/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "drmP.h" #include "radeon.h" #include "rv6xxd.h" #include "r600_dpm.h" #include "rv6xx_dpm.h" #include "atom.h" static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev, u32 unscaled_count, u32 unit); static struct rv6xx_ps *rv6xx_get_ps(struct radeon_ps *rps) { struct rv6xx_ps *ps = rps->ps_priv; return ps; } static struct rv6xx_power_info *rv6xx_get_pi(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rdev->pm.dpm.priv; return pi; } static void rv6xx_force_pcie_gen1(struct radeon_device *rdev) { u32 tmp; int i; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); tmp &= LC_GEN2_EN; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); tmp |= LC_INITIATE_LINK_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); for (i = 0; i < rdev->usec_timeout; i++) { if (!(RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE)) break; udelay(1); } tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); tmp &= ~LC_INITIATE_LINK_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } static void rv6xx_enable_pcie_gen2_support(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) && (tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) { tmp |= LC_GEN2_EN; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } } static void rv6xx_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & ~LC_HW_VOLTAGE_IF_CONTROL_MASK; if (enable) tmp |= LC_HW_VOLTAGE_IF_CONTROL(1); else tmp |= LC_HW_VOLTAGE_IF_CONTROL(0); WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } static void rv6xx_enable_l0s(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L0S_INACTIVITY_MASK; tmp |= LC_L0S_INACTIVITY(3); WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); } static void rv6xx_enable_l1(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL); tmp &= ~LC_L1_INACTIVITY_MASK; tmp |= LC_L1_INACTIVITY(4); tmp &= ~LC_PMI_TO_L1_DIS; tmp &= ~LC_ASPM_TO_L1_DIS; WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); } static void rv6xx_enable_pll_sleep_in_l1(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L1_INACTIVITY_MASK; tmp |= LC_L1_INACTIVITY(8); WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); /* NOTE, this is a PCIE indirect reg, not PCIE PORT */ tmp = RREG32_PCIE(PCIE_P_CNTL); tmp |= P_PLL_PWRDN_IN_L1L23; tmp &= ~P_PLL_BUF_PDNB; tmp &= ~P_PLL_PDNB; tmp |= P_ALLOW_PRX_FRONTEND_SHUTOFF; WREG32_PCIE(PCIE_P_CNTL, tmp); } static int rv6xx_convert_clock_to_stepping(struct radeon_device *rdev, u32 clock, struct rv6xx_sclk_stepping *step) { int ret; struct atom_clock_dividers dividers; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, clock, false, ÷rs); if (ret) return ret; if (dividers.enable_post_div) step->post_divider = 2 + (dividers.post_div & 0xF) + (dividers.post_div >> 4); else step->post_divider = 1; step->vco_frequency = clock * step->post_divider; return 0; } static void rv6xx_output_stepping(struct radeon_device *rdev, u32 step_index, struct rv6xx_sclk_stepping *step) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); u32 ref_clk = rdev->clock.spll.reference_freq; u32 fb_divider; u32 spll_step_count = rv6xx_scale_count_given_unit(rdev, R600_SPLLSTEPTIME_DFLT * pi->spll_ref_div, R600_SPLLSTEPUNIT_DFLT); r600_engine_clock_entry_enable(rdev, step_index, true); r600_engine_clock_entry_enable_pulse_skipping(rdev, step_index, false); if (step->post_divider == 1) r600_engine_clock_entry_enable_post_divider(rdev, step_index, false); else { u32 lo_len = (step->post_divider - 2) / 2; u32 hi_len = step->post_divider - 2 - lo_len; r600_engine_clock_entry_enable_post_divider(rdev, step_index, true); r600_engine_clock_entry_set_post_divider(rdev, step_index, (hi_len << 4) | lo_len); } fb_divider = ((step->vco_frequency * pi->spll_ref_div) / ref_clk) >> pi->fb_div_scale; r600_engine_clock_entry_set_reference_divider(rdev, step_index, pi->spll_ref_div - 1); r600_engine_clock_entry_set_feedback_divider(rdev, step_index, fb_divider); r600_engine_clock_entry_set_step_time(rdev, step_index, spll_step_count); } static struct rv6xx_sclk_stepping rv6xx_next_vco_step(struct radeon_device *rdev, struct rv6xx_sclk_stepping *cur, bool increasing_vco, u32 step_size) { struct rv6xx_sclk_stepping next; next.post_divider = cur->post_divider; if (increasing_vco) next.vco_frequency = (cur->vco_frequency * (100 + step_size)) / 100; else next.vco_frequency = (cur->vco_frequency * 100 + 99 + step_size) / (100 + step_size); return next; } static bool rv6xx_can_step_post_div(struct radeon_device *rdev, struct rv6xx_sclk_stepping *cur, struct rv6xx_sclk_stepping *target) { return (cur->post_divider > target->post_divider) && ((cur->vco_frequency * target->post_divider) <= (target->vco_frequency * (cur->post_divider - 1))); } static struct rv6xx_sclk_stepping rv6xx_next_post_div_step(struct radeon_device *rdev, struct rv6xx_sclk_stepping *cur, struct rv6xx_sclk_stepping *target) { struct rv6xx_sclk_stepping next = *cur; while (rv6xx_can_step_post_div(rdev, &next, target)) next.post_divider--; return next; } static bool rv6xx_reached_stepping_target(struct radeon_device *rdev, struct rv6xx_sclk_stepping *cur, struct rv6xx_sclk_stepping *target, bool increasing_vco) { return (increasing_vco && (cur->vco_frequency >= target->vco_frequency)) || (!increasing_vco && (cur->vco_frequency <= target->vco_frequency)); } static void rv6xx_generate_steps(struct radeon_device *rdev, u32 low, u32 high, u32 start_index, u8 *end_index) { struct rv6xx_sclk_stepping cur; struct rv6xx_sclk_stepping target; bool increasing_vco; u32 step_index = start_index; rv6xx_convert_clock_to_stepping(rdev, low, &cur); rv6xx_convert_clock_to_stepping(rdev, high, &target); rv6xx_output_stepping(rdev, step_index++, &cur); increasing_vco = (target.vco_frequency >= cur.vco_frequency); if (target.post_divider > cur.post_divider) cur.post_divider = target.post_divider; while (1) { struct rv6xx_sclk_stepping next; if (rv6xx_can_step_post_div(rdev, &cur, &target)) next = rv6xx_next_post_div_step(rdev, &cur, &target); else next = rv6xx_next_vco_step(rdev, &cur, increasing_vco, R600_VCOSTEPPCT_DFLT); if (rv6xx_reached_stepping_target(rdev, &next, &target, increasing_vco)) { struct rv6xx_sclk_stepping tiny = rv6xx_next_vco_step(rdev, &target, !increasing_vco, R600_ENDINGVCOSTEPPCT_DFLT); tiny.post_divider = next.post_divider; if (!rv6xx_reached_stepping_target(rdev, &tiny, &cur, !increasing_vco)) rv6xx_output_stepping(rdev, step_index++, &tiny); if ((next.post_divider != target.post_divider) && (next.vco_frequency != target.vco_frequency)) { struct rv6xx_sclk_stepping final_vco; final_vco.vco_frequency = target.vco_frequency; final_vco.post_divider = next.post_divider; rv6xx_output_stepping(rdev, step_index++, &final_vco); } rv6xx_output_stepping(rdev, step_index++, &target); break; } else rv6xx_output_stepping(rdev, step_index++, &next); cur = next; } *end_index = (u8)step_index - 1; } static void rv6xx_generate_single_step(struct radeon_device *rdev, u32 clock, u32 index) { struct rv6xx_sclk_stepping step; rv6xx_convert_clock_to_stepping(rdev, clock, &step); rv6xx_output_stepping(rdev, index, &step); } static void rv6xx_invalidate_intermediate_steps_range(struct radeon_device *rdev, u32 start_index, u32 end_index) { u32 step_index; for (step_index = start_index + 1; step_index < end_index; step_index++) r600_engine_clock_entry_enable(rdev, step_index, false); } static void rv6xx_set_engine_spread_spectrum_clk_s(struct radeon_device *rdev, u32 index, u32 clk_s) { WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4), CLKS(clk_s), ~CLKS_MASK); } static void rv6xx_set_engine_spread_spectrum_clk_v(struct radeon_device *rdev, u32 index, u32 clk_v) { WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4), CLKV(clk_v), ~CLKV_MASK); } static void rv6xx_enable_engine_spread_spectrum(struct radeon_device *rdev, u32 index, bool enable) { if (enable) WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4), SSEN, ~SSEN); else WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4), 0, ~SSEN); } static void rv6xx_set_memory_spread_spectrum_clk_s(struct radeon_device *rdev, u32 clk_s) { WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKS(clk_s), ~CLKS_MASK); } static void rv6xx_set_memory_spread_spectrum_clk_v(struct radeon_device *rdev, u32 clk_v) { WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKV(clk_v), ~CLKV_MASK); } static void rv6xx_enable_memory_spread_spectrum(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(CG_MPLL_SPREAD_SPECTRUM, SSEN, ~SSEN); else WREG32_P(CG_MPLL_SPREAD_SPECTRUM, 0, ~SSEN); } static void rv6xx_enable_dynamic_spread_spectrum(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN); } static void rv6xx_memory_clock_entry_enable_post_divider(struct radeon_device *rdev, u32 index, bool enable) { if (enable) WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_DIV_EN, ~LEVEL0_MPLL_DIV_EN); else WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), 0, ~LEVEL0_MPLL_DIV_EN); } static void rv6xx_memory_clock_entry_set_post_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_POST_DIV(divider), ~LEVEL0_MPLL_POST_DIV_MASK); } static void rv6xx_memory_clock_entry_set_feedback_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_FB_DIV(divider), ~LEVEL0_MPLL_FB_DIV_MASK); } static void rv6xx_memory_clock_entry_set_reference_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_REF_DIV(divider), ~LEVEL0_MPLL_REF_DIV_MASK); } static void rv6xx_vid_response_set_brt(struct radeon_device *rdev, u32 rt) { WREG32_P(VID_RT, BRT(rt), ~BRT_MASK); } static void rv6xx_enable_engine_feedback_and_reference_sync(struct radeon_device *rdev) { WREG32_P(SPLL_CNTL_MODE, SPLL_DIV_SYNC, ~SPLL_DIV_SYNC); } static u64 rv6xx_clocks_per_unit(u32 unit) { u64 tmp = 1 << (2 * unit); return tmp; } static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev, u32 unscaled_count, u32 unit) { u32 count_per_unit = (u32)rv6xx_clocks_per_unit(unit); return (unscaled_count + count_per_unit - 1) / count_per_unit; } static u32 rv6xx_compute_count_for_delay(struct radeon_device *rdev, u32 delay_us, u32 unit) { u32 ref_clk = rdev->clock.spll.reference_freq; return rv6xx_scale_count_given_unit(rdev, delay_us * (ref_clk / 100), unit); } static void rv6xx_calculate_engine_speed_stepping_parameters(struct radeon_device *rdev, struct rv6xx_ps *state) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.sclks[R600_POWER_LEVEL_LOW] = state->low.sclk; pi->hw.sclks[R600_POWER_LEVEL_MEDIUM] = state->medium.sclk; pi->hw.sclks[R600_POWER_LEVEL_HIGH] = state->high.sclk; pi->hw.low_sclk_index = R600_POWER_LEVEL_LOW; pi->hw.medium_sclk_index = R600_POWER_LEVEL_MEDIUM; pi->hw.high_sclk_index = R600_POWER_LEVEL_HIGH; } static void rv6xx_calculate_memory_clock_stepping_parameters(struct radeon_device *rdev, struct rv6xx_ps *state) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.mclks[R600_POWER_LEVEL_CTXSW] = state->high.mclk; pi->hw.mclks[R600_POWER_LEVEL_HIGH] = state->high.mclk; pi->hw.mclks[R600_POWER_LEVEL_MEDIUM] = state->medium.mclk; pi->hw.mclks[R600_POWER_LEVEL_LOW] = state->low.mclk; pi->hw.high_mclk_index = R600_POWER_LEVEL_HIGH; if (state->high.mclk == state->medium.mclk) pi->hw.medium_mclk_index = pi->hw.high_mclk_index; else pi->hw.medium_mclk_index = R600_POWER_LEVEL_MEDIUM; if (state->medium.mclk == state->low.mclk) pi->hw.low_mclk_index = pi->hw.medium_mclk_index; else pi->hw.low_mclk_index = R600_POWER_LEVEL_LOW; } static void rv6xx_calculate_voltage_stepping_parameters(struct radeon_device *rdev, struct rv6xx_ps *state) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.vddc[R600_POWER_LEVEL_CTXSW] = state->high.vddc; pi->hw.vddc[R600_POWER_LEVEL_HIGH] = state->high.vddc; pi->hw.vddc[R600_POWER_LEVEL_MEDIUM] = state->medium.vddc; pi->hw.vddc[R600_POWER_LEVEL_LOW] = state->low.vddc; pi->hw.backbias[R600_POWER_LEVEL_CTXSW] = (state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false; pi->hw.backbias[R600_POWER_LEVEL_HIGH] = (state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false; pi->hw.backbias[R600_POWER_LEVEL_MEDIUM] = (state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false; pi->hw.backbias[R600_POWER_LEVEL_LOW] = (state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false; pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH] = (state->high.