/* * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved. * Copyright 2005 Stephane Marchesin * * The Weather Channel (TM) funded Tungsten Graphics to develop the * initial release of the Radeon 8500 driver under the XFree86 license. * This notice must be preserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Ben Skeggs * Roy Spliet */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_pm.h" #include "nouveau_mm.h" #include "nouveau_vm.h" #include "nouveau_fifo.h" #include "nouveau_fence.h" /* * NV10-NV40 tiling helpers */ static void nv10_mem_update_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile, uint32_t addr, uint32_t size, uint32_t pitch, uint32_t flags) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; int i = tile - dev_priv->tile.reg, j; unsigned long save; nouveau_fence_unref(&tile->fence); if (tile->pitch) pfb->free_tile_region(dev, i); if (pitch) pfb->init_tile_region(dev, i, addr, size, pitch, flags); spin_lock_irqsave(&dev_priv->context_switch_lock, save); nv_wr32(dev, NV03_PFIFO_CACHES, 0); nv04_fifo_cache_pull(dev, false); nouveau_wait_for_idle(dev); pfb->set_tile_region(dev, i); for (j = 0; j < NVOBJ_ENGINE_NR; j++) { if (dev_priv->eng[j] && dev_priv->eng[j]->set_tile_region) dev_priv->eng[j]->set_tile_region(dev, i); } nv04_fifo_cache_pull(dev, true); nv_wr32(dev, NV03_PFIFO_CACHES, 1); spin_unlock_irqrestore(&dev_priv->context_switch_lock, save); } static struct nouveau_tile_reg * nv10_mem_get_tile_region(struct drm_device *dev, int i) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; spin_lock(&dev_priv->tile.lock); if (!tile->used && (!tile->fence || nouveau_fence_done(tile->fence))) tile->used = true; else tile = NULL; spin_unlock(&dev_priv->tile.lock); return tile; } void nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile, struct nouveau_fence *fence) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (tile) { spin_lock(&dev_priv->tile.lock); if (fence) { /* Mark it as pending. */ tile->fence = fence; nouveau_fence_ref(fence); } tile->used = false; spin_unlock(&dev_priv->tile.lock); } } struct nouveau_tile_reg * nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size, uint32_t pitch, uint32_t flags) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_tile_reg *tile, *found = NULL; int i; for (i = 0; i < pfb->num_tiles; i++) { tile = nv10_mem_get_tile_region(dev, i); if (pitch && !found) { found = tile; continue; } else if (tile && tile->pitch) { /* Kill an unused tile region. */ nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0); } nv10_mem_put_tile_region(dev, tile, NULL); } if (found) nv10_mem_update_tile_region(dev, found, addr, size, pitch, flags); return found; } /* * Cleanup everything */ void nouveau_mem_vram_fini(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; ttm_bo_device_release(&dev_priv->ttm.bdev); nouveau_ttm_global_release(dev_priv); if (dev_priv->fb_mtrr >= 0) { drm_mtrr_del(dev_priv->fb_mtrr, pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1), DRM_MTRR_WC); dev_priv->fb_mtrr = -1; } } void nouveau_mem_gart_fini(struct drm_device *dev) { nouveau_sgdma_takedown(dev); if (drm_core_has_AGP(dev) && dev->agp) { struct drm_agp_mem *entry, *tempe; /* Remove AGP resources, but leave dev->agp intact until drv_cleanup is called. */ list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) { if (entry->bound) drm_unbind_agp(entry->memory); drm_free_agp(entry->memory, entry->pages); kfree(entry); } INIT_LIST_HEAD(&dev->agp->memory); if (dev->agp->acquired) drm_agp_release(dev); dev->agp->acquired = 0; dev->agp->enabled = 0; } } bool nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags) { if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK)) return true; return false; } #if __OS_HAS_AGP static unsigned long