/* * Copyright (C) 2007 Ben Skeggs. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "drm.h" #include "nouveau_drv.h" #include "nouveau_ramht.h" #include "nouveau_grctx.h" static void nv50_graph_init_reset(struct drm_device *dev) { uint32_t pmc_e = NV_PMC_ENABLE_PGRAPH | (1 << 21); NV_DEBUG(dev, "\n"); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) & ~pmc_e); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | pmc_e); } static void nv50_graph_init_intr(struct drm_device *dev) { NV_DEBUG(dev, "\n"); nv_wr32(dev, NV03_PGRAPH_INTR, 0xffffffff); nv_wr32(dev, 0x400138, 0xffffffff); nv_wr32(dev, NV40_PGRAPH_INTR_EN, 0xffffffff); } static void nv50_graph_init_regs__nv(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t units = nv_rd32(dev, 0x1540); int i; NV_DEBUG(dev, "\n"); nv_wr32(dev, 0x400804, 0xc0000000); nv_wr32(dev, 0x406800, 0xc0000000); nv_wr32(dev, 0x400c04, 0xc0000000); nv_wr32(dev, 0x401800, 0xc0000000); nv_wr32(dev, 0x405018, 0xc0000000); nv_wr32(dev, 0x402000, 0xc0000000); for (i = 0; i < 16; i++) { if (units & 1 << i) { if (dev_priv->chipset < 0xa0) { nv_wr32(dev, 0x408900 + (i << 12), 0xc0000000); nv_wr32(dev, 0x408e08 + (i << 12), 0xc0000000); nv_wr32(dev, 0x408314 + (i << 12), 0xc0000000); } else { nv_wr32(dev, 0x408600 + (i << 11), 0xc0000000); nv_wr32(dev, 0x408708 + (i << 11), 0xc0000000); nv_wr32(dev, 0x40831c + (i << 11), 0xc0000000); } } } nv_wr32(dev, 0x400108, 0xffffffff); nv_wr32(dev, 0x400824, 0x00004000); nv_wr32(dev, 0x400500, 0x00010001); } static void nv50_graph_init_regs(struct drm_device *dev) { NV_DEBUG(dev, "\n"); nv_wr32(dev, NV04_PGRAPH_DEBUG_3, (1 << 2) /* HW_CONTEXT_SWITCH_ENABLED */); nv_wr32(dev, 0x402ca8, 0x800); } static int nv50_graph_init_ctxctl(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_grctx ctx = {}; uint32_t *cp; int i; NV_DEBUG(dev, "\n"); cp = kmalloc(512 * 4, GFP_KERNEL); if (!cp) { NV_ERROR(dev, "failed to allocate ctxprog\n"); dev_priv->engine.graph.accel_blocked = true; return 0; } ctx.dev = dev; ctx.mode = NOUVEAU_GRCTX_PROG; ctx.data = cp; ctx.ctxprog_max = 512; if (!nv50_grctx_init(&ctx)) { dev_priv->engine.graph.grctx_size = ctx.ctxvals_pos * 4; nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_INDEX, 0); for (i = 0; i < ctx.ctxprog_len; i++) nv_wr32(dev, NV40_PGRAPH_CTXCTL_UCODE_DATA, cp[i]); } else { dev_priv->engine.graph.accel_blocked = true; } kfree(cp); nv_wr32(dev, 0x400320, 4); nv_wr32(dev, NV40_PGRAPH_CTXCTL_CUR, 0); nv_wr32(dev, NV20_PGRAPH_CHANNEL_CTX_POINTER, 0); return 0; } int nv50_graph_init(struct drm_device *dev) { int ret; NV_DEBUG(dev, "\n"); nv50_graph_init_reset(dev); nv50_graph_init_regs__nv(dev); nv50_graph_init_regs(dev); nv50_graph_init_intr(dev); ret = nv50_graph_init_ctxctl(dev); if (ret) return ret; return 0; } void nv50_graph_takedown(struct drm_device *dev) { NV_DEBUG(dev, "\n"); } void nv50_graph_fifo_access(struct drm_device *dev, bool enabled) { const uint32_t mask = 0x00010001; if (enabled) nv_wr32(dev, 0x400500, nv_rd32(dev, 0x400500) | mask); else nv_wr32(dev, 0x400500, nv_rd32(dev, 0x400500) & ~mask); } struct nouveau_channel * nv50_graph_channel(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t inst; int i; /* Be sure we're not in the middle of a context switch or bad things * will happen, such as unloading the wrong pgraph context. */ if (!nv_wait(dev, 0x400300, 0x00000001, 0x00000000)) NV_ERROR(dev, "Ctxprog is still running\n"); inst = nv_rd32(dev, NV50_PGRAPH_CTXCTL_CUR); if (!