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false; pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM] = (state->medium.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false; pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW] = (state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false; pi->hw.high_vddc_index = R600_POWER_LEVEL_HIGH; if ((state->high.vddc == state->medium.vddc) && ((state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) == (state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE))) pi->hw.medium_vddc_index = pi->hw.high_vddc_index; else pi->hw.medium_vddc_index = R600_POWER_LEVEL_MEDIUM; if ((state->medium.vddc == state->low.vddc) && ((state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) == (state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE))) pi->hw.low_vddc_index = pi->hw.medium_vddc_index; else pi->hw.medium_vddc_index = R600_POWER_LEVEL_LOW; } static inline u32 rv6xx_calculate_vco_frequency(u32 ref_clock, struct atom_clock_dividers *dividers, u32 fb_divider_scale) { return ref_clock * ((dividers->fb_div & ~1) << fb_divider_scale) / (dividers->ref_div + 1); } static inline u32 rv6xx_calculate_spread_spectrum_clk_v(u32 vco_freq, u32 ref_freq, u32 ss_rate, u32 ss_percent, u32 fb_divider_scale) { u32 fb_divider = vco_freq / ref_freq; return (ss_percent * ss_rate * 4 * (fb_divider * fb_divider) / (5375 * ((vco_freq * 10) / (4096 >> fb_divider_scale)))); } static inline u32 rv6xx_calculate_spread_spectrum_clk_s(u32 ss_rate, u32 ref_freq) { return (((ref_freq * 10) / (ss_rate * 2)) - 1) / 4; } static void rv6xx_program_engine_spread_spectrum(struct radeon_device *rdev, u32 clock, enum r600_power_level level) { u32 ref_clk = rdev->clock.spll.reference_freq; struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); struct atom_clock_dividers dividers; struct radeon_atom_ss ss; u32 vco_freq, clk_v, clk_s; rv6xx_enable_engine_spread_spectrum(rdev, level, false); if (clock && pi->sclk_ss) { if (radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, clock, false, ÷rs) == 0) { vco_freq = rv6xx_calculate_vco_frequency(ref_clk, ÷rs, pi->fb_div_scale); if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_ENGINE_SS, vco_freq)) { clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq, (ref_clk / (dividers.ref_div + 1)), ss.rate, ss.percentage, pi->fb_div_scale); clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate, (ref_clk / (dividers.ref_div + 1))); rv6xx_set_engine_spread_spectrum_clk_v(rdev, level, clk_v); rv6xx_set_engine_spread_spectrum_clk_s(rdev, level, clk_s); rv6xx_enable_engine_spread_spectrum(rdev, level, true); } } } } static void rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_engine_spread_spectrum(rdev, pi->hw.sclks[R600_POWER_LEVEL_HIGH], R600_POWER_LEVEL_HIGH); rv6xx_program_engine_spread_spectrum(rdev, pi->hw.sclks[R600_POWER_LEVEL_MEDIUM], R600_POWER_LEVEL_MEDIUM); } static int rv6xx_program_mclk_stepping_entry(struct radeon_device *rdev, u32 entry, u32 clock) { struct atom_clock_dividers dividers; if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, clock, false, ÷rs)) return -EINVAL; rv6xx_memory_clock_entry_set_reference_divider(rdev, entry, dividers.ref_div); rv6xx_memory_clock_entry_set_feedback_divider(rdev, entry, dividers.fb_div); rv6xx_memory_clock_entry_set_post_divider(rdev, entry, dividers.post_div); if (dividers.enable_post_div) rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, true); else rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, false); return 0; } static void rv6xx_program_mclk_stepping_parameters_except_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); int i; for (i = 1; i < R600_PM_NUMBER_OF_MCLKS; i++) { if (pi->hw.mclks[i]) rv6xx_program_mclk_stepping_entry(rdev, i, pi->hw.mclks[i]); } } static void rv6xx_find_memory_clock_with_highest_vco(struct radeon_device *rdev, u32 requested_memory_clock, u32 ref_clk, struct atom_clock_dividers *dividers, u32 *vco_freq) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); struct atom_clock_dividers req_dividers; u32 vco_freq_temp; if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, requested_memory_clock, false, &req_dividers) == 0) { vco_freq_temp = rv6xx_calculate_vco_frequency(ref_clk, &req_dividers, pi->fb_div_scale); if (vco_freq_temp > *vco_freq) { *dividers = req_dividers; *vco_freq = vco_freq_temp; } } } static void rv6xx_program_mclk_spread_spectrum_parameters(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); u32 ref_clk = rdev->clock.mpll.reference_freq; struct atom_clock_dividers dividers; struct radeon_atom_ss ss; u32 vco_freq = 0, clk_v, clk_s; rv6xx_enable_memory_spread_spectrum(rdev, false); if (pi->mclk_ss) { rv6xx_find_memory_clock_with_highest_vco(rdev, pi->hw.mclks[pi->hw.high_mclk_index], ref_clk, ÷rs, &vco_freq); rv6xx_find_memory_clock_with_highest_vco(rdev, pi->hw.mclks[pi->hw.medium_mclk_index], ref_clk, ÷rs, &vco_freq); rv6xx_find_memory_clock_with_highest_vco(rdev, pi->hw.mclks[pi->hw.low_mclk_index], ref_clk, ÷rs, &vco_freq); if (vco_freq) { if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_MEMORY_SS, vco_freq)) { clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq, (ref_clk / (dividers.ref_div + 1)), ss.rate, ss.percentage, pi->fb_div_scale); clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate, (ref_clk / (dividers.ref_div + 1))); rv6xx_set_memory_spread_spectrum_clk_v(rdev, clk_v); rv6xx_set_memory_spread_spectrum_clk_s(rdev, clk_s); rv6xx_enable_memory_spread_spectrum(rdev, true); } } } } static int rv6xx_program_voltage_stepping_entry(struct radeon_device *rdev, u32 entry, u16 voltage) { u32 mask, set_pins; int ret; ret = radeon_atom_get_voltage_gpio_settings(rdev, voltage, SET_VOLTAGE_TYPE_ASIC_VDDC, &set_pins, &mask); if (ret) return ret; r600_voltage_control_program_voltages(rdev, entry, set_pins); return 0; } static void rv6xx_program_voltage_stepping_parameters_except_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); int i; for (i = 1; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++) rv6xx_program_voltage_stepping_entry(rdev, i, pi->hw.vddc[i]); } static void rv6xx_program_backbias_stepping_parameters_except_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (pi->hw.backbias[1]) WREG32_P(VID_UPPER_GPIO_CNTL, MEDIUM_BACKBIAS_VALUE, ~MEDIUM_BACKBIAS_VALUE); else WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~MEDIUM_BACKBIAS_VALUE); if (pi->hw.backbias[2]) WREG32_P(VID_UPPER_GPIO_CNTL, HIGH_BACKBIAS_VALUE, ~HIGH_BACKBIAS_VALUE); else WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~HIGH_BACKBIAS_VALUE); } static void rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_engine_spread_spectrum(rdev, pi->hw.sclks[R600_POWER_LEVEL_LOW], R600_POWER_LEVEL_LOW); } static void rv6xx_program_mclk_stepping_parameters_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (pi->hw.mclks[0]) rv6xx_program_mclk_stepping_entry(rdev, 0, pi->hw.mclks[0]); } static void rv6xx_program_voltage_stepping_parameters_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_voltage_stepping_entry(rdev, 0, pi->hw.vddc[0]); } static void rv6xx_program_backbias_stepping_parameters_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (pi->hw.backbias[0]) WREG32_P(VID_UPPER_GPIO_CNTL, LOW_BACKBIAS_VALUE, ~LOW_BACKBIAS_VALUE); else WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~LOW_BACKBIAS_VALUE); } static u32 calculate_memory_refresh_rate(struct radeon_device *rdev, u32 engine_clock) { u32 dram_rows, dram_refresh_rate; u32 tmp; tmp = (RREG32(RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT; dram_rows = 1 << (tmp + 10); dram_refresh_rate = 1 << ((RREG32(MC_SEQ_RESERVE_M) & 0x3) + 3); return ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64; } static void rv6xx_program_memory_timing_parameters(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); u32 sqm_ratio; u32 arb_refresh_rate; u32 high_clock; if (pi->hw.sclks[R600_POWER_LEVEL_HIGH] < (pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40)) high_clock = pi->hw.sclks[R600_POWER_LEVEL_HIGH]; else high_clock = pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40; radeon_atom_set_engine_dram_timings(rdev, high_clock, 0); sqm_ratio = (STATE0(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_LOW]) | STATE1(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_MEDIUM]) | STATE2(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH]) | STATE3(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH])); WREG32(SQM_RATIO, sqm_ratio); arb_refresh_rate = (POWERMODE0(calculate_memory_refresh_rate(rdev, pi->hw.sclks[R600_POWER_LEVEL_LOW])) | POWERMODE1(calculate_memory_refresh_rate(rdev, pi->hw.sclks[R600_POWER_LEVEL_MEDIUM])) | POWERMODE2(calculate_memory_refresh_rate(rdev, pi->hw.sclks[R600_POWER_LEVEL_MEDIUM])) | POWERMODE3(calculate_memory_refresh_rate(rdev, pi->hw.sclks[R600_POWER_LEVEL_HIGH]))); WREG32(ARB_RFSH_RATE, arb_refresh_rate); } static void rv6xx_program_mpll_timing_parameters(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_set_mpll_lock_time(rdev, R600_MPLLLOCKTIME_DFLT * pi->mpll_ref_div); r600_set_mpll_reset_time(rdev, R600_MPLLRESETTIME_DFLT); } static void rv6xx_program_bsp(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); u32 ref_clk = rdev->clock.spll.reference_freq; r600_calculate_u_and_p(R600_ASI_DFLT, ref_clk, 16, &pi->bsp, &pi->bsu); r600_set_bsp(rdev, pi->bsu, pi->bsp); } static void rv6xx_program_at(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_set_at(rdev, (pi->hw.rp[0] * pi->bsp) / 200, (pi->hw.rp[1] * pi->bsp) / 200, (pi->hw.lp[2] * pi->bsp) / 200, (pi->hw.lp[1] * pi->bsp) / 200); } static void rv6xx_program_git(struct radeon_device *rdev) { r600_set_git(rdev, R600_GICST_DFLT); } static void rv6xx_program_tp(struct radeon_device *rdev) { int i; for (i = 0; i < R600_PM_NUMBER_OF_TC; i++) r600_set_tc(rdev, i, r600_utc[i], r600_dtc[i]); r600_select_td(rdev, R600_TD_DFLT); } static void rv6xx_program_vc(struct radeon_device *rdev) { r600_set_vrc(rdev, R600_VRC_DFLT); } static void rv6xx_clear_vc(struct radeon_device *rdev) { r600_set_vrc(rdev, 0); } static void rv6xx_program_tpp(struct radeon_device *rdev) { r600_set_tpu(rdev, R600_TPU_DFLT); r600_set_tpc(rdev, R600_TPC_DFLT); } static void rv6xx_program_sstp(struct radeon_device *rdev) { r600_set_sstu(rdev, R600_SSTU_DFLT); r600_set_sst(rdev, R600_SST_DFLT); } static void rv6xx_program_fcp(struct radeon_device *rdev) { r600_set_fctu(rdev, R600_FCTU_DFLT); r600_set_fct(rdev, R600_FCT_DFLT); } static void rv6xx_program_vddc3d_parameters(struct radeon_device *rdev) { r600_set_vddc3d_oorsu(rdev, R600_VDDC3DOORSU_DFLT); r600_set_vddc3d_oorphc(rdev, R600_VDDC3DOORPHC_DFLT); r600_set_vddc3d_oorsdc(rdev, R600_VDDC3DOORSDC_DFLT); r600_set_ctxcgtt3d_rphc(rdev, R600_CTXCGTT3DRPHC_DFLT); r600_set_ctxcgtt3d_rsdc(rdev, R600_CTXCGTT3DRSDC_DFLT); } static void rv6xx_program_voltage_timing_parameters(struct radeon_device *rdev) { u32 rt; r600_vid_rt_set_vru(rdev, R600_VRU_DFLT); r600_vid_rt_set_vrt(rdev, rv6xx_compute_count_for_delay(rdev, rdev->pm.dpm.voltage_response_time, R600_VRU_DFLT)); rt = rv6xx_compute_count_for_delay(rdev, rdev->pm.dpm.backbias_response_time, R600_VRU_DFLT); rv6xx_vid_response_set_brt(rdev, (rt + 0x1F) >> 5); } static void rv6xx_program_engine_speed_parameters(struct radeon_device *rdev) { r600_vid_rt_set_ssu(rdev, R600_SPLLSTEPUNIT_DFLT); rv6xx_enable_engine_feedback_and_reference_sync(rdev); } static u64 rv6xx_get_master_voltage_mask(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); u64 master_mask = 0; int i; for (i = 0; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++) { u32 tmp_mask, tmp_set_pins; int ret; ret = radeon_atom_get_voltage_gpio_settings(rdev, pi->hw.vddc[i], SET_VOLTAGE_TYPE_ASIC_VDDC, &tmp_set_pins, &tmp_mask); if (ret == 0) master_mask |= tmp_mask; } return master_mask; } static void rv6xx_program_voltage_gpio_pins(struct radeon_device *rdev) { r600_voltage_control_enable_pins(rdev, rv6xx_get_master_voltage_mask(rdev)); } static void rv6xx_enable_static_voltage_control(struct radeon_device *rdev, struct radeon_ps *new_ps, bool