get_agp_mode(struct drm_device *dev, unsigned long mode) { struct drm_nouveau_private *dev_priv = dev->dev_private; /* * FW seems to be broken on nv18, it makes the card lock up * randomly. */ if (dev_priv->chipset == 0x18) mode &= ~PCI_AGP_COMMAND_FW; /* * AGP mode set in the command line. */ if (nouveau_agpmode > 0) { bool agpv3 = mode & 0x8; int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode; mode = (mode & ~0x7) | (rate & 0x7); } return mode; } #endif int nouveau_mem_reset_agp(struct drm_device *dev) { #if __OS_HAS_AGP uint32_t saved_pci_nv_1, pmc_enable; int ret; /* First of all, disable fast writes, otherwise if it's * already enabled in the AGP bridge and we disable the card's * AGP controller we might be locking ourselves out of it. */ if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) | dev->agp->mode) & PCI_AGP_COMMAND_FW) { struct drm_agp_info info; struct drm_agp_mode mode; ret = drm_agp_info(dev, &info); if (ret) return ret; mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW; ret = drm_agp_enable(dev, mode); if (ret) return ret; } saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1); /* clear busmaster bit */ nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4); /* disable AGP */ nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0); /* power cycle pgraph, if enabled */ pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE); if (pmc_enable & NV_PMC_ENABLE_PGRAPH) { nv_wr32(dev, NV03_PMC_ENABLE, pmc_enable & ~NV_PMC_ENABLE_PGRAPH); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | NV_PMC_ENABLE_PGRAPH); } /* and restore (gives effect of resetting AGP) */ nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1); #endif return 0; } int nouveau_mem_init_agp(struct drm_device *dev) { #if __OS_HAS_AGP struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_agp_info info; struct drm_agp_mode mode; int ret; if (!dev->agp->acquired) { ret = drm_agp_acquire(dev); if (ret) { NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret); return ret; } } nouveau_mem_reset_agp(dev); ret = drm_agp_info(dev, &info); if (ret) { NV_ERROR(dev, "Unable to get AGP info: %d\n", ret); return ret; } /* see agp.h for the AGPSTAT_* modes available */ mode.mode = get_agp_mode(dev, info.mode); ret = drm_agp_enable(dev, mode); if (ret) { NV_ERROR(dev, "Unable to enable AGP: %d\n", ret); return ret; } dev_priv->gart_info.type = NOUVEAU_GART_AGP; dev_priv->gart_info.aper_base = info.aperture_base; dev_priv->gart_info.aper_size = info.aperture_size; #endif return 0; } static const struct vram_types { int value; const char *name; } vram_type_map[] = { { NV_MEM_TYPE_STOLEN , "stolen system memory" }, { NV_MEM_TYPE_SGRAM , "SGRAM" }, { NV_MEM_TYPE_SDRAM , "SDRAM" }, { NV_MEM_TYPE_DDR1 , "DDR1" }, { NV_MEM_TYPE_DDR2 , "DDR2" }, { NV_MEM_TYPE_DDR3 , "DDR3" }, { NV_MEM_TYPE_GDDR2 , "GDDR2" }, { NV_MEM_TYPE_GDDR3 , "GDDR3" }, { NV_MEM_TYPE_GDDR4 , "GDDR4" }, { NV_MEM_TYPE_GDDR5 , "GDDR5" }, { NV_MEM_TYPE_UNKNOWN, "unknown type" } }; int nouveau_mem_vram_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; const struct vram_types *vram_type; int ret, dma_bits; dma_bits = 32; if (dev_priv->card_type >= NV_50) { if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40))) dma_bits = 40; } else if (0 && pci_is_pcie(dev->pdev) && dev_priv->chipset > 0x40 && dev_priv->chipset != 0x45) { if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39))) dma_bits = 39; } ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); if (ret) return ret; ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); if (ret) { /* Reset to default value. */ pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32)); } ret = nouveau_ttm_global_init(dev_priv); if (ret) return ret; ret = ttm_bo_device_init(&dev_priv->ttm.bdev, dev_priv->ttm.bo_global_ref.ref.object, &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET, dma_bits <= 32 ? true : false); if (ret) { NV_ERROR(dev, "Error initialising bo driver: %d\n", ret); return ret; } vram_type = vram_type_map; while (vram_type->value != NV_MEM_TYPE_UNKNOWN) { if (nouveau_vram_type) { if (!strcasecmp(nouveau_vram_type, vram_type->name)) break; dev_priv->vram_type = vram_type->value; } else { if (vram_type->value == dev_priv->vram_type) break; } vram_type++; } NV_INFO(dev, "Detected %dMiB VRAM (%s)\n", (int)(dev_priv->vram_size >> 20), vram_type->name); if (dev_priv->vram_sys_base) { NV_INFO(dev, "Stolen system memory at: 0x%010llx\n", dev_priv->vram_sys_base); } dev_priv->fb_available_size = dev_priv->vram_size; dev_priv->fb_mappable_pages = dev_priv->fb_available_size; if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1)) dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1); dev_priv->fb_mappable_pages >>= PAGE_SHIFT; dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram; dev_priv->fb_aper_free = dev_priv->fb_available_size; /* mappable vram */ ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM, dev_priv->fb_available_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret); return ret; } if (dev_priv->card_type < NV_50) { ret = nouveau_bo_new(dev, 256*1024, 0, TTM_PL_FLAG_VRAM, 0, 0, NULL, &dev_priv->vga_ram); if (ret == 0) ret = nouveau_bo_pin(dev_priv->vga_ram, TTM_PL_FLAG_VRAM); if (ret) { NV_WARN(dev, "failed to reserve VGA memory\n"); nouveau_bo_ref(NULL, &dev_priv->vga_ram); } } dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1), pci_resource_len(dev->pdev, 1), DRM_MTRR_WC); return 0; } int nouveau_mem_gart_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; int ret; dev_priv->gart_info.type = NOUVEAU_GART_NONE; #if !defined(__powerpc__) && !defined(__ia64__) if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) { ret = nouveau_mem_init_agp(dev); if (ret) NV_ERROR(dev, "Error initialising AGP: %d\n", ret); } #endif if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) { ret = nouveau_sgdma_init(dev); if (ret) { NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret); return ret; } } NV_INFO(dev, "%d MiB GART (aperture)\n", (int)(dev_priv->gart_info.aper_size >> 20)); dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size; ret = ttm_bo_init_mm(bdev, TTM_PL_TT, dev_priv->gart_info.aper_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed TT mm init: %d\n", ret); return ret; } return 0; } static int nv40_mem_timing_calc(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC); /* XXX: I don't trust the -1's and +1's... they must come * from somewhere! */ t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 | 1 << 16 | (e->tWTR + 2 + (t->tCWL - 1)) << 8 | (e->tCL + 2 - (t->tCWL - 1)); t->reg[2] = 0x20200000 | ((t->tCWL - 1) << 24 | e->tRRD << 16 | e->tRCDWR << 8 | e->tRCDRD); NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x\n", t->id, t->reg[0], t->reg[1], t->reg[2]); return 0; } static int nv50_mem_timing_calc(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct bit_entry P; uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3; if (bit_table(dev, 'P', &P)) return -EINVAL; switch (min(len, (u8) 22)) { case 22: unk21 = e->tUNK_21; case 21: unk20 = e->tUNK_20; case 20: if (e->tCWL > 0) t->tCWL = e->tCWL; case 19: unk18 = e->tUNK_18; break; } t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC); t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 | max(unk18, (u8) 1) << 16 | (e->tWTR + 2 + (t->tCWL - 1)) << 8; t->reg[2] = ((t->tCWL - 1) << 24 | e->tRRD << 16 | e->tRCDWR << 8 | e->tRCDRD); t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13; t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP); t->reg[8] = boot->reg[8] & 