/* * Copyright 2009 Marcin Koƛcielnicki * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #define CP_FLAG_CLEAR 0 #define CP_FLAG_SET 1 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0) #define CP_FLAG_SWAP_DIRECTION_LOAD 0 #define CP_FLAG_SWAP_DIRECTION_SAVE 1 #define CP_FLAG_UNK01 ((0 * 32) + 1) #define CP_FLAG_UNK01_CLEAR 0 #define CP_FLAG_UNK01_SET 1 #define CP_FLAG_UNK03 ((0 * 32) + 3) #define CP_FLAG_UNK03_CLEAR 0 #define CP_FLAG_UNK03_SET 1 #define CP_FLAG_USER_SAVE ((0 * 32) + 5) #define CP_FLAG_USER_SAVE_NOT_PENDING 0 #define CP_FLAG_USER_SAVE_PENDING 1 #define CP_FLAG_USER_LOAD ((0 * 32) + 6) #define CP_FLAG_USER_LOAD_NOT_PENDING 0 #define CP_FLAG_USER_LOAD_PENDING 1 #define CP_FLAG_UNK0B ((0 * 32) + 0xb) #define CP_FLAG_UNK0B_CLEAR 0 #define CP_FLAG_UNK0B_SET 1 #define CP_FLAG_UNK1D ((0 * 32) + 0x1d) #define CP_FLAG_UNK1D_CLEAR 0 #define CP_FLAG_UNK1D_SET 1 #define CP_FLAG_UNK20 ((1 * 32) + 0) #define CP_FLAG_UNK20_CLEAR 0 #define CP_FLAG_UNK20_SET 1 #define CP_FLAG_STATUS ((2 * 32) + 0) #define CP_FLAG_STATUS_BUSY 0 #define CP_FLAG_STATUS_IDLE 1 #define CP_FLAG_AUTO_SAVE ((2 * 32) + 4) #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0 #define CP_FLAG_AUTO_SAVE_PENDING 1 #define CP_FLAG_AUTO_LOAD ((2 * 32) + 5) #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0 #define CP_FLAG_AUTO_LOAD_PENDING 1 #define CP_FLAG_NEWCTX ((2 * 32) + 10) #define CP_FLAG_NEWCTX_BUSY 0 #define CP_FLAG_NEWCTX_DONE 1 #define CP_FLAG_XFER ((2 * 32) + 11) #define CP_FLAG_XFER_IDLE 0 #define CP_FLAG_XFER_BUSY 1 #define CP_FLAG_ALWAYS ((2 * 32) + 13) #define CP_FLAG_ALWAYS_FALSE 0 #define CP_FLAG_ALWAYS_TRUE 1 #define CP_FLAG_INTR ((2 * 32) + 15) #define CP_FLAG_INTR_NOT_PENDING 0 #define CP_FLAG_INTR_PENDING 1 #define CP_CTX 0x00100000 #define CP_CTX_COUNT 0x000f0000 #define CP_CTX_COUNT_SHIFT 16 #define CP_CTX_REG 0x00003fff #define CP_LOAD_SR 0x00200000 #define CP_LOAD_SR_VALUE 0x000fffff #define CP_BRA 0x00400000 #define CP_BRA_IP 0x0001ff00 #define CP_BRA_IP_SHIFT 8 #define CP_BRA_IF_CLEAR 0x00000080 #define CP_BRA_FLAG 0x0000007f #define CP_WAIT 0x00500000 #define CP_WAIT_SET 0x00000080 #define CP_WAIT_FLAG 0x0000007f #define CP_SET 0x00700000 #define CP_SET_1 0x00000080 #define CP_SET_FLAG 0x0000007f #define CP_NEWCTX 0x00600004 #define CP_NEXT_TO_SWAP 0x00600005 #define CP_SET_CONTEXT_POINTER 0x00600006 #define CP_SET_XFER_POINTER 0x00600007 #define CP_ENABLE 0x00600009 #define CP_END 0x0060000c #define CP_NEXT_TO_CURRENT 0x0060000d #define CP_DISABLE1 0x0090ffff #define CP_DISABLE2 0x0091ffff #define CP_XFER_1 0x008000ff #define CP_XFER_2 0x008800ff #define CP_SEEK_1 0x00c000ff #define CP_SEEK_2 0x00c800ff #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_grctx.h" /* * This code deals with PGRAPH contexts on NV50 family cards. Like NV40, it's * the GPU itself that does context-switching, but it needs a special * microcode to do it. And it's the driver's task to supply this microcode, * further known as ctxprog, as well as the initial context values, known * as ctxvals. * * Without ctxprog, you cannot switch contexts. Not even in software, since * the majority of context [xfer strands] isn't accessible directly. You're * stuck with a single channel, and you also suffer all the problems resulting * from missing ctxvals, since you cannot load them. * * Without ctxvals, you're stuck with PGRAPH's default context. It's enough to * run 2d operations, but trying to utilise 3d or CUDA will just lock you up, * since you don't have... some sort of needed setup. * * Nouveau will just disable acceleration if not given ctxprog + ctxvals, since * it's too much hassle to handle no-ctxprog as a special case. */ /* * How ctxprogs work. * * The ctxprog is written in its own kind of microcode, with very small and * crappy set of available commands. You upload it to a small [512 insns] * area of memory on PGRAPH, and it'll be run when PFIFO wants PGRAPH to * switch channel. or when the driver explicitely requests it. Stuff visible * to ctxprog consists of: PGRAPH MMIO registers, PGRAPH context strands, * the per-channel context save area in VRAM [known as ctxvals or grctx], * 4 flags registers, a scratch register, two grctx pointers, plus many * random poorly-understood details. * * When ctxprog runs, it's supposed to check what operations are asked of it, * save old context if requested, optionally reset PGRAPH and switch to the * new channel, and load the new context. Context consists of three major * parts: subset of MMIO registers and two "xfer areas". */ /* TODO: * - document unimplemented bits compared to nvidia * - NVAx: make a TP subroutine, use it. * - use 0x4008fc instead of 0x1540? */ enum cp_label { cp_check_load = 1, cp_setup_auto_load, cp_setup_load, cp_setup_save, cp_swap_state, cp_prepare_exit, cp_exit, }; static void nv50_graph_construct_mmio(struct nouveau_grctx *ctx); static void nv50_graph_construct_xfer1(struct nouveau_grctx *ctx); static void nv50_graph_construct_xfer2(struct nouveau_grctx *ctx); /* Main function: construct the ctxprog skeleton, call the other functions. */ int nv50_grctx_init(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; switch (dev_priv->chipset) { case 0x50: case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0x98: case 0xa0: case 0xa5: case 0xa8: case 0xaa: case 0xac: break; default: NV_ERROR(ctx->dev, "I don't know how to make a ctxprog for " "your NV%x card.\n", dev_priv->chipset); NV_ERROR(ctx->dev, "Disabling acceleration. Please contact " "the devs.\n"); return -ENOSYS; } /* decide whether we're loading/unloading the context */ cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save); cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save); cp_name(ctx, cp_check_load); cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load); cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load); cp_bra (ctx, ALWAYS, TRUE, cp_exit); /* setup for context load */ cp_name(ctx, cp_setup_auto_load); cp_out (ctx, CP_DISABLE1); cp_out (ctx, CP_DISABLE2); cp_out (ctx, CP_ENABLE); cp_out (ctx, CP_NEXT_TO_SWAP); cp_set (ctx, UNK01, SET); cp_name(ctx, cp_setup_load); cp_out (ctx, CP_NEWCTX); cp_wait(ctx, NEWCTX, BUSY); cp_set (ctx, UNK1D, CLEAR); cp_set (ctx, SWAP_DIRECTION, LOAD); cp_bra (ctx, UNK0B, SET, cp_prepare_exit); cp_bra (ctx, ALWAYS, TRUE, cp_swap_state); /* setup for context save */ cp_name(ctx, cp_setup_save); cp_set (ctx, UNK1D, SET); cp_wait(ctx, STATUS, BUSY); cp_wait(ctx, INTR, PENDING); cp_bra (ctx, STATUS, BUSY, cp_setup_save); cp_set (ctx, UNK01, SET); cp_set (ctx, SWAP_DIRECTION, SAVE); /* general PGRAPH state */ cp_name(ctx, cp_swap_state); cp_set (ctx, UNK03, SET); cp_pos (ctx, 0x00004/4); cp_ctx (ctx, 0x400828, 1); /* needed. otherwise, flickering happens. */ cp_pos (ctx, 0x00100/4); nv50_graph_construct_mmio(ctx); nv50_graph_construct_xfer1(ctx); nv50_graph_construct_xfer2(ctx); cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load); cp_set (ctx, UNK20, SET); cp_set (ctx, SWAP_DIRECTION, SAVE); /* no idea why this is needed, but fixes at least one lockup. */ cp_lsr (ctx, ctx->ctxvals_base); cp_out (ctx, CP_SET_XFER_POINTER); cp_lsr (ctx, 4); cp_out (ctx, CP_SEEK_1); cp_out (ctx, CP_XFER_1); cp_wait(ctx, XFER, BUSY); /* pre-exit state updates */ cp_name(ctx, cp_prepare_exit); cp_set (ctx, UNK01, CLEAR); cp_set (ctx, UNK03, CLEAR); cp_set (ctx, UNK1D, CLEAR); cp_bra (ctx, USER_SAVE, PENDING, cp_exit); cp_out (ctx, CP_NEXT_TO_CURRENT); cp_name(ctx, cp_exit); cp_set (ctx, USER_SAVE, NOT_PENDING); cp_set (ctx, USER_LOAD, NOT_PENDING); cp_out (ctx, CP_END); ctx->ctxvals_pos += 0x400; /* padding... no idea why you need it */ return 0; } /* * Constructs MMIO part of ctxprog and ctxvals. Just a matter of knowing which * registers to save/restore and the default values for them. */ static void nv50_graph_construct_mmio(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int i, j; int offset, base; uint32_t units = nv_rd32 (ctx->dev, 0x1540); /* 0800: DISPATCH */ cp_ctx(ctx, 0x400808, 7); gr_def(ctx, 0x400814, 0x00000030); cp_ctx(ctx, 0x400834, 0x32); if (dev_priv->chipset == 0x50) { gr_def(ctx, 0x400834, 0xff400040); gr_def(ctx, 0x400838, 0xfff00080); gr_def(ctx, 0x40083c, 0xfff70090); gr_def(ctx, 0x400840, 0xffe806a8); } gr_def(ctx, 0x400844, 0x00000002); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) gr_def(ctx, 0x400894, 0x00001000); gr_def(ctx, 0x4008e8, 0x00000003); gr_def(ctx, 0x4008ec, 0x00001000); if (dev_priv->chipset == 0x50) cp_ctx(ctx, 0x400908, 0xb); else if (dev_priv->chipset < 0xa0) cp_ctx(ctx, 0x400908, 0xc); else cp_ctx(ctx, 0x400908, 0xe); if (dev_priv->chipset >= 0xa0) cp_ctx(ctx, 0x400b00, 0x1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { cp_ctx(ctx, 0x400b10, 0x1); gr_def(ctx, 0x400b10, 0x0001629d); cp_ctx(ctx, 0x400b20, 0x1); gr_def(ctx, 0x400b20, 0x0001629d); } /* 0C00: VFETCH */ cp_ctx(ctx, 0x400c08, 0x2); gr_def(ctx, 0x400c08, 0x0000fe0c); /* 1000 */ if (dev_priv->chipset < 0xa0) { cp_ctx(ctx, 0x401008, 0x4); gr_def(ctx, 0x401014, 0x00001000); } else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa) { cp_ctx(ctx, 0x401008, 0x5); gr_def(ctx, 0x401018, 0x00001000); } else { cp_ctx(ctx, 0x401008, 0x5); gr_def(ctx, 0x401018, 0x00004000); } /* 1400 */ cp_ctx(ctx, 0x401400, 0x8); cp_ctx(ctx, 0x401424, 0x3); if (dev_priv->chipset == 0x50) gr_def(ctx, 0x40142c, 0x0001fd87); else gr_def(ctx, 0x40142c, 0x00000187); cp_ctx(ctx, 0x401540, 0x5); gr_def(ctx, 0x401550, 0x00001018); /* 1800: STREAMOUT */ cp_ctx(ctx, 0x401814, 0x1); gr_def(ctx, 0x401814, 0x000000ff); if (dev_priv->chipset == 0x50) { cp_ctx(ctx, 0x40181c, 0xe); gr_def(ctx, 0x401850, 0x00000004); } else if (dev_priv->chipset < 0xa0) { cp_ctx(ctx, 0x40181c, 0xf); gr_def(ctx, 0x401854, 0x00000004); } else { cp_ctx(ctx, 0x40181c, 0x13); gr_def(ctx, 0x401864, 0x00000004); } /* 1C00 */ cp_ctx(ctx, 0x401c00, 0x1); switch (dev_priv->chipset) { case 0x50: gr_def(ctx, 0x401c00, 0x0001005f); break; case 0x84: case 0x86: case 0x94: gr_def(ctx, 0x401c00, 0x044d00df); break; case 0x92: case 0x96: case 0x98: case 0xa0: case 0xaa: case 0xac: gr_def(ctx, 0x401c00, 0x042500df); break; case 0xa5: case 0xa8: gr_def(ctx, 0x401c00, 0x142500df); break; } /* 2400 */ cp_ctx(ctx, 0x402400, 0x1); if (dev_priv->chipset == 0x50) cp_ctx(ctx, 0x402408, 0x1); else cp_ctx(ctx, 0x402408, 0x2); gr_def(ctx, 0x402408, 0x00000600); /* 2800 */ cp_ctx(ctx, 0x402800, 0x1); if (dev_priv->chipset == 0x50) gr_def(ctx, 0x402800, 0x00000006); /* 2C00 */ cp_ctx(ctx, 0x402c08, 0x6); if (dev_priv->chipset != 0x50) gr_def(ctx, 0x402c14, 0x01000000); gr_def(ctx, 0x402c18, 0x000000ff); if (dev_priv->chipset == 0x50) cp_ctx(ctx, 0x402ca0, 0x1); else cp_ctx(ctx, 0x402ca0, 0x2); if (dev_priv->chipset < 0xa0) gr_def(ctx, 0x402ca0, 0x00000400); else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa) gr_def(ctx, 0x402ca0, 0x00000800); else gr_def(ctx, 0x402ca0, 0x00000400); cp_ctx(ctx, 0x402cac, 0x4); /* 3000 */ cp_ctx(ctx, 0x403004, 0x1); gr_def(ctx, 0x403004, 0x00000001); /* 3404 */ if (dev_priv->chipset >= 0xa0) { cp_ctx(ctx, 0x403404, 0x1); gr_def(ctx, 0x403404, 0x00000001); } /* 5000 */ cp_ctx(ctx, 0x405000, 0x1); switch (dev_priv->chipset) { case 0x50: gr_def(ctx, 0x405000, 0x00300080); break; case 0x84: case 0xa0: case 0xa5: case 0xa8: case 0xaa: case 0xac: gr_def(ctx, 0x405000, 0x000e0080); break; case 0x86: case 0x92: case 0x94: case 0x96: case 0x98: gr_def(ctx, 0x405000, 0x00000080); break; } cp_ctx(ctx, 0x405014, 0x1); gr_def(ctx, 0x405014, 0x00000004); cp_ctx(ctx, 0x40501c, 0x1); cp_ctx(ctx, 0x405024, 0x1); cp_ctx(ctx, 0x40502c, 0x1); /* 5400 or maybe 4800 */ if (dev_priv->chipset == 0x50) { offset = 0x405400; cp_ctx(ctx, 0x405400, 0xea); } else if (dev_priv->chipset < 0x94) { offset = 0x405400; cp_ctx(ctx, 0x405400, 0xcb); } else if (dev_priv->chipset < 0xa0) { offset = 0x405400; cp_ctx(ctx, 0x405400, 0xcc); } else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { offset = 0x404800; cp_ctx(ctx, 0x404800, 0xda); } else { offset = 0x405400; cp_ctx(ctx, 0x405400, 0xd4); } gr_def(ctx, offset + 0x0c, 0x00000002); gr_def(ctx, offset + 0x10, 0x00000001); if (dev_priv->chipset >= 0x94) offset += 4; gr_def(ctx, offset + 0x1c, 0x00000001); gr_def(ctx, offset + 0x20, 0x00000100); gr_def(ctx, offset + 0x38, 0x00000002); gr_def(ctx, offset + 0x3c, 0x00000001); gr_def(ctx, offset + 0x40, 0x00000001); gr_def(ctx, offset + 0x50, 0x00000001); gr_def(ctx, offset + 0x54, 0x003fffff); gr_def(ctx, offset + 0x58, 0x00001fff); gr_def(ctx, offset + 0x60, 0x00000001); gr_def(ctx, offset + 0x64, 0x00000001); gr_def(ctx, offset + 0x6c, 0x00000001); gr_def(ctx, offset + 0x70, 0x00000001); gr_def(ctx, offset + 0x74, 0x00000001); gr_def(ctx, offset + 0x78, 0x00000004); gr_def(ctx, offset + 0x7c, 0x00000001); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) offset += 4; gr_def(ctx, offset + 0x80, 0x00000001); gr_def(ctx, offset + 0x84, 0x00000001); gr_def(ctx, offset + 0x88, 0x00000007); gr_def(ctx, offset + 0x8c, 0x00000001); gr_def(ctx, offset + 0x90, 0x00000007); gr_def(ctx, offset + 0x94, 0x00000001); gr_def(ctx, offset + 0x98, 0x00000001); gr_def(ctx, offset + 0x9c, 0x00000001); if (dev_priv->chipset == 0x50) { gr_def(ctx, offset + 0xb0, 0x00000001); gr_def(ctx, offset + 0xb4, 0x00000001); gr_def(ctx, offset + 0xbc, 0x00000001); gr_def(ctx, offset + 0xc0, 0x0000000a); gr_def(ctx, offset + 0xd0, 0x00000040); gr_def(ctx, offset + 0xd8, 0x00000002); gr_def(ctx, offset + 0xdc, 0x00000100); gr_def(ctx, offset + 0xe0, 0x00000001); gr_def(ctx, offset + 0xe4, 0x00000100); gr_def(ctx, offset + 0x100, 0x00000001); gr_def(ctx, offset + 0x124, 0x00000004); gr_def(ctx, offset + 0x13c, 0x00000001); gr_def(ctx, offset + 0x140, 0x00000100); gr_def(ctx, offset + 0x148, 0x00000001); gr_def(ctx, offset + 0x154, 0x00000100); gr_def(ctx, offset + 0x158, 0x00000001); gr_def(ctx, offset + 0x15c, 0x00000100); gr_def(ctx, offset + 0x164, 0x00000001); gr_def(ctx, offset + 0x170, 0x00000100); gr_def(ctx, offset + 0x174, 0x00000001); gr_def(ctx, offset + 0x17c, 0x00000001); gr_def(ctx, offset + 0x188, 0x00000002); gr_def(ctx, offset + 0x190, 0x00000001); gr_def(ctx, offset + 0x198, 0x00000001); gr_def(ctx, offset + 0x1ac, 0x00000003); offset += 0xd0; } else { gr_def(ctx, offset + 0xb0, 0x00000001); gr_def(ctx, offset + 0xb4, 0x00000100); gr_def(ctx, offset + 0xbc, 0x00000001); gr_def(ctx, offset + 0xc8, 0x00000100); gr_def(ctx, offset + 0xcc, 0x00000001); gr_def(ctx, offset + 0xd0, 0x00000100); gr_def(ctx, offset + 0xd8, 0x00000001); gr_def(ctx, offset + 0xe4, 0x00000100); } gr_def(ctx, offset + 0xf8, 0x00000004); gr_def(ctx, offset + 0xfc, 0x00000070); gr_def(ctx, offset + 0x100, 0x00000080); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) offset += 4; gr_def(ctx, offset + 0x114, 0x0000000c); if (dev_priv->chipset == 0x50) offset -= 4; gr_def(ctx, offset + 0x11c, 0x00000008); gr_def(ctx, offset + 0x120, 0x00000014); if (dev_priv->chipset == 0x50) { gr_def(ctx, offset + 0x124, 0x00000026); offset -= 0x18; } else { gr_def(ctx, offset + 0x128, 0x00000029); gr_def(ctx, offset + 0x12c, 0x00000027); gr_def(ctx, offset + 0x130, 0x00000026); gr_def(ctx, offset + 0x134, 0x00000008); gr_def(ctx, offset + 0x138, 0x00000004); gr_def(ctx, offset + 0x13c, 0x00000027); } gr_def(ctx, offset + 0x148, 0x00000001); gr_def(ctx, offset + 0x14c, 0x00000002); gr_def(ctx, offset + 0x150, 0x00000003); gr_def(ctx, offset + 0x154, 0x00000004); gr_def(ctx, offset + 0x158, 0x00000005); gr_def(ctx, offset + 0x15c, 0x00000006); gr_def(ctx, offset + 0x160, 0x00000007); gr_def(ctx, offset + 0x164, 0x00000001); gr_def(ctx, offset + 0x1a8, 0x000000cf); if (dev_priv->chipset == 0x50) offset -= 4; gr_def(ctx, offset + 0x1d8, 0x00000080); gr_def(ctx, offset + 0x1dc, 0x00000004); gr_def(ctx, offset + 0x1e0, 0x00000004); if (dev_priv->chipset == 0x50) offset -= 4; else gr_def(ctx, offset + 0x1e4, 0x00000003); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { gr_def(ctx, offset + 0x1ec, 0x00000003); offset += 8; } gr_def(ctx, offset + 0x1e8, 0x00000001); if (dev_priv->chipset == 0x50) offset -= 4; gr_def(ctx, offset + 0x1f4, 0x00000012); gr_def(ctx, offset + 0x1f8, 0x00000010); gr_def(ctx, offset + 0x1fc, 0x0000000c); gr_def(ctx, offset + 0x200, 0x00000001); gr_def(ctx, offset + 0x210, 0x00000004); gr_def(ctx, offset + 0x214, 0x00000002); gr_def(ctx, offset + 0x218, 0x00000004); if (dev_priv->chipset >= 0xa0) offset += 4; gr_def(ctx, offset + 0x224, 0x003fffff); gr_def(ctx, offset + 0x228, 0x00001fff); if (dev_priv->chipset == 0x50) offset -= 0x20; else if (dev_priv->chipset >= 0xa0) { gr_def(ctx, offset + 0x250, 0x00000001); gr_def(ctx, offset + 0x254, 0x00000001); gr_def(ctx, offset + 0x258, 0x00000002); offset += 0x10; } gr_def(ctx, offset + 0x250, 0x00000004); gr_def(ctx, offset + 0x254, 0x00000014); gr_def(ctx, offset + 0x258, 0x00000001); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) offset += 4; gr_def(ctx, offset + 0x264, 0x00000002); if (dev_priv->chipset >= 0xa0) offset += 8; gr_def(ctx, offset + 0x270, 0x00000001); gr_def(ctx, offset + 0x278, 0x00000002); gr_def(ctx, offset + 0x27c, 0x00001000); if (dev_priv->chipset == 0x50) offset -= 0xc; else { gr_def(ctx, offset + 0x280, 0x00000e00); gr_def(ctx, offset + 0x284, 0x00001000); gr_def(ctx, offset + 0x288, 0x00001e00); } gr_def(ctx, offset + 0x290, 0x00000001); gr_def(ctx, offset + 0x294, 0x00000001); gr_def(ctx, offset + 0x298, 0x00000001); gr_def(ctx, offset + 0x29c, 0x00000001); gr_def(ctx, offset + 0x2a0, 0x00000001); gr_def(ctx, offset + 0x2b0, 0x00000200); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { gr_def(ctx, offset + 0x2b4, 0x00000200); offset += 4; } if (dev_priv->chipset < 0xa0) { gr_def(ctx, offset + 0x2b8, 0x00000001); gr_def(ctx, offset + 0x2bc, 0x00000070); gr_def(ctx, offset + 0x2c0, 0x00000080); gr_def(ctx, offset + 0x2cc, 0x00000001); gr_def(ctx, offset + 0x2d0, 0x00000070); gr_def(ctx, offset + 0x2d4, 0x00000080); } else { gr_def(ctx, offset + 0x2b8, 0x00000001); gr_def(ctx, offset + 0x2bc, 0x000000f0); gr_def(ctx, offset + 0x2c0, 0x000000ff); gr_def(ctx, offset + 0x2cc, 0x00000001); gr_def(ctx, offset + 0x2d0, 0x000000f0); gr_def(ctx, offset + 0x2d4, 0x000000ff); gr_def(ctx, offset + 0x2dc, 0x00000009); offset += 4; } gr_def(ctx, offset + 0x2e4, 0x00000001); gr_def(ctx, offset + 0x2e8, 0x000000cf); gr_def(ctx, offset + 0x2f0, 0x00000001); gr_def(ctx, offset + 0x300, 0x000000cf); gr_def(ctx, offset + 0x308, 0x00000002); gr_def(ctx, offset + 0x310, 0x00000001); gr_def(ctx, offset + 0x318, 0x00000001); gr_def(ctx, offset + 0x320, 0x000000cf); gr_def(ctx, offset + 0x324, 0x000000cf); gr_def(ctx, offset + 0x328, 0x00000001); /* 6000? */ if (dev_priv->chipset == 0x50) cp_ctx(ctx, 0x4063e0, 0x1); /* 6800: M2MF */ if (dev_priv->chipset < 0x90) { cp_ctx(ctx, 0x406814, 0x2b); gr_def(ctx, 0x406818, 0x00000f80); gr_def(ctx, 0x406860, 0x007f0080); gr_def(ctx, 0x40689c, 0x007f0080); } else { cp_ctx(ctx, 0x406814, 0x4); if (dev_priv->chipset == 0x98) gr_def(ctx, 0x406818, 0x00000f80); else gr_def(ctx, 0x406818, 0x00001f80); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) gr_def(ctx, 0x40681c, 0x00000030); cp_ctx(ctx, 0x406830, 0x3); } /* 7000: per-ROP group state */ for (i = 0; i < 8; i++) { if (units & (1<<(i+16))) { cp_ctx(ctx, 0x407000 + (i<<8), 3); if (dev_priv->chipset == 0x50) gr_def(ctx, 0x407000 + (i<<8), 0x1b74f820); else if (dev_priv->chipset != 0xa5) gr_def(ctx, 0x407000 + (i<<8), 0x3b74f821); else gr_def(ctx, 0x407000 + (i<<8), 0x7b74f821); gr_def(ctx, 0x407004 + (i<<8), 0x89058001); if (dev_priv->chipset == 0x50) { cp_ctx(ctx, 0x407010 + (i<<8), 1); } else if (dev_priv->chipset < 0xa0) { cp_ctx(ctx, 0x407010 + (i<<8), 2); gr_def(ctx, 0x407010 + (i<<8), 0x00001000); gr_def(ctx, 0x407014 + (i<<8), 0x0000001f); } else { cp_ctx(ctx, 0x407010 + (i<<8), 3); gr_def(ctx, 0x407010 + (i<<8), 0x00001000); if (dev_priv->chipset != 0xa5) gr_def(ctx, 0x407014 + (i<<8), 0x000000ff); else gr_def(ctx, 0x407014 + (i<<8), 0x000001ff); } cp_ctx(ctx, 0x407080 + (i<<8), 4); if (dev_priv->chipset != 0xa5) gr_def(ctx, 0x407080 + (i<<8), 0x027c10fa); else gr_def(ctx, 0x407080 + (i<<8), 0x827c10fa); if (dev_priv->chipset == 0x50) gr_def(ctx, 0x407084 + (i<<8), 0x000000c0); else gr_def(ctx, 0x407084 + (i<<8), 0x400000c0); gr_def(ctx, 0x407088 + (i<<8), 0xb7892080); if (dev_priv->chipset < 0xa0) cp_ctx(ctx, 0x407094 + (i<<8), 1); else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) cp_ctx(ctx, 0x407094 + (i<<8), 3); else { cp_ctx(ctx, 0x407094 + (i<<8), 4); gr_def(ctx, 0x4070a0 + (i<<8), 1); } } } cp_ctx(ctx, 0x407c00, 0x3); if (dev_priv->chipset < 0x90) gr_def(ctx, 0x407c00, 0x00010040); else if (dev_priv->chipset < 0xa0) gr_def(ctx, 0x407c00, 0x00390040); else gr_def(ctx, 0x407c00, 0x003d0040); gr_def(ctx, 0x407c08, 0x00000022); if (dev_priv->chipset >= 0xa0) { cp_ctx(ctx, 0x407c10, 0x3); cp_ctx(ctx, 0x407c20, 0x1); cp_ctx(ctx, 0x407c2c, 0x1); } if (dev_priv->chipset < 0xa0) { cp_ctx(ctx, 0x407d00, 0x9); } else { cp_ctx(ctx, 0x407d00, 0x15); } if (dev_priv->chipset == 0x98) gr_def(ctx, 0x407d08, 0x00380040); else { if (dev_priv->chipset < 0x90) gr_def(ctx, 0x407d08, 0x00010040); else if (dev_priv->chipset < 0xa0) gr_def(ctx, 0x407d08, 0x00390040); else gr_def(ctx, 0x407d08, 0x003d0040); gr_def(ctx, 0x407d0c, 0x00000022); } /* 8000+: per-TP state */ for (i = 0; i < 10; i++) { if (units & (1<chipset < 0xa0) base = 0x408000 + (i<<12); else base = 0x408000 + (i<<11); if (dev_priv->chipset < 0xa0) offset = base + 0xc00; else offset = base + 0x80; cp_ctx(ctx, offset + 0x00, 1); gr_def(ctx, offset + 0x00, 0x0000ff0a); cp_ctx(ctx, offset + 0x08, 1); /* per-MP state */ for (j = 0; j < (dev_priv->chipset < 0xa0 ? 2 : 4); j++) { if (!