enable) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); if (enable) radeon_atom_set_voltage(rdev, new_state->low.vddc, SET_VOLTAGE_TYPE_ASIC_VDDC); else r600_voltage_control_deactivate_static_control(rdev, rv6xx_get_master_voltage_mask(rdev)); } static void rv6xx_enable_display_gap(struct radeon_device *rdev, bool enable) { if (enable) { u32 tmp = (DISP1_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) | DISP2_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) | DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) | DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) | VBI_TIMER_COUNT(0x3FFF) | VBI_TIMER_UNIT(7)); WREG32(CG_DISPLAY_GAP_CNTL, tmp); WREG32_P(MCLK_PWRMGT_CNTL, USE_DISPLAY_GAP, ~USE_DISPLAY_GAP); } else WREG32_P(MCLK_PWRMGT_CNTL, 0, ~USE_DISPLAY_GAP); } static void rv6xx_program_power_level_enter_state(struct radeon_device *rdev) { r600_power_level_set_enter_index(rdev, R600_POWER_LEVEL_MEDIUM); } static void rv6xx_calculate_t(u32 l_f, u32 h_f, int h, int d_l, int d_r, u8 *l, u8 *r) { int a_n, a_d, h_r, l_r; h_r = d_l; l_r = 100 - d_r; a_n = (int)h_f * d_l + (int)l_f * (h - d_r); a_d = (int)l_f * l_r + (int)h_f * h_r; if (a_d != 0) { *l = d_l - h_r * a_n / a_d; *r = d_r + l_r * a_n / a_d; } } static void rv6xx_calculate_ap(struct radeon_device *rdev, struct rv6xx_ps *state) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.lp[0] = 0; pi->hw.rp[R600_PM_NUMBER_OF_ACTIVITY_LEVELS - 1] = 100; rv6xx_calculate_t(state->low.sclk, state->medium.sclk, R600_AH_DFLT, R600_LMP_DFLT, R600_RLP_DFLT, &pi->hw.lp[1], &pi->hw.rp[0]); rv6xx_calculate_t(state->medium.sclk, state->high.sclk, R600_AH_DFLT, R600_LHP_DFLT, R600_RMP_DFLT, &pi->hw.lp[2], &pi->hw.rp[1]); } static void rv6xx_calculate_stepping_parameters(struct radeon_device *rdev, struct radeon_ps *new_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); rv6xx_calculate_engine_speed_stepping_parameters(rdev, new_state); rv6xx_calculate_memory_clock_stepping_parameters(rdev, new_state); rv6xx_calculate_voltage_stepping_parameters(rdev, new_state); rv6xx_calculate_ap(rdev, new_state); } static void rv6xx_program_stepping_parameters_except_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_mclk_stepping_parameters_except_lowest_entry(rdev); if (pi->voltage_control) rv6xx_program_voltage_stepping_parameters_except_lowest_entry(rdev); rv6xx_program_backbias_stepping_parameters_except_lowest_entry(rdev); rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(rdev); rv6xx_program_mclk_spread_spectrum_parameters(rdev); rv6xx_program_memory_timing_parameters(rdev); } static void rv6xx_program_stepping_parameters_lowest_entry(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_mclk_stepping_parameters_lowest_entry(rdev); if (pi->voltage_control) rv6xx_program_voltage_stepping_parameters_lowest_entry(rdev); rv6xx_program_backbias_stepping_parameters_lowest_entry(rdev); rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(rdev); } static void rv6xx_program_power_level_low(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW, pi->hw.low_vddc_index); r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW, pi->hw.low_mclk_index); r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW, pi->hw.low_sclk_index); r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW, R600_DISPLAY_WATERMARK_LOW); r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW, pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]); } static void rv6xx_program_power_level_low_to_lowest_state(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW, 0); r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW, 0); r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW, 0); r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW, R600_DISPLAY_WATERMARK_LOW); r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW, pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]); } static void rv6xx_program_power_level_medium(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.medium_vddc_index); r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.medium_mclk_index); r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.medium_sclk_index); r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM, R600_DISPLAY_WATERMARK_LOW); r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM]); } static void rv6xx_program_power_level_medium_for_transition(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_program_mclk_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW, pi->hw.mclks[pi->hw.low_mclk_index]); r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM, 1); r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM, R600_POWER_LEVEL_CTXSW); r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.medium_sclk_index); r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM, R600_DISPLAY_WATERMARK_LOW); rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false); r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM, pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]); } static void rv6xx_program_power_level_high(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_HIGH, pi->hw.high_vddc_index); r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_HIGH, pi->hw.high_mclk_index); r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_HIGH, pi->hw.high_sclk_index); r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_HIGH, R600_DISPLAY_WATERMARK_HIGH); r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_HIGH, pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH]); } static void rv6xx_enable_backbias(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL, ~(BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL)); else WREG32_P(GENERAL_PWRMGT, 0, ~(BACKBIAS_VALUE | BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL)); } static void rv6xx_program_display_gap(struct radeon_device *rdev) { u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL); tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK); if (RREG32(AVIVO_D1CRTC_CONTROL) & AVIVO_CRTC_EN) { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); } else if (RREG32(AVIVO_D2CRTC_CONTROL) & AVIVO_CRTC_EN) { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK); } else { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); } WREG32(CG_DISPLAY_GAP_CNTL, tmp); } static void rv6xx_set_sw_voltage_to_safe(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); u16 safe_voltage; safe_voltage = (new_state->low.vddc >= old_state->low.vddc) ? new_state->low.vddc : old_state->low.vddc; rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW, safe_voltage); WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW), ~SW_GPIO_INDEX_MASK); } static void rv6xx_set_sw_voltage_to_low(struct radeon_device *rdev, struct radeon_ps *old_ps) { struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW, old_state->low.vddc); WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW), ~SW_GPIO_INDEX_MASK); } static void rv6xx_set_safe_backbias(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) && (old_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE)) WREG32_P(GENERAL_PWRMGT, BACKBIAS_VALUE, ~BACKBIAS_VALUE); else WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_VALUE); } static void rv6xx_set_safe_pcie_gen2(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) != (old_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2)) rv6xx_force_pcie_gen1(rdev); } static void rv6xx_enable_dynamic_voltage_control(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN); } static void rv6xx_enable_dynamic_backbias_control(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, BACKBIAS_DPM_CNTL, ~BACKBIAS_DPM_CNTL); else WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_DPM_CNTL); } static int rv6xx_step_sw_voltage(struct radeon_device *rdev, u16 initial_voltage, u16 target_voltage) { u16 current_voltage; u16 true_target_voltage; u16 voltage_step; int signed_voltage_step; if ((radeon_atom_get_voltage_step(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &voltage_step)) || (radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, initial_voltage, ¤t_voltage)) || (radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, target_voltage, &true_target_voltage))) return -EINVAL; if (true_target_voltage < current_voltage) signed_voltage_step = -(int)voltage_step; else signed_voltage_step = voltage_step; while (current_voltage != true_target_voltage) { current_voltage += signed_voltage_step; rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW, current_voltage); msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000); } return 0; } static int rv6xx_step_voltage_if_increasing(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); if (new_state->low.vddc > old_state->low.vddc) return rv6xx_step_sw_voltage(rdev, old_state->low.vddc, new_state->low.vddc); return 0; } static int rv6xx_step_voltage_if_decreasing(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); if (new_state->low.vddc < old_state->low.vddc) return rv6xx_step_sw_voltage(rdev, old_state->low.vddc, new_state->low.vddc); else return 0; } static void rv6xx_enable_high(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if ((pi->restricted_levels < 1) || (pi->restricted_levels == 3)) r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true); } static void rv6xx_enable_medium(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (pi->restricted_levels < 2) r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true); } static void rv6xx_set_dpm_event_sources(struct radeon_device *rdev, u32 sources) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); bool want_thermal_protection; enum radeon_dpm_event_src dpm_event_src; switch (sources) { case 0: default: want_thermal_protection = false; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL; break; case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) | (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL; break; } if (want_thermal_protection) { WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK); if (pi->thermal_protection) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); } else { WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } } static void rv6xx_enable_auto_throttle_source(struct radeon_device *rdev, enum radeon_dpm_auto_throttle_src source, bool enable) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (enable) { if (!(pi->active_auto_throttle_sources & (1 << source))) { pi->active_auto_throttle_sources |= 1 << source; rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } else { if (pi->active_auto_throttle_sources & (1 << source)) { pi->active_auto_throttle_sources &= ~(1 << source); rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } } static void rv6xx_enable_thermal_protection(struct radeon_device *rdev, bool enable) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); if (pi->active_auto_throttle_sources) r600_enable_thermal_protection(rdev, enable); } static void rv6xx_generate_transition_stepping(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps); struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_generate_steps(rdev, old_state->low.sclk, new_state->low.sclk, 0, &pi->hw.medium_sclk_index); } static void rv6xx_generate_low_step(struct radeon_device *rdev, struct radeon_ps *new_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.low_sclk_index = 0; rv6xx_generate_single_step(rdev, new_state->low.sclk, 0); } static void rv6xx_invalidate_intermediate_steps(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); rv6xx_invalidate_intermediate_steps_range(rdev, 0, pi->hw.medium_sclk_index); } static void rv6xx_generate_stepping_table(struct radeon_device *rdev, struct radeon_ps *new_ps) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); pi->hw.low_sclk_index = 0; rv6xx_generate_steps(rdev, new_state->low.sclk, new_state->medium.sclk, 0, &pi->hw.medium_sclk_index); rv6xx_generate_steps(rdev, new_state->medium.sclk, new_state->high.sclk, pi->hw.medium_sclk_index, &pi->hw.high_sclk_index); } static void rv6xx_enable_spread_spectrum(struct radeon_device *rdev, bool enable) { if (enable) rv6xx_enable_dynamic_spread_spectrum(rdev, true); else { rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_LOW, false); rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false); rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_HIGH, false); rv6xx_enable_dynamic_spread_spectrum(rdev, false); rv6xx_enable_memory_spread_spectrum(rdev, false); } } static void rv6xx_reset_lvtm_data_sync(struct radeon_device *rdev) { if (ASIC_IS_DCE3(rdev)) WREG32_P(DCE3_LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG); else WREG32_P(LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG); } static void rv6xx_enable_dynamic_pcie_gen2(struct radeon_device *rdev, struct radeon_ps *new_ps, bool enable) { struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps); if (enable) { rv6xx_enable_bif_dynamic_pcie_gen2(rdev, true); rv6xx_enable_pcie_gen2_support(rdev); r600_enable_dynamic_pcie_gen2(rdev, true); } else { if (!