); ram_mask(fuc, mr[0], 0x100, 0x000); if (vc == 0 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } if (ram->mode != 2) { ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); } ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x62c000, 0x0f0f0f00); if (nv_ro08(bios, rammap + 0x08) & 0x01) data = 0x00000800; else data = 0x00000000; ram_mask(fuc, 0x10f200, 0x00000800, data); return 0; } /******************************************************************************* * main hooks ******************************************************************************/ static int nve0_ram_calc(struct nouveau_fb *pfb, u32 freq) { struct nouveau_bios *bios = nouveau_bios(pfb); struct nve0_ram *ram = (void *)pfb->ram; struct nve0_ramfuc *fuc = &ram->fuc; struct bit_entry M; int ret, refclk, strap, i; u32 data; u8 cnt; /* lookup memory config data relevant to the target frequency */ ram->base.rammap.data = nvbios_rammap_match(bios, freq / 1000, &ram->base.rammap.version, &ram->base.rammap.size, &cnt, &ram->base.ramcfg.size); if (!ram->base.rammap.data || ram->base.rammap.version != 0x11 || ram->base.rammap.size < 0x09) { nv_error(pfb, "invalid/missing rammap entry\n"); return -EINVAL; } /* locate specific data set for the attached memory */ if (bit_entry(bios, 'M', &M) || M.version != 2 || M.length < 3) { nv_error(pfb, "invalid/missing memory table\n"); return -EINVAL; } strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2; data = nv_ro16(bios, M.offset + 1); if (data) strap = nv_ro08(bios, data + strap); if (strap >= cnt) { nv_error(pfb, "invalid ramcfg strap\n"); return -EINVAL; } ram->base.ramcfg.version = ram->base.rammap.version; ram->base.ramcfg.data = ram->base.rammap.data + ram->base.rammap.size + (ram->base.ramcfg.size * strap); if (!ram->base.ramcfg.data || ram->base.ramcfg.version != 0x11 || ram->base.ramcfg.size < 0x08) { nv_error(pfb, "invalid/missing ramcfg entry\n"); return -EINVAL; } /* lookup memory timings, if bios says they're present */ strap = nv_ro08(bios, ram->base.ramcfg.data + 0x00); if (strap != 0xff) { ram->base.timing.data = nvbios_timing_entry(bios, strap, &ram->base.timing.version, &ram->base.timing.size); if (!ram->base.timing.data || ram->base.timing.version != 0x20 || ram->base.timing.size < 0x33) { nv_error(pfb, "invalid/missing timing entry\n"); return -EINVAL; } } else { ram->base.timing.data = 0; } ret = ram_init(fuc, pfb); if (ret) return ret; ram->mode = (freq > fuc->refpll.vco1.max_freq) ? 2 : 1; ram->from = ram_rd32(fuc, 0x1373f4) & 0x0000000f; /* XXX: this is *not* what nvidia do. on fermi nvidia generally * select, based on some unknown condition, one of the two possible * reference frequencies listed in the vbios table for mempll and * program refpll to that frequency. * * so far, i've seen very weird values being chosen by nvidia on * kepler boards, no idea how/why they're chosen. */ refclk = freq; if (ram->mode == 2) refclk = fuc->mempll.refclk; /* calculate refpll coefficients */ ret = nva3_pll_calc(nv_subdev(pfb), &fuc->refpll, refclk, &ram->N1, &ram->fN1, &ram->M1, &ram->P1); fuc->mempll.refclk = ret; if (ret <= 0) { nv_error(pfb, "unable to calc refpll\n"); return -EINVAL; } /* calculate mempll coefficients, if we're using it */ if (ram->mode == 2) { /* post-divider doesn't work... the reg takes the values but * appears to completely ignore it. there *is* a bit at * bit 28 that appears to divide the clock by 2 if set. */ fuc->mempll.min_p = 1; fuc->mempll.max_p = 2; ret = nva3_pll_calc(nv_subdev(pfb), &fuc->mempll, freq, &ram->N2, NULL, &ram->M2, &ram->P2); if (ret <= 0) { nv_error(pfb, "unable to calc mempll\n"); return -EINVAL; } } for (i = 0; i < ARRAY_SIZE(fuc->r_mr); i++) { if (ram_have(fuc, mr[i])) ram->base.mr[i] = ram_rd32(fuc, mr[i]); } switch (ram->base.type) { case NV_MEM_TYPE_DDR3: ret = nouveau_sddr3_calc(&ram->base); if (ret == 0) ret = nve0_ram_calc_sddr3(pfb, freq); break; case NV_MEM_TYPE_GDDR5: ret = nouveau_gddr5_calc(&ram->base); if (ret == 0) ret = nve0_ram_calc_gddr5(pfb, freq); break; default: ret = -ENOSYS; break; } return ret; } static int nve0_ram_prog(struct nouveau_fb *pfb) { struct nouveau_device *device = nv_device(pfb); struct nve0_ram *ram = (void *)pfb->ram; struct nve0_ramfuc *fuc = &ram->fuc; ram_exec(fuc, nouveau_boolopt(device->cfgopt, "NvMemExec", false)); return 0; } static void nve0_ram_tidy(struct nouveau_fb *pfb) { struct nve0_ram *ram = (void *)pfb->ram; struct nve0_ramfuc *fuc = &ram->fuc; ram_exec(fuc, false); } static int nve0_ram_init(struct nouveau_object *object) { struct nouveau_fb *pfb = (void *)object->parent; struct nve0_ram *ram = (void *)object; struct nouveau_bios *bios = nouveau_bios(pfb); static const u8 train0[] = { 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, }; static const u32 train1[] = { 0x00000000, 0xffffffff, 0x55555555, 0xaaaaaaaa, 0x33333333, 0xcccccccc, 0xf0f0f0f0, 0x0f0f0f0f, 0x00ff00ff, 0xff00ff00, 0x0000ffff, 0xffff0000, }; u8 ver, hdr, cnt, len, snr, ssz; u32 data, save; int ret, i; ret = nouveau_ram_init(&ram->base); if (ret) return ret; /* run a bunch of tables from rammap table. there's actually * individual pointers for each rammap entry too, but, nvidia * seem to just run the last two entries' scripts early on in * their init, and never again.. we'll just run 'em all once * for now. * * i strongly suspect that each script is for a separate mode * (likely selected by 0x10f65c's lower bits?), and the * binary driver skips the one that's already been setup by * the init tables. */ data = nvbios_rammap_table(bios, &ver, &hdr, &cnt, &len, &snr, &ssz); if (!data || hdr < 0x15) return -EINVAL; cnt = nv_ro08(bios, data + 0x14); /* guess at count */ data = nv_ro32(bios, data + 0x10); /* guess u32... */ save = nv_rd32(pfb, 0x10f65c); for (i = 0; i < cnt; i++) { nv_mask(pfb, 0x10f65c, 0x000000f0, i << 4); nvbios_exec(&(struct nvbios_init) { .subdev = nv_subdev(pfb), .bios = bios, .offset = nv_ro32(bios, data), /* guess u32 */ .execute = 1, }); data += 4; } nv_wr32(pfb, 0x10f65c, save); switch (ram->base.type) { case NV_MEM_TYPE_GDDR5: for (i = 0; i < 0x30; i++) { nv_wr32(pfb, 0x10f968, 0x00000000 | (i << 8)); nv_wr32(pfb, 0x10f920, 0x00000000 | train0[i % 12]); nv_wr32(pfb, 0x10f918, train1[i % 12]); nv_wr32(pfb, 0x10f920, 0x00000100 | train0[i % 12]); nv_wr32(pfb, 0x10f918, train1[i % 12]); nv_wr32(pfb, 0x10f96c, 0x00000000 | (i << 8)); nv_wr32(pfb, 0x10f924, 0x00000000 | train0[i % 12]); nv_wr32(pfb, 0x10f91c, train1[i % 12]); nv_wr32(pfb, 0x10f924, 0x00000100 | train0[i % 12]); nv_wr32(pfb, 0x10f91c, train1[i % 12]); } for (i = 0; i < 0x100; i++) { nv_wr32(pfb, 0x10f968, i); nv_wr32(pfb, 0x10f900, train1[2 + (i & 1)]); } for (i = 0; i < 0x100; i++) { nv_wr32(pfb, 0x10f96c, i); nv_wr32(pfb, 0x10f900, train1[2 + (i & 1)]); } break; default: break; } return 0; } static int nve0_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine, struct nouveau_oclass *oclass, void *data, u32 size, struct nouveau_object **pobject) { struct nouveau_fb *pfb = nouveau_fb(parent); struct nouveau_bios *bios = nouveau_bios(pfb); struct nouveau_gpio *gpio = nouveau_gpio(pfb); struct dcb_gpio_func func; struct nve0_ram *ram; int ret; ret = nvc0_ram_create(parent, engine, oclass, &ram); *pobject = nv_object(ram); if (ret) return ret; switch (ram->base.type) { case NV_MEM_TYPE_DDR3: case NV_MEM_TYPE_GDDR5: ram->base.calc = nve0_ram_calc; ram->base.prog = nve0_ram_prog; ram->base.tidy = nve0_ram_tidy; break; default: nv_warn(pfb, "reclocking of this RAM type is unsupported\n"); break; } // parse bios data for both pll's ret = nvbios_pll_parse(bios, 0x0c, &ram->fuc.refpll); if (ret) { nv_error(pfb, "mclk refpll data not found\n"); return ret; } ret = nvbios_pll_parse(bios, 0x04, &ram->fuc.mempll); if (ret) { nv_error(pfb, "mclk pll data not found\n"); return ret; } ret = gpio->find(gpio, 0, 0x18, DCB_GPIO_UNUSED, &func); if (ret == 0) { ram->fuc.r_gpioMV = ramfuc_reg(0x00d610 + (func.line * 0x04)); ram->fuc.r_funcMV[0] = (func.log[0] ^ 2) << 12; ram->fuc.r_funcMV[1] = (func.log[1] ^ 