0xffffff00; if (P.version == 1) { t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1)); t->reg[3] = (0x14 + e->tCL) << 24 | 0x16 << 16 | (e->tCL - 1) << 8 | (e->tCL - 1); t->reg[4] |= boot->reg[4] & 0xffff0000; t->reg[6] = (0x33 - t->tCWL) << 16 | t->tCWL << 8 | (0x2e + e->tCL - t->tCWL); t->reg[7] = 0x4000202 | (e->tCL - 1) << 16; /* XXX: P.version == 1 only has DDR2 and GDDR3? */ if (dev_priv->vram_type == NV_MEM_TYPE_DDR2) { t->reg[5] |= (e->tCL + 3) << 8; t->reg[6] |= (t->tCWL - 2) << 8; t->reg[8] |= (e->tCL - 4); } else { t->reg[5] |= (e->tCL + 2) << 8; t->reg[6] |= t->tCWL << 8; t->reg[8] |= (e->tCL - 2); } } else { t->reg[1] |= (5 + e->tCL - (t->tCWL)); /* XXX: 0xb? 0x30? */ t->reg[3] = (0x30 + e->tCL) << 24 | (boot->reg[3] & 0x00ff0000)| (0xb + e->tCL) << 8 | (e->tCL - 1); t->reg[4] |= (unk20 << 24 | unk21 << 16); /* XXX: +6? */ t->reg[5] |= (t->tCWL + 6) << 8; t->reg[6] = (0x5a + e->tCL) << 16 | (6 - e->tCL + t->tCWL) << 8 | (0x50 + e->tCL - t->tCWL); tmp7_3 = (boot->reg[7] & 0xff000000) >> 24; t->reg[7] = (tmp7_3 << 24) | ((tmp7_3 - 6 + e->tCL) << 16) | 0x202; } NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", t->id, t->reg[0], t->reg[1], t->reg[2], t->reg[3]); NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n", t->reg[4], t->reg[5], t->reg[6], t->reg[7]); NV_DEBUG(dev, " 240: %08x\n", t->reg[8]); return 0; } static int nvc0_mem_timing_calc(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { if (e->tCWL > 0) t->tCWL = e->tCWL; t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 | e->tRFC << 8 | e->tRC); t->reg[1] = (boot->reg[1] & 0xff000000) | (e->tRCDWR & 0x0f) << 20 | (e->tRCDRD & 0x0f) << 14 | (t->tCWL << 7) | (e->tCL & 0x0f); t->reg[2] = (boot->reg[2] & 0xff0000ff) | e->tWR << 16 | e->tWTR << 8; t->reg[3] = (e->tUNK_20 & 0x1f) << 9 | (e->tUNK_21 & 0xf) << 5 | (e->tUNK_13 & 0x1f); t->reg[4] = (boot->reg[4] & 0xfff00fff) | (e->tRRD&0x1f) << 15; NV_DEBUG(dev, "Entry %d: 290: %08x %08x %08x %08x\n", t->id, t->reg[0], t->reg[1], t->reg[2], t->reg[3]); NV_DEBUG(dev, " 2a0: %08x\n", t->reg[4]); return 0; } /** * MR generation methods */ static int nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { t->drive_strength = 0; if (len < 15) { t->odt = boot->odt; } else { t->odt = e->RAM_FT1 & 0x07; } if (e->tCL >= NV_MEM_CL_DDR2_MAX) { NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); return -ERANGE; } if (e->tWR >= NV_MEM_WR_DDR2_MAX) { NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); return -ERANGE; } if (t->odt > 3) { NV_WARN(dev, "(%u) Invalid odt value, assuming disabled: %x", t->id, t->odt); t->odt = 0; } t->mr[0] = (boot->mr[0] & 0x100f) | (e->tCL) << 4 | (e->tWR - 1) << 9; t->mr[1] = (boot->mr[1] & 0x101fbb) | (t->odt & 0x1) << 2 | (t->odt & 0x2) << 5; NV_DEBUG(dev, "(%u) MR: %08x", t->id, t->mr[0]); return 0; } uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = { 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0}; static int nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { u8 cl = e->tCL - 4; t->drive_strength = 0; if (len < 15) { t->odt = boot->odt; } else { t->odt = e->RAM_FT1 & 0x07; } if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) { NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); return -ERANGE; } if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) { NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); return -ERANGE; } if (e->tCWL < 5) { NV_WARN(dev, "(%u) Invalid tCWL: %u", t->id, e->tCWL); return -ERANGE; } t->mr[0] = (boot->mr[0] & 0x180b) | /* CAS */ (cl & 0x7) << 4 | (cl & 0x8) >> 1 | (nv_mem_wr_lut_ddr3[e->tWR]) << 9; t->mr[1] = (boot->mr[1] & 0x101dbb) | (t->odt & 0x1) << 2 | (t->odt & 0x2) << 5 | (t->odt & 0x4) << 7; t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3; NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]); return 0; } uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = { 0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11}; uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = { 0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3}; static int nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { if (len < 15) { t->drive_strength = boot->drive_strength; t->odt = boot->odt; } else { t->drive_strength = (e->RAM_FT1 & 0x30) >> 4; t->odt = e->RAM_FT1 & 0x07; } if (e->tCL >= NV_MEM_CL_GDDR3_MAX) { NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); return -ERANGE; } if (e->tWR >= NV_MEM_WR_GDDR3_MAX) { NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); return -ERANGE; } if (t->odt > 3) { NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x", t->id, t->odt); t->odt = 0; } t->mr[0] = (boot->mr[0] & 0xe0b) | /* CAS */ ((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) | ((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2); t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength | (t->odt << 2) | (nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4; t->mr[2] = boot->mr[2]; NV_DEBUG(dev, "(%u) MR: %08x %08x %08x", t->id, t->mr[0], t->mr[1], t->mr[2]); return 0; } static int nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq, struct nouveau_pm_tbl_entry *e, u8 len, struct nouveau_pm_memtiming *boot, struct nouveau_pm_memtiming *t) { if (len < 15) { t->drive_strength = boot->drive_strength; t->odt = boot->odt; } else { t->drive_strength = (e->RAM_FT1 & 0x30) >> 4; t->odt = e->RAM_FT1 & 0x03; } if (e->tCL >= NV_MEM_CL_GDDR5_MAX) { NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL); return -ERANGE; } if (e->tWR >= NV_MEM_WR_GDDR5_MAX) { NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR); return -ERANGE; } if (t->odt > 3) { NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x", t->id, t->odt); t->odt = 0; } t->mr[0] = (boot->mr[0] & 0x007) | ((e->tCL - 5) << 3) | ((e->tWR - 4) << 8); t->mr[1] = (boot->mr[1] & 0x1007f0) | t->drive_strength | (t->odt << 2); NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]); return 0; } int nouveau_mem_timing_calc(struct drm_device *dev, u32 freq, struct nouveau_pm_memtiming *t) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pm_engine *pm = &dev_priv->engine.pm; struct nouveau_pm_memtiming *boot = &pm->boot.timing; struct nouveau_pm_tbl_entry *e; u8 ver, len, *ptr, *ramcfg; int ret; ptr = nouveau_perf_timing(dev, freq, &ver, &len); if (!ptr || ptr[0] == 0x00) { *t = *boot; return 0; } e = (struct nouveau_pm_tbl_entry *)ptr; t->tCWL = boot->tCWL; switch (dev_priv->card_type) { case NV_40: ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t); break; case NV_50: ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t); break; case NV_C0: case NV_D0: ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t); break; default: ret = -ENODEV; break; } switch (dev_priv->vram_type * !ret) { case NV_MEM_TYPE_GDDR3: ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t); break; case NV_MEM_TYPE_GDDR5: ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t); break; case NV_MEM_TYPE_DDR2: ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t); break; case NV_MEM_TYPE_DDR3: ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t); break; default: ret = -EINVAL; break; } ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len); if (ramcfg) { int dll_off; if (ver == 0x00) dll_off = !!(ramcfg[3] & 0x04); else dll_off = !!