(inst & NV50_PGRAPH_CTXCTL_CUR_LOADED)) return NULL; inst = (inst & NV50_PGRAPH_CTXCTL_CUR_INSTANCE) << 12; for (i = 0; i < dev_priv->engine.fifo.channels; i++) { struct nouveau_channel *chan = dev_priv->channels.ptr[i]; if (chan && chan->ramin && chan->ramin->vinst == inst) return chan; } return NULL; } int nv50_graph_create_context(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *ramin = chan->ramin; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; struct nouveau_grctx ctx = {}; int hdr, ret; NV_DEBUG(dev, "ch%d\n", chan->id); ret = nouveau_gpuobj_new(dev, chan, pgraph->grctx_size, 0x1000, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE, &chan->ramin_grctx); if (ret) return ret; hdr = (dev_priv->chipset == 0x50) ? 0x200 : 0x20; nv_wo32(ramin, hdr + 0x00, 0x00190002); nv_wo32(ramin, hdr + 0x04, chan->ramin_grctx->vinst + pgraph->grctx_size - 1); nv_wo32(ramin, hdr + 0x08, chan->ramin_grctx->vinst); nv_wo32(ramin, hdr + 0x0c, 0); nv_wo32(ramin, hdr + 0x10, 0); nv_wo32(ramin, hdr + 0x14, 0x00010000); ctx.dev = chan->dev; ctx.mode = NOUVEAU_GRCTX_VALS; ctx.data = chan->ramin_grctx; nv50_grctx_init(&ctx); nv_wo32(chan->ramin_grctx, 0x00000, chan->ramin->vinst >> 12); dev_priv->engine.instmem.flush(dev); return 0; } void nv50_graph_destroy_context(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; int i, hdr = (dev_priv->chipset == 0x50) ? 0x200 : 0x20; unsigned long flags; NV_DEBUG(dev, "ch%d\n", chan->id); if (!chan->ramin) return; spin_lock_irqsave(&dev_priv->context_switch_lock, flags); pgraph->fifo_access(dev, false); if (pgraph->channel(dev) == chan) pgraph->unload_context(dev); for (i = hdr; i < hdr + 24; i += 4) nv_wo32(chan->ramin, i, 0); dev_priv->engine.instmem.flush(dev); pgraph->fifo_access(dev, true); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); nouveau_gpuobj_ref(NULL, &chan->ramin_grctx); } static int nv50_graph_do_load_context(struct drm_device *dev, uint32_t inst) { uint32_t fifo = nv_rd32(dev, 0x400500); nv_wr32(dev, 0x400500, fifo & ~1); nv_wr32(dev, 0x400784, inst); nv_wr32(dev, 0x400824, nv_rd32(dev, 0x400824) | 0x40); nv_wr32(dev, 0x400320, nv_rd32(dev, 0x400320) | 0x11); nv_wr32(dev, 0x400040, 0xffffffff); (void)nv_rd32(dev, 0x400040); nv_wr32(dev, 0x400040, 0x00000000); nv_wr32(dev, 0x400304, nv_rd32(dev, 0x400304) | 1); if (nouveau_wait_for_idle(dev)) nv_wr32(dev, 0x40032c, inst | (1<<31)); nv_wr32(dev, 0x400500, fifo); return 0; } int nv50_graph_load_context(struct nouveau_channel *chan) { uint32_t inst = chan->ramin->vinst >> 12; NV_DEBUG(chan->dev, "ch%d\n", chan->id); return nv50_graph_do_load_context(chan->dev, inst); } int nv50_graph_unload_context(struct drm_device *dev) { uint32_t inst; inst = nv_rd32(dev, NV50_PGRAPH_CTXCTL_CUR); if (!(inst & NV50_PGRAPH_CTXCTL_CUR_LOADED)) return 0; inst &= NV50_PGRAPH_CTXCTL_CUR_INSTANCE; nouveau_wait_for_idle(dev); nv_wr32(dev, 0x400784, inst); nv_wr32(dev, 0x400824, nv_rd32(dev, 0x400824) | 0x20); nv_wr32(dev, 0x400304, nv_rd32(dev, 0x400304) | 0x01); nouveau_wait_for_idle(dev); nv_wr32(dev, NV50_PGRAPH_CTXCTL_CUR, inst); return 0; } void nv50_graph_context_switch(struct drm_device *dev) { uint32_t inst; nv50_graph_unload_context(dev); inst = nv_rd32(dev, NV50_PGRAPH_CTXCTL_NEXT); inst &= NV50_PGRAPH_CTXCTL_NEXT_INSTANCE; nv50_graph_do_load_context(dev, inst); nv_wr32(dev, NV40_PGRAPH_INTR_EN, nv_rd32(dev, NV40_PGRAPH_INTR_EN) | NV_PGRAPH_INTR_CONTEXT_SWITCH); } static int nv50_graph_nvsw_dma_vblsem(struct nouveau_channel *chan, int grclass, int mthd, uint32_t data) { struct nouveau_gpuobj *gpuobj; gpuobj = nouveau_ramht_find(chan, data); if (!gpuobj) return -ENOENT; if (nouveau_notifier_offset(gpuobj, NULL)) return -EINVAL; chan->nvsw.vblsem = gpuobj; chan->nvsw.vblsem_offset = ~0; return 0; } static int nv50_graph_nvsw_vblsem_offset(struct nouveau_channel *chan, int grclass, int mthd, uint32_t data) { if (nouveau_notifier_offset(chan->nvsw.vblsem, &data)) return -ERANGE; chan->nvsw.vblsem_offset = data >> 2; return 0; } static int nv50_graph_nvsw_vblsem_release_val(struct nouveau_channel *chan, int grclass, int mthd, uint32_t data) { chan->nvsw.vblsem_rval = data; return 0; } static int nv50_graph_nvsw_vblsem_release(struct nouveau_channel *chan, int grclass, int mthd, uint32_t data) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; if (!chan->nvsw.vblsem || chan->nvsw.vblsem_offset == ~0 || data > 1) return -EINVAL; if (!(nv_rd32(dev, NV50_PDISPLAY_INTR_EN) & NV50_PDISPLAY_INTR_EN_VBLANK_CRTC_(data))) { nv_wr32(dev, NV50_PDISPLAY_INTR_1, NV50_PDISPLAY_INTR_1_VBLANK_CRTC_(data)); nv_wr32(dev, NV50_PDISPLAY_INTR_EN, nv_rd32(dev, NV50_PDISPLAY_INTR_EN) | NV50_PDISPLAY_INTR_EN_VBLANK_CRTC_(data)); } list_add(&chan->nvsw.vbl_wait, &dev_priv->vbl_waiting); return 0; } static struct nouveau_pgraph_object_method nv50_graph_nvsw_methods[] = { { 0x018c, nv50_graph_nvsw_dma_vblsem }, { 0x0400, nv50_graph_nvsw_vblsem_offset }, { 0x0404, nv50_graph_nvsw_vblsem_release_val }, { 0x0408, nv50_graph_nvsw_vblsem_release }, {} }; struct nouveau_pgraph_object_class nv50_graph_grclass[] = { { 0x506e, true, nv50_graph_nvsw_methods }, /* nvsw */ { 0x0030, false, NULL }, /* null */ { 0x5039, false, NULL }, /* m2mf */ { 0x502d, false, NULL }, /* 2d */ { 0x50c0, false, NULL }, /* compute */ { 0x85c0, false, NULL }, /* compute (nva3, nva5, nva8) */ { 0x5097, false, NULL }, /* tesla (nv50) */ { 0x8297, false, NULL }, /* tesla (nv8x/nv9x) */ { 0x8397, false, NULL }, /* tesla (nva0, nvaa, nvac) */ { 0x8597, false, NULL }, /* tesla (nva3, nva5, nva8) */ {} }; void nv50_graph_tlb_flush(struct drm_device *dev) { nv50_vm_flush(dev, 0); } void nv86_graph_tlb_flush(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_timer_engine *ptimer = &dev_priv->engine.timer; bool idle, timeout = false; unsigned long flags; u64 start; u32 tmp; spin_lock_irqsave(&dev_priv->context_switch_lock, flags); nv_mask(dev, 0x400500, 0x00000001, 0x00000000); start = ptimer->read(dev); do { idle = true; for (tmp = nv_rd32(dev, 0x400380); tmp && idle; tmp >>= 3) { if ((tmp & 7) == 1) idle = false; } for (tmp = nv_rd32(dev, 0x400384); tmp && idle; tmp >>= 3) { if ((tmp & 7) == 1) idle = false; } for (tmp = nv_rd32(dev, 0x400388); tmp && idle; tmp >>= 3) { if ((tmp & 7) == 1) idle = false; } } while (!idle && !(timeout = ptimer->read(dev) - start > 2000000000)); if (timeout) { NV_ERROR(dev, "PGRAPH TLB flush idle timeout fail: " "0x%08x 0x%08x 0x%08x 0x%08x\n", nv_rd32(dev, 0x400700), nv_rd32(dev, 0x400380), nv_rd32(dev, 0x400384), nv_rd32(dev, 0x400388)); } nv50_vm_flush(dev, 0); nv_mask(dev, 0x400500, 0x00000001, 0x00000001); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); }