(units & (1 << (j+24)))) continue; if (dev_priv->chipset < 0xa0) offset = base + 0x200 + (j<<7); else offset = base + 0x100 + (j<<7); cp_ctx(ctx, offset, 0x20); gr_def(ctx, offset + 0x00, 0x01800000); gr_def(ctx, offset + 0x04, 0x00160000); gr_def(ctx, offset + 0x08, 0x01800000); gr_def(ctx, offset + 0x18, 0x0003ffff); switch (dev_priv->chipset) { case 0x50: gr_def(ctx, offset + 0x1c, 0x00080000); break; case 0x84: gr_def(ctx, offset + 0x1c, 0x00880000); break; case 0x86: gr_def(ctx, offset + 0x1c, 0x008c0000); break; case 0x92: case 0x96: case 0x98: gr_def(ctx, offset + 0x1c, 0x118c0000); break; case 0x94: gr_def(ctx, offset + 0x1c, 0x10880000); break; case 0xa0: case 0xa5: gr_def(ctx, offset + 0x1c, 0x310c0000); break; case 0xa8: case 0xaa: case 0xac: gr_def(ctx, offset + 0x1c, 0x300c0000); break; } gr_def(ctx, offset + 0x40, 0x00010401); if (dev_priv->chipset == 0x50) gr_def(ctx, offset + 0x48, 0x00000040); else gr_def(ctx, offset + 0x48, 0x00000078); gr_def(ctx, offset + 0x50, 0x000000bf); gr_def(ctx, offset + 0x58, 0x00001210); if (dev_priv->chipset == 0x50) gr_def(ctx, offset + 0x5c, 0x00000080); else gr_def(ctx, offset + 0x5c, 0x08000080); if (dev_priv->chipset >= 0xa0) gr_def(ctx, offset + 0x68, 0x0000003e); } if (dev_priv->chipset < 0xa0) cp_ctx(ctx, base + 0x300, 0x4); else cp_ctx(ctx, base + 0x300, 0x5); if (dev_priv->chipset == 0x50) gr_def(ctx, base + 0x304, 0x00007070); else if (dev_priv->chipset < 0xa0) gr_def(ctx, base + 0x304, 0x00027070); else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) gr_def(ctx, base + 0x304, 0x01127070); else gr_def(ctx, base + 0x304, 0x05127070); if (dev_priv->chipset < 0xa0) cp_ctx(ctx, base + 0x318, 1); else cp_ctx(ctx, base + 0x320, 1); if (dev_priv->chipset == 0x50) gr_def(ctx, base + 0x318, 0x0003ffff); else if (dev_priv->chipset < 0xa0) gr_def(ctx, base + 0x318, 0x03ffffff); else gr_def(ctx, base + 0x320, 0x07ffffff); if (dev_priv->chipset < 0xa0) cp_ctx(ctx, base + 0x324, 5); else cp_ctx(ctx, base + 0x328, 4); if (dev_priv->chipset < 0xa0) { cp_ctx(ctx, base + 0x340, 9); offset = base + 0x340; } else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) { cp_ctx(ctx, base + 0x33c, 0xb); offset = base + 0x344; } else { cp_ctx(ctx, base + 0x33c, 0xd); offset = base + 0x344; } gr_def(ctx, offset + 0x0, 0x00120407); gr_def(ctx, offset + 0x4, 0x05091507); if (dev_priv->chipset == 0x84) gr_def(ctx, offset + 0x8, 0x05100202); else gr_def(ctx, offset + 0x8, 0x05010202); gr_def(ctx, offset + 0xc, 0x00030201); cp_ctx(ctx, base + 0x400, 2); gr_def(ctx, base + 0x404, 0x00000040); cp_ctx(ctx, base + 0x40c, 2); gr_def(ctx, base + 0x40c, 0x0d0c0b0a); gr_def(ctx, base + 0x410, 0x00141210); if (dev_priv->chipset < 0xa0) offset = base + 0x800; else offset = base + 0x500; cp_ctx(ctx, offset, 6); gr_def(ctx, offset + 0x0, 0x000001f0); gr_def(ctx, offset + 0x4, 0x00000001); gr_def(ctx, offset + 0x8, 0x00000003); if (dev_priv->chipset == 0x50 || dev_priv->chipset >= 0xaa) gr_def(ctx, offset + 0xc, 0x00008000); gr_def(ctx, offset + 0x14, 0x00039e00); cp_ctx(ctx, offset + 0x1c, 2); if (dev_priv->chipset == 0x50) gr_def(ctx, offset + 0x1c, 0x00000040); else gr_def(ctx, offset + 0x1c, 0x00000100); gr_def(ctx, offset + 0x20, 0x00003800); if (dev_priv->chipset >= 0xa0) { cp_ctx(ctx, base + 0x54c, 2); if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) gr_def(ctx, base + 0x54c, 0x003fe006); else gr_def(ctx, base + 0x54c, 0x003fe007); gr_def(ctx, base + 0x550, 0x003fe000); } if (dev_priv->chipset < 0xa0) offset = base + 0xa00; else offset = base + 0x680; cp_ctx(ctx, offset, 1); gr_def(ctx, offset, 0x00404040); if (dev_priv->chipset < 0xa0) offset = base + 0xe00; else offset = base + 0x700; cp_ctx(ctx, offset, 2); if (dev_priv->chipset < 0xa0) gr_def(ctx, offset, 0x0077f005); else if (dev_priv->chipset == 0xa5) gr_def(ctx, offset, 0x6cf7f007); else if (dev_priv->chipset == 0xa8) gr_def(ctx, offset, 0x6cfff007); else if (dev_priv->chipset == 0xac) gr_def(ctx, offset, 0x0cfff007); else gr_def(ctx, offset, 0x0cf7f007); if (dev_priv->chipset == 0x50) gr_def(ctx, offset + 0x4, 0x00007fff); else if (dev_priv->chipset < 0xa0) gr_def(ctx, offset + 0x4, 0x003f7fff); else gr_def(ctx, offset + 0x4, 0x02bf7fff); cp_ctx(ctx, offset + 0x2c, 1); if (dev_priv->chipset == 0x50) { cp_ctx(ctx, offset + 0x50, 9); gr_def(ctx, offset + 0x54, 0x000003ff); gr_def(ctx, offset + 0x58, 0x00000003); gr_def(ctx, offset + 0x5c, 0x00000003); gr_def(ctx, offset + 0x60, 0x000001ff); gr_def(ctx, offset + 0x64, 0x0000001f); gr_def(ctx, offset + 0x68, 0x0000000f); gr_def(ctx, offset + 0x6c, 0x0000000f); } else if(dev_priv->chipset < 0xa0) { cp_ctx(ctx, offset + 0x50, 1); cp_ctx(ctx, offset + 0x70, 1); } else { cp_ctx(ctx, offset + 0x50, 1); cp_ctx(ctx, offset + 0x60, 5); } } } } /* * xfer areas. These are a pain. * * There are 2 xfer areas: the first one is big and contains all sorts of * stuff, the second is small and contains some per-TP context. * * Each area is split into 8 "strands". The areas, when saved to grctx, * are made of 8-word blocks. Each block contains a single word from * each strand. The strands are independent of each other, their * addresses are unrelated to each other, and data in them is closely * packed together. The strand layout varies a bit between cards: here * and there, a single word is thrown out in the middle and the whole * strand is offset by a bit from corresponding one on another chipset. * For this reason, addresses of stuff in strands are almost useless. * Knowing sequence of stuff and size of gaps between them is much more * useful, and that's how we build the strands in our generator. * * NVA0 takes this mess to a whole new level by cutting the old strands * into a few dozen pieces [known as genes], rearranging them randomly, * and putting them back together to make new strands. Hopefully these * genes correspond more or less directly to the same PGRAPH subunits * as in 400040 register. * * The most common value in default context is 0, and when the genes * are separated by 0's, gene bounduaries are quite speculative... * some of them can be clearly deduced, others can be guessed, and yet * others won't be resolved without figuring out the real meaning of * given ctxval. For the same reason, ending point of each strand * is unknown. Except for strand 0, which is the longest strand and * its end corresponds to end of the whole xfer. * * An unsolved mystery is the seek instruction: it takes an argument * in bits 8-18, and that argument is clearly the place in strands to * seek to... but the offsets don't seem to correspond to offsets as * seen in grctx. Perhaps there's another, real, not randomly-changing * addressing in strands, and the xfer insn just happens to skip over * the unused bits? NV10-NV30 PIPE comes to mind... * * As far as I know, there's no way to access the xfer areas directly * without the help of ctxprog. */ static inline void xf_emit(struct nouveau_grctx *ctx, int num, uint32_t val) { int i; if (val && ctx->mode == NOUVEAU_GRCTX_VALS) for (i = 0; i < num; i++) nv_wo32(ctx->dev, ctx->data, ctx->ctxvals_pos + (i << 3), val); ctx->ctxvals_pos += num << 3; } /* Gene declarations... */ static void nv50_graph_construct_gene_m2mf(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk1(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk2(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk3(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk4(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk5(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk6(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk7(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk8(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk9(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_unk10(struct