2) << 12; } ret = gpio->find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func); if (ret == 0) { ram->fuc.r_gpio2E = ramfuc_reg(0x00d610 + (func.line * 0x04)); ram->fuc.r_func2E[0] = (func.log[0] ^ 2) << 12; ram->fuc.r_func2E[1] = (func.log[1] ^ 2) << 12; } ram->fuc.r_gpiotrig = ramfuc_reg(0x00d604); ram->fuc.r_0x132020 = ramfuc_reg(0x132020); ram->fuc.r_0x132028 = ramfuc_reg(0x132028); ram->fuc.r_0x132024 = ramfuc_reg(0x132024); ram->fuc.r_0x132030 = ramfuc_reg(0x132030); ram->fuc.r_0x132034 = ramfuc_reg(0x132034); ram->fuc.r_0x132000 = ramfuc_reg(0x132000); ram->fuc.r_0x132004 = ramfuc_reg(0x132004); ram->fuc.r_0x132040 = ramfuc_reg(0x132040); ram->fuc.r_0x10f248 = ramfuc_reg(0x10f248); ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290); ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294); ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298); ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c); ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0); ram->fuc.r_0x10f2a4 = ramfuc_reg(0x10f2a4); ram->fuc.r_0x10f2a8 = ramfuc_reg(0x10f2a8); ram->fuc.r_0x10f2ac = ramfuc_reg(0x10f2ac); ram->fuc.r_0x10f2cc = ramfuc_reg(0x10f2cc); ram->fuc.r_0x10f2e8 = ramfuc_reg(0x10f2e8); ram->fuc.r_0x10f250 = ramfuc_reg(0x10f250); ram->fuc.r_0x10f24c = ramfuc_reg(0x10f24c); ram->fuc.r_0x10fec4 = ramfuc_reg(0x10fec4); ram->fuc.r_0x10fec8 = ramfuc_reg(0x10fec8); ram->fuc.r_0x10f604 = ramfuc_reg(0x10f604); ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614); ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610); ram->fuc.r_0x100770 = ramfuc_reg(0x100770); ram->fuc.r_0x100778 = ramfuc_reg(0x100778); ram->fuc.r_0x10f224 = ramfuc_reg(0x10f224); ram->fuc.r_0x10f870 = ramfuc_reg(0x10f870); ram->fuc.r_0x10f698 = ramfuc_reg(0x10f698); ram->fuc.r_0x10f694 = ramfuc_reg(0x10f694); ram->fuc.r_0x10f6b8 = ramfuc_reg(0x10f6b8); ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808); ram->fuc.r_0x10f670 = ramfuc_reg(0x10f670); ram->fuc.r_0x10f60c = ramfuc_reg(0x10f60c); ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830); ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec); ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800); ram->fuc.r_0x10f82c = ramfuc_reg(0x10f82c); ram->fuc.r_0x10f978 = ramfuc_reg(0x10f978); ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910); ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914); switch (ram->base.type) { case NV_MEM_TYPE_GDDR5: ram->fuc.r_mr[0] = ramfuc_reg(0x10f300); ram->fuc.r_mr[1] = ramfuc_reg(0x10f330); ram->fuc.r_mr[2] = ramfuc_reg(0x10f334); ram->fuc.r_mr[3] = ramfuc_reg(0x10f338); ram->fuc.r_mr[4] = ramfuc_reg(0x10f33c); ram->fuc.r_mr[5] = ramfuc_reg(0x10f340); ram->fuc.r_mr[6] = ramfuc_reg(0x10f344); ram->fuc.r_mr[7] = ramfuc_reg(0x10f348); ram->fuc.r_mr[8] = ramfuc_reg(0x10f354); ram->fuc.r_mr[15] = ramfuc_reg(0x10f34c); break; case NV_MEM_TYPE_DDR3: ram->fuc.r_mr[0] = ramfuc_reg(0x10f300); ram->fuc.r_mr[2] = ramfuc_reg(0x10f320); break; default: break; } ram->fuc.r_0x62c000 = ramfuc_reg(0x62c000); ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200); ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210); ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310); ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314); ram->fuc.r_0x10f318 = ramfuc_reg(0x10f318); ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090); ram->fuc.r_0x10f69c = ramfuc_reg(0x10f69c); ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824); ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0); ram->fuc.r_0x1373f4 = ramfuc_reg(0x1373f4); ram->fuc.r_0x137320 = ramfuc_reg(0x137320); ram->fuc.r_0x10f65c = ramfuc_reg(0x10f65c); ram->fuc.r_0x10f6bc = ramfuc_reg(0x10f6bc); ram->fuc.r_0x100710 = ramfuc_reg(0x100710); ram->fuc.r_0x10f750 = ramfuc_reg(0x10f750); return 0; } struct nouveau_oclass nve0_ram_oclass = { .handle = 0, .ofuncs = &(struct nouveau_ofuncs) { .ctor = nve0_ram_ctor, .dtor = _nouveau_ram_dtor, .init = nve0_ram_init, .fini = _nouveau_ram_fini, } };