/* * adm1025.c * * Copyright (C) 2000 Chen-Yuan Wu * Copyright (C) 2003-2004 Jean Delvare * * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6 * voltages (including its own power source) and up to two temperatures * (its own plus up to one external one). Voltages are scaled internally * (which is not the common way) with ratios such that the nominal value * of each voltage correspond to a register value of 192 (which means a * resolution of about 0.5% of the nominal value). Temperature values are * reported with a 1 deg resolution and a 3 deg accuracy. Complete * datasheet can be obtained from Analog's website at: * http://www.analog.com/Analog_Root/productPage/productHome/0,2121,ADM1025,00.html * * This driver also supports the ADM1025A, which differs from the ADM1025 * only in that it has "open-drain VID inputs while the ADM1025 has * on-chip 100k pull-ups on the VID inputs". It doesn't make any * difference for us. * * This driver also supports the NE1619, a sensor chip made by Philips. * That chip is similar to the ADM1025A, with a few differences. The only * difference that matters to us is that the NE1619 has only two possible * addresses while the ADM1025A has a third one. Complete datasheet can be * obtained from Philips's website at: * http://www.semiconductors.philips.com/pip/NE1619DS.html * * Since the ADM1025 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include /* * Addresses to scan * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e. * NE1619 has two possible addresses: 0x2c and 0x2d. */ static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* * Insmod parameters */ I2C_CLIENT_INSMOD_2(adm1025, ne1619); /* * The ADM1025 registers */ #define ADM1025_REG_MAN_ID 0x3E #define ADM1025_REG_CHIP_ID 0x3F #define ADM1025_REG_CONFIG 0x40 #define ADM1025_REG_STATUS1 0x41 #define ADM1025_REG_STATUS2 0x42 #define ADM1025_REG_IN(nr) (0x20 + (nr)) #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2) #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2) #define ADM1025_REG_TEMP(nr) (0x26 + (nr)) #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2) #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2) #define ADM1025_REG_VID 0x47 #define ADM1025_REG_VID4 0x49 /* * Conversions and various macros * The ADM1025 uses signed 8-bit values for temperatures. */ static int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 }; #define IN_FROM_REG(reg,scale) (((reg) * (scale) + 96) / 192) #define IN_TO_REG(val,scale) ((val) <= 0 ? 0 : \ (val) * 192 >= (scale) * 255 ? 255 : \ ((val) * 192 + (scale)/2) / (scale)) #define TEMP_FROM_REG(reg) ((reg) * 1000) #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \ (val) >= 126500 ? 127 : \ (((val) < 0 ? (val)-500 : (val)+500) / 1000)) /* * Functions declaration */ static int adm1025_attach_adapter(struct i2c_adapter *adapter); static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind); static void adm1025_init_client(struct i2c_client *client); static int adm1025_detach_client(struct i2c_client *client); static struct adm1025_data *adm1025_update_device(struct device *dev); /* * Driver data (common to all clients) */ static struct i2c_driver adm1025_driver = { .driver = { .name = "adm1025", }, .id = I2C_DRIVERID_ADM1025, .attach_adapter = adm1025_attach_adapter, .detach_client = adm1025_detach_client, }; /* * Client data (each client gets its own) */ struct adm1025_data { struct i2c_client client; struct device *hwmon_dev; struct mutex update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ u8 in[6]; /* register value */ u8 in_max[6]; /* register value */ u8 in_min[6]; /* register value */ s8 temp[2]; /* register value */ s8 temp_min[2]; /* register value */ s8 temp_max[2]; /* register value */ u16 alarms; /* register values, combined */ u8 vid; /* register values, combined */ u8 vrm; }; /* * Sysfs stuff */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index], in_scale[index])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index], in_scale[index])); } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index], in_scale[index])); } static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index])); } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[index] = IN_TO_REG(val, in_scale[index]); i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index), data->in_min[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[index] = IN_TO_REG(val, in_scale[index]); i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index), data->in_max[index]); mutex_unlock(&data->update_lock); return count; } #define set_in(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \ show_in_max, set_in_max, offset) set_in(0); set_in(1); set_in(2); set_in(3); set_in(4); set_in(5); static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_min[index] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index), data->temp_min[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[index] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index), data->temp_max[index]); mutex_unlock(&data->update_lock); return count; } #define set_temp(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \ show_temp_min, set_temp_min, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \ show_temp_max, set_temp_max, offset - 1) set_temp(1); set_temp(2); static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14); static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->vrm); } static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); data->vrm = simple_strtoul(buf, NULL, 10); return count; } static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); /* * Real code */ static int adm1025_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, adm1025_detect); } static struct attribute *adm1025_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, NULL }; static const struct attribute_group adm1025_group = { .attrs = adm1025_attributes, }; static struct attribute *adm1025_attributes_opt[] = { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }; static const struct attribute_group adm1025_group_opt = { .attrs = adm1025_attributes_opt, }; /* * The following function does more than just detection. If detection * succeeds, it also registers the new chip. */ static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct adm1025_data *data; int err = 0; const char *name = ""; u8 config; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; if (!