(ramcfg[2] & 0x40); switch (dev_priv->vram_type) { case NV_MEM_TYPE_GDDR3: t->mr[1] &= ~0x00000040; t->mr[1] |= 0x00000040 * dll_off; break; default: t->mr[1] &= ~0x00000001; t->mr[1] |= 0x00000001 * dll_off; break; } } return ret; } void nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 timing_base, timing_regs, mr_base; int i; if (dev_priv->card_type >= 0xC0) { timing_base = 0x10f290; mr_base = 0x10f300; } else { timing_base = 0x100220; mr_base = 0x1002c0; } t->id = -1; switch (dev_priv->card_type) { case NV_50: timing_regs = 9; break; case NV_C0: case NV_D0: timing_regs = 5; break; case NV_30: case NV_40: timing_regs = 3; break; default: timing_regs = 0; return; } for(i = 0; i < timing_regs; i++) t->reg[i] = nv_rd32(dev, timing_base + (0x04 * i)); t->tCWL = 0; if (dev_priv->card_type < NV_C0) { t->tCWL = ((nv_rd32(dev, 0x100228) & 0x0f000000) >> 24) + 1; } else if (dev_priv->card_type <= NV_D0) { t->tCWL = ((nv_rd32(dev, 0x10f294) & 0x00000f80) >> 7); } t->mr[0] = nv_rd32(dev, mr_base); t->mr[1] = nv_rd32(dev, mr_base + 0x04); t->mr[2] = nv_rd32(dev, mr_base + 0x20); t->mr[3] = nv_rd32(dev, mr_base + 0x24); t->odt = 0; t->drive_strength = 0; switch (dev_priv->vram_type) { case NV_MEM_TYPE_DDR3: t->odt |= (t->mr[1] & 0x200) >> 7; case NV_MEM_TYPE_DDR2: t->odt |= (t->mr[1] & 0x04) >> 2 | (t->mr[1] & 0x40) >> 5; break; case NV_MEM_TYPE_GDDR3: case NV_MEM_TYPE_GDDR5: t->drive_strength = t->mr[1] & 0x03; t->odt = (t->mr[1] & 0x0c) >> 2; break; default: break; } } int nouveau_mem_exec(struct nouveau_mem_exec_func *exec, struct nouveau_pm_level *perflvl) { struct drm_nouveau_private *dev_priv = exec->dev->dev_private; struct nouveau_pm_memtiming *info = &perflvl->timing; u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0; u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] }; u32 mr1_dlloff; switch (dev_priv->vram_type) { case NV_MEM_TYPE_DDR2: tDLLK = 2000; mr1_dlloff = 0x00000001; break; case NV_MEM_TYPE_DDR3: tDLLK = 12000; tCKSRE = 2000; tXS = 1000; mr1_dlloff = 0x00000001; break; case NV_MEM_TYPE_GDDR3: tDLLK = 40000; mr1_dlloff = 0x00000040; break; default: NV_ERROR(exec->dev, "cannot reclock unsupported memtype\n"); return -ENODEV; } /* fetch current MRs */ switch (dev_priv->vram_type) { case NV_MEM_TYPE_GDDR3: case NV_MEM_TYPE_DDR3: mr[2] = exec->mrg(exec, 2); default: mr[1] = exec->mrg(exec, 1); mr[0] = exec->mrg(exec, 0); break; } /* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */ if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) { exec->precharge(exec); exec->mrs (exec, 1, mr[1] | mr1_dlloff); exec->wait(exec, tMRD); } /* enter self-refresh mode */ exec->precharge(exec); exec->refresh(exec); exec->refresh(exec); exec->refresh_auto(exec, false); exec->refresh_self(exec, true); exec->wait(exec, tCKSRE); /* modify input clock frequency */ exec->clock_set(exec); /* exit self-refresh mode */ exec->wait(exec, tCKSRX); exec->precharge(exec); exec->refresh_self(exec, false); exec->refresh_auto(exec, true); exec->wait(exec, tXS); exec->wait(exec, tXS); /* update MRs */ if (mr[2] != info->mr[2]) { exec->mrs (exec, 2, info->mr[2]); exec->wait(exec, tMRD); } if (mr[1] != info->mr[1]) { /* need to keep DLL off until later, at least on GDDR3 */ exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff)); exec->wait(exec, tMRD); } if (mr[0] != info->mr[0]) { exec->mrs (exec, 0, info->mr[0]); exec->wait(exec, tMRD); } /* update PFB timing registers */ exec->timing_set(exec); /* DLL (enable + ) reset */ if (!