nouveau_grctx *ctx); static void nv50_graph_construct_gene_ropc(struct nouveau_grctx *ctx); static void nv50_graph_construct_xfer_tp(struct nouveau_grctx *ctx); static void nv50_graph_construct_xfer1(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int i; int offset; int size = 0; uint32_t units = nv_rd32 (ctx->dev, 0x1540); offset = (ctx->ctxvals_pos+0x3f)&~0x3f; ctx->ctxvals_base = offset; if (dev_priv->chipset < 0xa0) { /* Strand 0 */ ctx->ctxvals_pos = offset; switch (dev_priv->chipset) { case 0x50: xf_emit(ctx, 0x99, 0); break; case 0x84: case 0x86: xf_emit(ctx, 0x384, 0); break; case 0x92: case 0x94: case 0x96: case 0x98: xf_emit(ctx, 0x380, 0); break; } nv50_graph_construct_gene_m2mf (ctx); switch (dev_priv->chipset) { case 0x50: case 0x84: case 0x86: case 0x98: xf_emit(ctx, 0x4c4, 0); break; case 0x92: case 0x94: case 0x96: xf_emit(ctx, 0x984, 0); break; } nv50_graph_construct_gene_unk5(ctx); if (dev_priv->chipset == 0x50) xf_emit(ctx, 0xa, 0); else xf_emit(ctx, 0xb, 0); nv50_graph_construct_gene_unk4(ctx); nv50_graph_construct_gene_unk3(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 1 */ ctx->ctxvals_pos = offset + 0x1; nv50_graph_construct_gene_unk6(ctx); nv50_graph_construct_gene_unk7(ctx); nv50_graph_construct_gene_unk8(ctx); switch (dev_priv->chipset) { case 0x50: case 0x92: xf_emit(ctx, 0xfb, 0); break; case 0x84: xf_emit(ctx, 0xd3, 0); break; case 0x94: case 0x96: xf_emit(ctx, 0xab, 0); break; case 0x86: case 0x98: xf_emit(ctx, 0x6b, 0); break; } xf_emit(ctx, 2, 0x4e3bfdf); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 0xb, 0); xf_emit(ctx, 2, 0x4e3bfdf); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 2 */ ctx->ctxvals_pos = offset + 0x2; switch (dev_priv->chipset) { case 0x50: case 0x92: xf_emit(ctx, 0xa80, 0); break; case 0x84: xf_emit(ctx, 0xa7e, 0); break; case 0x94: case 0x96: xf_emit(ctx, 0xa7c, 0); break; case 0x86: case 0x98: xf_emit(ctx, 0xa7a, 0); break; } xf_emit(ctx, 1, 0x3fffff); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x1fff); xf_emit(ctx, 0xe, 0); nv50_graph_construct_gene_unk9(ctx); nv50_graph_construct_gene_unk2(ctx); nv50_graph_construct_gene_unk1(ctx); nv50_graph_construct_gene_unk10(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 3: per-ROP group state */ ctx->ctxvals_pos = offset + 3; for (i = 0; i < 6; i++) if (units & (1 << (i + 16))) nv50_graph_construct_gene_ropc(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strands 4-7: per-TP state */ for (i = 0; i < 4; i++) { ctx->ctxvals_pos = offset + 4 + i; if (units & (1 << (2 * i))) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << (2 * i + 1))) nv50_graph_construct_xfer_tp(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; } } else { /* Strand 0 */ ctx->ctxvals_pos = offset; if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x385, 0); else xf_emit(ctx, 0x384, 0); nv50_graph_construct_gene_m2mf(ctx); xf_emit(ctx, 0x950, 0); nv50_graph_construct_gene_unk10(ctx); xf_emit(ctx, 1, 0x0fac6881); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 1, 1); xf_emit(ctx, 3, 0); } nv50_graph_construct_gene_unk8(ctx); if (dev_priv->chipset == 0xa0) xf_emit(ctx, 0x189, 0); else if (dev_priv->chipset < 0xa8) xf_emit(ctx, 0x99, 0); else if (dev_priv->chipset == 0xaa) xf_emit(ctx, 0x65, 0); else xf_emit(ctx, 0x6d, 0); nv50_graph_construct_gene_unk9(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 1 */ ctx->ctxvals_pos = offset + 1; nv50_graph_construct_gene_unk1(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 2 */ ctx->ctxvals_pos = offset + 2; if (dev_priv->chipset == 0xa0) { nv50_graph_construct_gene_unk2(ctx); } xf_emit(ctx, 0x36, 0); nv50_graph_construct_gene_unk5(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 3 */ ctx->ctxvals_pos = offset + 3; xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); nv50_graph_construct_gene_unk6(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 4 */ ctx->ctxvals_pos = offset + 4; if (dev_priv->chipset == 0xa0) xf_emit(ctx, 0xa80, 0); else xf_emit(ctx, 0xa7a, 0); xf_emit(ctx, 1, 0x3fffff); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x1fff); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 5 */ ctx->ctxvals_pos = offset + 5; xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 0xb, 0); xf_emit(ctx, 2, 0x4e3bfdf); xf_emit(ctx, 3, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 0x4e3bfdf); xf_emit(ctx, 2, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 0); for (i = 0; i < 8; i++) if (units & (1<<(i+16))) nv50_graph_construct_gene_ropc(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 6 */ ctx->ctxvals_pos = offset + 6; nv50_graph_construct_gene_unk3(ctx); xf_emit(ctx, 0xb, 0); nv50_graph_construct_gene_unk4(ctx); nv50_graph_construct_gene_unk7(ctx); if (units & (1 << 0)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 1)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 2)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 3)) nv50_graph_construct_xfer_tp(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 7 */ ctx->ctxvals_pos = offset + 7; if (dev_priv->chipset == 0xa0) { if (units & (1 << 4)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 5)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 6)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 7)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 8)) nv50_graph_construct_xfer_tp(ctx); if (units & (1 << 9)) nv50_graph_construct_xfer_tp(ctx); } else { nv50_graph_construct_gene_unk2(ctx); } if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; } ctx->ctxvals_pos = offset + size * 8; ctx->ctxvals_pos = (ctx->ctxvals_pos+0x3f)&~0x3f; cp_lsr (ctx, offset); cp_out (ctx, CP_SET_XFER_POINTER); cp_lsr (ctx, size); cp_out (ctx, CP_SEEK_1); cp_out (ctx, CP_XFER_1); cp_wait(ctx, XFER, BUSY); } /* * non-trivial demagiced parts of ctx init go here */ static void nv50_graph_construct_gene_m2mf(struct nouveau_grctx *ctx) { /* m2mf state */ xf_emit (ctx, 1, 0); /* DMA_NOTIFY instance >> 4 */ xf_emit (ctx, 1, 0); /* DMA_BUFFER_IN instance >> 4 */ xf_emit (ctx, 1, 0); /* DMA_BUFFER_OUT instance >> 4 */ xf_emit (ctx, 1, 0); /* OFFSET_IN */ xf_emit (ctx, 1, 0); /* OFFSET_OUT */ xf_emit (ctx, 1, 0); /* PITCH_IN */ xf_emit (ctx, 1, 0); /* PITCH_OUT */ xf_emit (ctx, 1, 0); /* LINE_LENGTH */ xf_emit (ctx, 1, 0); /* LINE_COUNT */ xf_emit (ctx, 1, 0x21); /* FORMAT: bits 0-4 INPUT_INC, bits 5-9 OUTPUT_INC */ xf_emit (ctx, 1, 1); /* LINEAR_IN */ xf_emit (ctx, 1, 0x2); /* TILING_MODE_IN: bits 0-2 y tiling, bits 3-5 z tiling */ xf_emit (ctx, 1, 0x100); /* TILING_PITCH_IN */ xf_emit (ctx, 1, 0x100); /* TILING_HEIGHT_IN */ xf_emit (ctx, 1, 1); /* TILING_DEPTH_IN */ xf_emit (ctx, 1, 0); /* TILING_POSITION_IN_Z */ xf_emit (ctx, 1, 0); /* TILING_POSITION_IN */ xf_emit (ctx, 1, 1); /* LINEAR_OUT */ xf_emit (ctx, 1, 0x2); /* TILING_MODE_OUT: bits 0-2 y tiling, bits 3-5 z tiling */ xf_emit (ctx, 1, 0x100); /* TILING_PITCH_OUT */ xf_emit (ctx, 1, 0x100); /* TILING_HEIGHT_OUT */ xf_emit (ctx, 1, 1); /* TILING_DEPTH_OUT */ xf_emit (ctx, 1, 0); /* TILING_POSITION_OUT_Z */ xf_emit (ctx, 1, 0); /* TILING_POSITION_OUT */ xf_emit (ctx, 1, 0); /* OFFSET_IN_HIGH */ xf_emit (ctx, 1, 0); /* OFFSET_OUT_HIGH */ } static void nv50_graph_construct_gene_unk1(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* end of area 2 on pre-NVA0, area 1 on NVAx */ xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 1, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0x3ff); else xf_emit(ctx, 1, 0x7ff); switch (dev_priv->chipset) { case 0x50: case 0x86: case 0x98: case 0xaa: case 0xac: xf_emit(ctx, 0x542, 0); break; case 0x84: case 0x92: case 0x94: case 0x96: xf_emit(ctx, 0x942, 0); break; case 0xa0: xf_emit(ctx, 0x2042, 0); break; case 0xa5: case 0xa8: xf_emit(ctx, 0x842, 0); break; } xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x27); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x26); xf_emit(ctx, 3, 0); } static void nv50_graph_construct_gene_unk10(struct nouveau_grctx *ctx) { /* end of area 2 on pre-NVA0, area 1 on NVAx */ xf_emit(ctx, 0x10, 0x04000000); xf_emit(ctx, 0x24, 0); xf_emit(ctx, 2, 0x04e3bfdf); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x1fe21); } static void nv50_graph_construct_gene_unk2(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* middle of area 2 on pre-NVA0, beginning of area 2 on NVA0, area 7 on >NVA0 */ if (dev_priv->chipset != 0x50) { xf_emit(ctx, 5, 0); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x804); xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0x8100c12); } xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x10); if (dev_priv->chipset == 0x50) xf_emit(ctx, 3, 0); else xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x804); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x1a); if (dev_priv->chipset != 0x50) xf_emit(ctx, 1, 0x7f); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 6, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0x3ff); else xf_emit(ctx, 1, 0x7ff); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 0x38, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 0x38, 0); xf_emit(ctx, 2, 0x88); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 0x16, 0); xf_emit(ctx, 1, 0x26); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x3f800000); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 4, 0); else xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x1a); xf_emit(ctx, 1, 0x10); if (dev_priv->chipset != 0x50) xf_emit(ctx, 0x28, 0); else xf_emit(ctx, 0x25, 0); xf_emit(ctx, 1, 0x52); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x26); xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x1a); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x00ffff00); xf_emit(ctx, 1, 0); } static void nv50_graph_construct_gene_unk3(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* end of area 0 on pre-NVA0, beginning of area 6 on NVAx */ xf_emit(ctx, 1, 0x3f); xf_emit(ctx, 0xa, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 0x04000000); xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 4); if (dev_priv->chipset == 0x50) xf_emit(ctx, 0x10, 0); else xf_emit(ctx, 0x11, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x1001); xf_emit(ctx, 4, 0xffff); xf_emit(ctx, 0x20, 0); xf_emit(ctx, 0x10, 0x3f800000); xf_emit(ctx, 1, 0x10); if (dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0); else xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 3); xf_emit(ctx, 2, 0); } static void nv50_graph_construct_gene_unk4(struct nouveau_grctx *ctx) { /* middle of area 0 on pre-NVA0, middle of area 6 on NVAx */ xf_emit(ctx, 2, 0x04000000); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 1, 0); } static void nv50_graph_construct_gene_unk5(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* middle of area 0 on pre-NVA0 [after m2mf], end of area 2 on NVAx */ xf_emit(ctx, 2, 4); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x1c4d, 0); else xf_emit(ctx, 0x1c4b, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0x8100c12); if (dev_priv->chipset != 0x50) xf_emit(ctx, 1, 3); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 1, 1); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0x80c14); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 1, 0x27); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x3c1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x16, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 1, 0); } static void nv50_graph_construct_gene_unk6(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* beginning of area 1 on pre-NVA0 [after m2mf], area 3 on NVAx */ xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0xf); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 8, 0); else xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x20); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x11, 0); else if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 0xf, 0); else xf_emit(ctx, 0xe, 0); xf_emit(ctx, 1, 0x1a); xf_emit(ctx, 0xd, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 8); xf_emit(ctx, 1, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0x3ff); else xf_emit(ctx, 1, 0x7ff); if (dev_priv->chipset == 0xa8) xf_emit(ctx, 1, 0x1e00); xf_emit(ctx, 0xc, 0); xf_emit(ctx, 1, 0xf); if (dev_priv->chipset == 0x50) xf_emit(ctx, 0x125, 0); else if (dev_priv->chipset < 0xa0) xf_emit(ctx, 0x126, 0); else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa) xf_emit(ctx, 0x124, 0); else xf_emit(ctx, 0x1f7, 0); xf_emit(ctx, 1, 0xf); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 3, 0); else xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0xa1, 0); else xf_emit(ctx, 0x5a, 0); xf_emit(ctx, 1, 0xf); if (dev_priv->chipset < 0xa0) xf_emit(ctx, 0x834, 0); else if (dev_priv->chipset == 0xa0) xf_emit(ctx, 0x1873, 0); else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x8ba, 0); else xf_emit(ctx, 0x833, 0); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 0xf, 0); } static void nv50_graph_construct_gene_unk7(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* middle of area 1 on pre-NVA0 [after m2mf], middle of area 6 on NVAx */ xf_emit(ctx, 2, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 2, 1); else xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0x100); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 8); xf_emit(ctx, 5, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 3, 1); xf_emit(ctx, 1, 0xcf); xf_emit(ctx, 1, 2); xf_emit(ctx, 6, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 3, 1); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x15); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x4444480); xf_emit(ctx, 0x37, 0); } static void nv50_graph_construct_gene_unk8(struct nouveau_grctx *ctx) { /* middle of area 1 on pre-NVA0 [after m2mf], middle of area 0 on NVAx */ xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x100); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x10001); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x10001); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x10001); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 2); } static void nv50_graph_construct_gene_unk9(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; /* middle of area 2 on pre-NVA0 [after m2mf], end of area 0 on NVAx */ xf_emit(ctx, 1, 0x3f800000); xf_emit(ctx, 6, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0x1a); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x12, 0); xf_emit(ctx, 1, 0x00ffff00); xf_emit(ctx, 6, 0); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 0xf, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 2, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 3); else if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 0x04000000); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 5); xf_emit(ctx, 1, 0x52); if (dev_priv->chipset == 0x50) { xf_emit(ctx, 0x13, 0); } else { xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x11, 0); else xf_emit(ctx, 0x10, 0); } xf_emit(ctx, 0x10, 0x3f800000); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 0x26, 0); xf_emit(ctx, 1, 0x8100c12); xf_emit(ctx, 1, 5); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 4, 0xffff); if (dev_priv->chipset != 0x50) xf_emit(ctx, 1, 3); if (dev_priv->chipset < 0xa0) xf_emit(ctx, 0x1f, 0); else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0xc, 0); else xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x00ffff00); xf_emit(ctx, 1, 0x1a); if (dev_priv->chipset != 0x50) { xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 3); } if (dev_priv->chipset < 0xa0) xf_emit(ctx, 0x26, 0); else xf_emit(ctx, 0x3c, 0); xf_emit(ctx, 1, 0x102); xf_emit(ctx, 1, 0); xf_emit(ctx, 4, 4); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 8, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0x3ff); else xf_emit(ctx, 1, 0x7ff); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x102); xf_emit(ctx, 9, 0); xf_emit(ctx, 4, 4); xf_emit(ctx, 0x2c, 0); } static void nv50_graph_construct_gene_ropc(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int magic2; if (dev_priv->chipset == 0x50) { magic2 = 0x00003e60; } else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) { magic2 = 0x001ffe67; } else { magic2 = 0x00087e67; } xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, magic2); xf_emit(ctx, 4, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 7, 0); if (dev_priv->chipset >= 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 0x15); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 4, 0); if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x92 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa0) { xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0x400); xf_emit(ctx, 1, 0x300); xf_emit(ctx, 1, 0x1001); if (dev_priv->chipset != 0xa0) { if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 0); else xf_emit(ctx, 1, 0x15); } xf_emit(ctx, 3, 0); } xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x13, 0); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 0x10, 0); xf_emit(ctx, 0x10, 0x3f800000); xf_emit(ctx, 0x19, 0); xf_emit(ctx, 1, 0x10); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x3f); xf_emit(ctx, 6, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); if (dev_priv->chipset >= 0xa0) { xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x1001); xf_emit(ctx, 0xb, 0); } else { xf_emit(ctx, 0xc, 0); } xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x11); if (dev_priv->chipset == 0x50) xf_emit(ctx, 4, 0); else xf_emit(ctx, 6, 0); xf_emit(ctx, 3, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, magic2); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x0fac6881); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 1, 0); xf_emit(ctx, 0x18, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 8, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 8, 1); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 5, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x16, 0); } else { if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 0x1b, 0); else xf_emit(ctx, 0x15, 0); } xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 1); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 4, 0); else xf_emit(ctx, 3, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 0x10, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 0x10, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 8, 1); xf_emit(ctx, 3, 0); } xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x5b, 0); } static void nv50_graph_construct_xfer_tp_x1(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int magic3; if (dev_priv->chipset == 0x50) magic3 = 0x1000; else if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa8) magic3 = 0x1e00; else magic3 = 0; xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 4); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0x24, 0); else if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 0x14, 0); else xf_emit(ctx, 0x15, 0); xf_emit(ctx, 2, 4); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 1, 0x03020100); else xf_emit(ctx, 1, 0x00608080); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 2, 0); xf_emit(ctx, 2, 4); xf_emit(ctx, 1, 0x80); if (magic3) xf_emit(ctx, 1, magic3); xf_emit(ctx, 1, 4); xf_emit(ctx, 0x24, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0x03020100); xf_emit(ctx, 1, 3); if (magic3) xf_emit(ctx, 1, magic3); xf_emit(ctx, 1, 4); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 3); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 4); if (dev_priv->chipset == 0x94 || dev_priv->chipset == 0x96) xf_emit(ctx, 0x1024, 0); else if (dev_priv->chipset < 0xa0) xf_emit(ctx, 0xa24, 0); else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa) xf_emit(ctx, 0x214, 0); else xf_emit(ctx, 0x414, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 3); xf_emit(ctx, 2, 0); } static void nv50_graph_construct_xfer_tp_x2(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int magic1, magic2; if (dev_priv->chipset == 0x50) { magic1 = 0x3ff; magic2 = 0x00003e60; } else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) { magic1 = 0x7ff; magic2 = 0x001ffe67; } else { magic1 = 0x7ff; magic2 = 0x00087e67; } xf_emit(ctx, 3, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 0xc, 0); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 0xb, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 4, 0xffff); xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 5, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 1, 3); xf_emit(ctx, 1, 0); } else if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 1, 1); xf_emit(ctx, 0xa, 0); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 1, 0); xf_emit(ctx, 0x18, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 8, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 8, 1); xf_emit(ctx, 1, 0); } xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 3, 0xcf); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 0xa, 0); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 8, 1); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, magic2); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x11); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 2, 1); else xf_emit(ctx, 1, 1); if(dev_priv->chipset == 0x50) xf_emit(ctx, 1, 0); else xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 5, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, magic1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 0x28, 0); xf_emit(ctx, 8, 8); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 8, 0x400); xf_emit(ctx, 8, 0x300); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x20); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 