(data = kzalloc(sizeof(struct adm1025_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } /* The common I2C client data is placed right before the ADM1025-specific data. */ new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &adm1025_driver; new_client->flags = 0; /* * Now we do the remaining detection. A negative kind means that * the driver was loaded with no force parameter (default), so we * must both detect and identify the chip. A zero kind means that * the driver was loaded with the force parameter, the detection * step shall be skipped. A positive kind means that the driver * was loaded with the force parameter and a given kind of chip is * requested, so both the detection and the identification steps * are skipped. */ config = i2c_smbus_read_byte_data(new_client, ADM1025_REG_CONFIG); if (kind < 0) { /* detection */ if ((config & 0x80) != 0x00 || (i2c_smbus_read_byte_data(new_client, ADM1025_REG_STATUS1) & 0xC0) != 0x00 || (i2c_smbus_read_byte_data(new_client, ADM1025_REG_STATUS2) & 0xBC) != 0x00) { dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x.\n", address); goto exit_free; } } if (kind <= 0) { /* identification */ u8 man_id, chip_id; man_id = i2c_smbus_read_byte_data(new_client, ADM1025_REG_MAN_ID); chip_id = i2c_smbus_read_byte_data(new_client, ADM1025_REG_CHIP_ID); if (man_id == 0x41) { /* Analog Devices */ if ((chip_id & 0xF0) == 0x20) { /* ADM1025/ADM1025A */ kind = adm1025; } } else if (man_id == 0xA1) { /* Philips */ if (address != 0x2E && (chip_id & 0xF0) == 0x20) { /* NE1619 */ kind = ne1619; } } if (kind <= 0) { /* identification failed */ dev_info(&adapter->dev, "Unsupported chip (man_id=0x%02X, " "chip_id=0x%02X).\n", man_id, chip_id); goto exit_free; } } if (kind == adm1025) { name = "adm1025"; } else if (kind == ne1619) { name = "ne1619"; } /* We can fill in the remaining client fields */ strlcpy(new_client->name, name, I2C_NAME_SIZE); data->valid = 0; mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto exit_free; /* Initialize the ADM1025 chip */ adm1025_init_client(new_client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1025_group))) goto exit_detach; /* Pin 11 is either in4 (+12V) or VID4 */ if (!(config & 0x20)) { if ((err = device_create_file(&new_client->dev, &sensor_dev_attr_in4_input.dev_attr)) || (err = device_create_file(&new_client->dev, &sensor_dev_attr_in4_min.dev_attr)) || (err = device_create_file(&new_client->dev, &sensor_dev_attr_in4_max.dev_attr)) || (err = device_create_file(&new_client->dev, &sensor_dev_attr_in4_alarm.dev_attr))) goto exit_remove; } data->hwmon_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove; } return 0; exit_remove: sysfs_remove_group(&new_client->dev.kobj, &adm1025_group); sysfs_remove_group(&new_client->dev.kobj, &adm1025_group_opt); exit_detach: i2c_detach_client(new_client); exit_free: kfree(data); exit: return err; } static void adm1025_init_client(struct i2c_client *client) { u8 reg; struct adm1025_data *data = i2c_get_clientdata(client); int i; data->vrm = vid_which_vrm(); /* * Set high limits * Usually we avoid setting limits on driver init, but it happens * that the ADM1025 comes with stupid default limits (all registers * set to 0). In case the chip has not gone through any limit * setting yet, we better set the high limits to the max so that * no alarm triggers. */ for (i=0; i<6; i++) { reg = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MAX(i)); if (reg == 0) i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(i), 0xFF); } for (i=0; i<2; i++) { reg = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_HIGH(i)); if (reg == 0) i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(i), 0x7F); } /* * Start the conversions */ reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG); if (!(reg & 0x01)) i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG, (reg&0x7E)|0x01); } static int adm1025_detach_client(struct i2c_client *client) { struct adm1025_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &adm1025_group); sysfs_remove_group(&client->dev.kobj, &adm1025_group_opt); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static struct adm1025_data *adm1025_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adm1025_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { int i; dev_dbg(&client->dev, "Updating data.\n"); for (i=0; i<6; i++) { data->in[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN(i)); data->in_min[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MIN(i)); data->in_max[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MAX(i)); } for (i=0; i<2; i++) { data->temp[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP(i)); data->temp_min[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_LOW(i)); data->temp_max[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_HIGH(i)); } data->alarms = i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) | (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) << 8); data->vid = (i2c_smbus_read_byte_data(client, ADM1025_REG_VID) & 0x0f) | ((i2c_smbus_read_byte_data(client, ADM1025_REG_VID4) & 0x01) << 4); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_adm1025_init(void) { return i2c_add_driver(&adm1025_driver); } static void __exit sensors_adm1025_exit(void) { i2c_del_driver(&adm1025_driver); } MODULE_AUTHOR("Jean Delvare "); MODULE_DESCRIPTION("ADM1025 driver"); MODULE_LICENSE("GPL"); module_init(sensors_adm1025_init); module_exit(sensors_adm1025_exit);