(info->mr[1] & mr1_dlloff)) { if (mr[1] & mr1_dlloff) { exec->mrs (exec, 1, info->mr[1]); exec->wait(exec, tMRD); } exec->mrs (exec, 0, info->mr[0] | 0x00000100); exec->wait(exec, tMRD); exec->mrs (exec, 0, info->mr[0] | 0x00000000); exec->wait(exec, tMRD); exec->wait(exec, tDLLK); if (dev_priv->vram_type == NV_MEM_TYPE_GDDR3) exec->precharge(exec); } return 0; } int nouveau_mem_vbios_type(struct drm_device *dev) { struct bit_entry M; u8 ramcfg = (nv_rd32(dev, 0x101000) & 0x0000003c) >> 2; if (!bit_table(dev, 'M', &M) || M.version != 2 || M.length < 5) { u8 *table = ROMPTR(dev, M.data[3]); if (table && table[0] == 0x10 && ramcfg < table[3]) { u8 *entry = table + table[1] + (ramcfg * table[2]); switch (entry[0] & 0x0f) { case 0: return NV_MEM_TYPE_DDR2; case 1: return NV_MEM_TYPE_DDR3; case 2: return NV_MEM_TYPE_GDDR3; case 3: return NV_MEM_TYPE_GDDR5; default: break; } } } return NV_MEM_TYPE_UNKNOWN; } static int nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long psize) { /* nothing to do */ return 0; } static int nouveau_vram_manager_fini(struct ttm_mem_type_manager *man) { /* nothing to do */ return 0; } static inline void nouveau_mem_node_cleanup(struct nouveau_mem *node) { if (node->vma[0].node) { nouveau_vm_unmap(&node->vma[0]); nouveau_vm_put(&node->vma[0]); } if (node->vma[1].node) { nouveau_vm_unmap(&node->vma[1]); nouveau_vm_put(&node->vma[1]); } } static void nouveau_vram_manager_del(struct ttm_mem_type_manager *man, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); struct nouveau_vram_engine *vram = &dev_priv->engine.vram; struct drm_device *dev = dev_priv->dev; nouveau_mem_node_cleanup(mem->mm_node); vram->put(dev, (struct nouveau_mem **)&mem->mm_node); } static int nouveau_vram_manager_new(struct ttm_mem_type_manager *man, struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev); struct nouveau_vram_engine *vram = &dev_priv->engine.vram; struct drm_device *dev = dev_priv->dev; struct nouveau_bo *nvbo = nouveau_bo(bo); struct nouveau_mem *node; u32 size_nc = 0; int ret; if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) size_nc = 1 << nvbo->page_shift; ret = vram->get(dev, mem->num_pages << PAGE_SHIFT, mem->page_alignment << PAGE_SHIFT, size_nc, (nvbo->tile_flags >> 8) & 0x3ff, &node); if (ret) { mem->mm_node = NULL; return (ret == -ENOSPC) ? 0 : ret; } node->page_shift = nvbo->page_shift; mem->mm_node = node; mem->start = node->offset >> PAGE_SHIFT; return 0; } void nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) { struct nouveau_mm *mm = man->priv; struct nouveau_mm_node *r; u32 total = 0, free = 0; mutex_lock(&mm->mutex); list_for_each_entry(r, &mm->nodes, nl_entry) { printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n", prefix, r->type, ((u64)r->offset << 12), (((u64)r->offset + r->length) << 12)); total += r->length; if (!r->type) free += r->length; } mutex_unlock(&mm->mutex); printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n", prefix, (u64)total << 12, (u64)free << 12); printk(KERN_DEBUG "%s block: 0x%08x\n", prefix, mm->block_size << 12); } const struct ttm_mem_type_manager_func nouveau_vram_manager = { nouveau_vram_manager_init, nouveau_vram_manager_fini, nouveau_vram_manager_new, nouveau_vram_manager_del, nouveau_vram_manager_debug }; static int nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize) { return 0; } static int nouveau_gart_manager_fini(struct ttm_mem_type_manager *man) { return 0; } static void nouveau_gart_manager_del(struct ttm_mem_type_manager *man, struct ttm_mem_reg *mem) { nouveau_mem_node_cleanup(mem->mm_node); kfree(mem->mm_node); mem->mm_node = NULL; } static int nouveau_gart_manager_new(struct ttm_mem_type_manager *man, struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_mem_reg *mem) { struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev); struct nouveau_mem *node; if (unlikely((mem->num_pages << PAGE_SHIFT) >= dev_priv->gart_info.aper_size)) return -ENOMEM; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; node->page_shift = 12; mem->mm_node = node; mem->start = 0; return 0; } void nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix) { } const struct ttm_mem_type_manager_func nouveau_gart_manager = { nouveau_gart_manager_init, nouveau_gart_manager_fini, nouveau_gart_manager_new, nouveau_gart_manager_del, nouveau_gart_manager_debug };