0x100); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x40); xf_emit(ctx, 1, 0x100); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 3); xf_emit(ctx, 4, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 1, magic2); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 9, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x400); xf_emit(ctx, 1, 0x300); xf_emit(ctx, 1, 0x1001); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 4, 0); else xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 1, 0xf); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 0x15, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 3, 0); } else xf_emit(ctx, 0x17, 0); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 1, 0x0fac6881); xf_emit(ctx, 1, magic2); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 1); xf_emit(ctx, 3, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 2, 1); else xf_emit(ctx, 1, 1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 2, 0); else if (dev_priv->chipset != 0x50) xf_emit(ctx, 1, 0); } static void nv50_graph_construct_xfer_tp_x3(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); if (dev_priv->chipset == 0x50) xf_emit(ctx, 2, 0); else xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0x2a712488); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x4085c000); xf_emit(ctx, 1, 0x40); xf_emit(ctx, 1, 0x100); xf_emit(ctx, 1, 0x10100); xf_emit(ctx, 1, 0x02800000); } static void nv50_graph_construct_xfer_tp_x4(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; xf_emit(ctx, 2, 0x04e3bfdf); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x00ffff00); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 2, 1); else xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 0x00ffff00); xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0x30201000); xf_emit(ctx, 1, 0x70605040); xf_emit(ctx, 1, 0xb8a89888); xf_emit(ctx, 1, 0xf8e8d8c8); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x1a); } static void nv50_graph_construct_xfer_tp_x5(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 0xfac6881); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 2, 1); xf_emit(ctx, 2, 0); xf_emit(ctx, 1, 1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 0xb, 0); else xf_emit(ctx, 0xa, 0); xf_emit(ctx, 8, 1); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0xfac6881); xf_emit(ctx, 1, 0xf); xf_emit(ctx, 7, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 1); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 6, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 6, 0); } else { xf_emit(ctx, 0xb, 0); } } static void nv50_graph_construct_xfer_tp(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; if (dev_priv->chipset < 0xa0) { nv50_graph_construct_xfer_tp_x1(ctx); nv50_graph_construct_xfer_tp_x2(ctx); nv50_graph_construct_xfer_tp_x3(ctx); if (dev_priv->chipset == 0x50) xf_emit(ctx, 0xf, 0); else xf_emit(ctx, 0x12, 0); nv50_graph_construct_xfer_tp_x4(ctx); } else { nv50_graph_construct_xfer_tp_x3(ctx); if (dev_priv->chipset < 0xaa) xf_emit(ctx, 0xc, 0); else xf_emit(ctx, 0xa, 0); nv50_graph_construct_xfer_tp_x2(ctx); nv50_graph_construct_xfer_tp_x5(ctx); nv50_graph_construct_xfer_tp_x4(ctx); nv50_graph_construct_xfer_tp_x1(ctx); } } static void nv50_graph_construct_xfer_tp2(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int i, mpcnt; if (dev_priv->chipset == 0x98 || dev_priv->chipset == 0xaa) mpcnt = 1; else if (dev_priv->chipset < 0xa0 || dev_priv->chipset >= 0xa8) mpcnt = 2; else mpcnt = 3; for (i = 0; i < mpcnt; i++) { xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x80); xf_emit(ctx, 1, 0x80007004); xf_emit(ctx, 1, 0x04000400); if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 1, 0xc0); xf_emit(ctx, 1, 0x1000); xf_emit(ctx, 2, 0); if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa8) { xf_emit(ctx, 1, 0xe00); xf_emit(ctx, 1, 0x1e00); } xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0); if (dev_priv->chipset == 0x50) xf_emit(ctx, 2, 0x1000); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 2); if (dev_priv->chipset >= 0xaa) xf_emit(ctx, 0xb, 0); else if (dev_priv->chipset >= 0xa0) xf_emit(ctx, 0xc, 0); else xf_emit(ctx, 0xa, 0); } xf_emit(ctx, 1, 0x08100c12); xf_emit(ctx, 1, 0); if (dev_priv->chipset >= 0xa0) { xf_emit(ctx, 1, 0x1fe21); } xf_emit(ctx, 5, 0); xf_emit(ctx, 4, 0xffff); xf_emit(ctx, 1, 1); xf_emit(ctx, 2, 0x10001); xf_emit(ctx, 1, 1); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 0x1fe21); xf_emit(ctx, 1, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 1); xf_emit(ctx, 4, 0); xf_emit(ctx, 1, 0x08100c12); xf_emit(ctx, 1, 4); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 8, 0); xf_emit(ctx, 1, 0xfac6881); xf_emit(ctx, 1, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) xf_emit(ctx, 1, 3); xf_emit(ctx, 3, 0); xf_emit(ctx, 1, 4); xf_emit(ctx, 9, 0); xf_emit(ctx, 1, 2); xf_emit(ctx, 2, 1); xf_emit(ctx, 1, 2); xf_emit(ctx, 3, 1); xf_emit(ctx, 1, 0); if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) { xf_emit(ctx, 8, 2); xf_emit(ctx, 0x10, 1); xf_emit(ctx, 8, 2); xf_emit(ctx, 0x18, 1); xf_emit(ctx, 3, 0); } xf_emit(ctx, 1, 4); if (dev_priv->chipset == 0x50) xf_emit(ctx, 0x3a0, 0); else if (dev_priv->chipset < 0x94) xf_emit(ctx, 0x3a2, 0); else if (dev_priv->chipset == 0x98 || dev_priv->chipset == 0xaa) xf_emit(ctx, 0x39f, 0); else xf_emit(ctx, 0x3a3, 0); xf_emit(ctx, 1, 0x11); xf_emit(ctx, 1, 0); xf_emit(ctx, 1, 1); xf_emit(ctx, 0x2d, 0); } static void nv50_graph_construct_xfer2(struct nouveau_grctx *ctx) { struct drm_nouveau_private *dev_priv = ctx->dev->dev_private; int i; uint32_t offset; uint32_t units = nv_rd32 (ctx->dev, 0x1540); int size = 0; offset = (ctx->ctxvals_pos+0x3f)&~0x3f; if (dev_priv->chipset < 0xa0) { for (i = 0; i < 8; i++) { ctx->ctxvals_pos = offset + i; if (i == 0) xf_emit(ctx, 1, 0x08100c12); if (units & (1 << i)) nv50_graph_construct_xfer_tp2(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; } } else { /* Strand 0: TPs 0, 1 */ ctx->ctxvals_pos = offset; xf_emit(ctx, 1, 0x08100c12); if (units & (1 << 0)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 1)) nv50_graph_construct_xfer_tp2(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 0: TPs 2, 3 */ ctx->ctxvals_pos = offset + 1; if (units & (1 << 2)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 3)) nv50_graph_construct_xfer_tp2(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 0: TPs 4, 5, 6 */ ctx->ctxvals_pos = offset + 2; if (units & (1 << 4)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 5)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 6)) nv50_graph_construct_xfer_tp2(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; /* Strand 0: TPs 7, 8, 9 */ ctx->ctxvals_pos = offset + 3; if (units & (1 << 7)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 8)) nv50_graph_construct_xfer_tp2(ctx); if (units & (1 << 9)) nv50_graph_construct_xfer_tp2(ctx); if ((ctx->ctxvals_pos-offset)/8 > size) size = (ctx->ctxvals_pos-offset)/8; } ctx->ctxvals_pos = offset + size * 8; ctx->ctxvals_pos = (ctx->ctxvals_pos+0x3f)&~0x3f; cp_lsr (ctx, offset); cp_out (ctx, CP_SET_XFER_POINTER); cp_lsr (ctx, size); cp_out (ctx, CP_SEEK_2); cp_out (ctx, CP_XFER_2); cp_wait(ctx, XFER, BUSY); }