(new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2)) rv6xx_force_pcie_gen1(rdev); rv6xx_enable_bif_dynamic_pcie_gen2(rdev, false); r600_enable_dynamic_pcie_gen2(rdev, false); } } int rv6xx_dpm_enable(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; if (r600_dynamicpm_enabled(rdev)) return -EINVAL; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv6xx_enable_backbias(rdev, true); if (pi->dynamic_ss) rv6xx_enable_spread_spectrum(rdev, true); rv6xx_program_mpll_timing_parameters(rdev); rv6xx_program_bsp(rdev); rv6xx_program_git(rdev); rv6xx_program_tp(rdev); rv6xx_program_tpp(rdev); rv6xx_program_sstp(rdev); rv6xx_program_fcp(rdev); rv6xx_program_vddc3d_parameters(rdev); rv6xx_program_voltage_timing_parameters(rdev); rv6xx_program_engine_speed_parameters(rdev); rv6xx_enable_display_gap(rdev, true); if (pi->display_gap == false) rv6xx_enable_display_gap(rdev, false); rv6xx_program_power_level_enter_state(rdev); rv6xx_calculate_stepping_parameters(rdev, boot_ps); if (pi->voltage_control) rv6xx_program_voltage_gpio_pins(rdev); rv6xx_generate_stepping_table(rdev, boot_ps); rv6xx_program_stepping_parameters_except_lowest_entry(rdev); rv6xx_program_stepping_parameters_lowest_entry(rdev); rv6xx_program_power_level_low(rdev); rv6xx_program_power_level_medium(rdev); rv6xx_program_power_level_high(rdev); rv6xx_program_vc(rdev); rv6xx_program_at(rdev); r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true); r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true); r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); } rv6xx_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true); r600_start_dpm(rdev); if (pi->voltage_control) rv6xx_enable_static_voltage_control(rdev, boot_ps, false); if (pi->dynamic_pcie_gen2) rv6xx_enable_dynamic_pcie_gen2(rdev, boot_ps, true); if (pi->gfx_clock_gating) r600_gfx_clockgating_enable(rdev, true); return 0; } void rv6xx_dpm_disable(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; if (!r600_dynamicpm_enabled(rdev)) return; r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true); r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true); rv6xx_enable_display_gap(rdev, false); rv6xx_clear_vc(rdev); r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF); if (pi->thermal_protection) r600_enable_thermal_protection(rdev, false); r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW); r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false); r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv6xx_enable_backbias(rdev, false); rv6xx_enable_spread_spectrum(rdev, false); if (pi->voltage_control) rv6xx_enable_static_voltage_control(rdev, boot_ps, true); if (pi->dynamic_pcie_gen2) rv6xx_enable_dynamic_pcie_gen2(rdev, boot_ps, false); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { rdev->irq.dpm_thermal = false; radeon_irq_set(rdev); } if (pi->gfx_clock_gating) r600_gfx_clockgating_enable(rdev, false); r600_stop_dpm(rdev); } int rv6xx_dpm_set_power_state(struct radeon_device *rdev) { struct rv6xx_power_info *pi = rv6xx_get_pi(rdev); struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps; struct radeon_ps *old_ps = rdev->pm.dpm.current_ps; rv6xx_clear_vc(rdev); r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true); r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF); if (pi->thermal_protection) r600_enable_thermal_protection(rdev, false); r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW); r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false); r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false); rv6xx_generate_transition_stepping(rdev, new_ps, old_ps); rv6xx_program_power_level_medium_for_transition(rdev); if (pi->voltage_control) { rv6xx_set_sw_voltage_to_safe(rdev, new_ps, old_ps); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) rv6xx_set_sw_voltage_to_low(rdev, old_ps); } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv6xx_set_safe_backbias(rdev, new_ps, old_ps); if (pi->dynamic_pcie_gen2) rv6xx_set_safe_pcie_gen2(rdev, new_ps, old_ps); if (pi->voltage_control) rv6xx_enable_dynamic_voltage_control(rdev, false); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv6xx_enable_dynamic_backbias_control(rdev, false); if (pi->voltage_control) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) rv6xx_step_voltage_if_increasing(rdev, new_ps, old_ps); msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000); } r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true); r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, false); r600_wait_for_power_level_unequal(rdev, R600_POWER_LEVEL_LOW); rv6xx_generate_low_step(rdev, new_ps); rv6xx_invalidate_intermediate_steps(rdev); rv6xx_calculate_stepping_parameters(rdev, new_ps); rv6xx_program_stepping_parameters_lowest_entry(rdev); rv6xx_program_power_level_low_to_lowest_state(rdev); r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true); r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW); r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false); if (pi->voltage_control) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) rv6xx_step_voltage_if_decreasing(rdev, new_ps, old_ps); rv6xx_enable_dynamic_voltage_control(rdev, true); } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv6xx_enable_dynamic_backbias_control(rdev, true); if (pi->dynamic_pcie_gen2) rv6xx_enable_dynamic_pcie_gen2(rdev, new_ps, true); rv6xx_reset_lvtm_data_sync(rdev); rv6xx_generate_stepping_table(rdev, new_ps); rv6xx_program_stepping_parameters_except_lowest_entry(rdev); rv6xx_program_power_level_low(rdev); rv6xx_program_power_level_medium(rdev); rv6xx_program_power_level_high(rdev); rv6xx_enable_medium(rdev); rv6xx_enable_high(rdev); if (pi->thermal_protection) rv6xx_enable_thermal_protection(rdev, true); rv6xx_program_vc(rdev); rv6xx_program_at(rdev); return 0; } void rv6xx_setup_asic(struct radeon_device *rdev) { r600_enable_acpi_pm(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s) rv6xx_enable_l0s(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1) rv6xx_enable_l1(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1) rv6xx_enable_pll_sleep_in_l1(rdev); } void rv6xx_dpm_display_configuration_changed(struct radeon_device *rdev) { rv6xx_program_display_gap(rdev); } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void rv6xx_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info) { rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (r600_is_uvd_state(rps->class, rps->class2)) { rps->vclk = RV6XX_DEFAULT_VCLK_FREQ; rps->dclk = RV6XX_DEFAULT_DCLK_FREQ; } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) rdev->pm.dpm.boot_ps = rps; if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void rv6xx_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct rv6xx_ps *ps = rv6xx_get_ps(rps); u32 sclk, mclk; u16 vddc; struct rv6xx_pl *pl; switch (index) { case 0: pl = &ps->low; break; case 1: pl = &ps->medium; break; case 2: default: pl = &ps->high; break; } sclk = le16_to_cpu(clock_info->r600.usEngineClockLow); sclk |= clock_info->r600.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow); mclk |= clock_info->r600.ucMemoryClockHigh << 16; pl->mclk = mclk; pl->sclk = sclk; pl->vddc = le16_to_cpu(clock_info->r600.usVDDC); pl->flags = le32_to_cpu(clock_info->r600.ulFlags); /* patch up vddc if necessary */ if (pl->vddc == 0xff01) { if (radeon_atom_get_max_vddc(rdev, 0, 0, &vddc) == 0) pl->vddc = vddc; } /* fix up pcie gen2 */ if (pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) { if ((rdev->family == CHIP_RV610) || (rdev->family == CHIP_RV630)) { if (pl->vddc < 1100) pl->flags &= ~ATOM_PPLIB_R600_FLAGS_PCIEGEN2; } } /* patch up boot state */ if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { u16 vddc, vddci; radeon_atombios_get_default_voltages(rdev, &vddc, &vddci); pl->mclk = rdev->clock.default_mclk; pl->sclk = rdev->clock.default_sclk; pl->vddc = vddc; } } static int rv6xx_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j; union pplib_clock_info *clock_info; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; struct rv6xx_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) * power_info->pplib.ucNumStates, GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); for (i = 0; i < power_info->pplib.ucNumStates; i++) { power_state = (union pplib_power_state *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset) + i * power_info->pplib.ucStateEntrySize); non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) + (power_state->v1.ucNonClockStateIndex * power_info->pplib.ucNonClockSize)); if (power_info->pplib.ucStateEntrySize - 1) { ps = kzalloc(sizeof(struct rv6xx_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; rv6xx_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info); for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) { clock_info = (union pplib_clock_info *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) + (power_state->v1.ucClockStateIndices[j] * power_info->pplib.ucClockInfoSize)); rv6xx_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], j, clock_info); } } } rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates; return 0; } int rv6xx_dpm_init(struct radeon_device *rdev) { int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info); uint16_t data_offset, size; uint8_t frev, crev; struct atom_clock_dividers dividers; struct rv6xx_power_info *pi; int ret; pi = kzalloc(sizeof(struct rv6xx_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; ret = rv6xx_parse_power_table(rdev); if (ret) return ret; if (rdev->pm.dpm.voltage_response_time == 0) rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT; if (rdev->pm.dpm.backbias_response_time == 0) rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, 0, false, ÷rs); if (ret) pi->spll_ref_div = dividers.ref_div + 1; else pi->spll_ref_div = R600_REFERENCEDIVIDER_DFLT; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, 0, false, ÷rs); if (ret) pi->mpll_ref_div = dividers.ref_div + 1; else pi->mpll_ref_div = R600_REFERENCEDIVIDER_DFLT; if (rdev->family >= CHIP_RV670) pi->fb_div_scale = 1; else pi->fb_div_scale = 0; pi->voltage_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC); pi->gfx_clock_gating = true; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { pi->sclk_ss = true; pi->mclk_ss = true; pi->dynamic_ss = true; } else { pi->sclk_ss = false; pi->mclk_ss = false; pi->dynamic_ss = false; } pi->dynamic_pcie_gen2 = true; if (pi->gfx_clock_gating && (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE)) pi->thermal_protection = true; else pi->thermal_protection = false; pi->display_gap = true; return 0; } void rv6xx_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct rv6xx_ps *ps = rv6xx_get_ps(rps); struct rv6xx_pl *pl; r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); pl = &ps->low; printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); pl = &ps->medium; printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); pl = &ps->high; printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); r600_dpm_print_ps_status(rdev, rps); } void rv6xx_dpm_fini(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); } u32 rv6xx_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps); if (low) return requested_state->low.sclk; else return requested_state->high.sclk; } u32 rv6xx_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps); if (low) return requested_state->low.mclk; else return requested_state->high.mclk; }