/* * fscher.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * fujitsu siemens hermes chip, * module based on fscpos.c * Copyright (C) 2000 Hermann Jung <hej@odn.de> * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * and Philip Edelbrock <phil@netroedge.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/sysfs.h> /* * Addresses to scan */ static unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END }; /* * Insmod parameters */ I2C_CLIENT_INSMOD_1(fscher); /* * The FSCHER registers */ /* chip identification */ #define FSCHER_REG_IDENT_0 0x00 #define FSCHER_REG_IDENT_1 0x01 #define FSCHER_REG_IDENT_2 0x02 #define FSCHER_REG_REVISION 0x03 /* global control and status */ #define FSCHER_REG_EVENT_STATE 0x04 #define FSCHER_REG_CONTROL 0x05 /* watchdog */ #define FSCHER_REG_WDOG_PRESET 0x28 #define FSCHER_REG_WDOG_STATE 0x23 #define FSCHER_REG_WDOG_CONTROL 0x21 /* fan 0 */ #define FSCHER_REG_FAN0_MIN 0x55 #define FSCHER_REG_FAN0_ACT 0x0e #define FSCHER_REG_FAN0_STATE 0x0d #define FSCHER_REG_FAN0_RIPPLE 0x0f /* fan 1 */ #define FSCHER_REG_FAN1_MIN 0x65 #define FSCHER_REG_FAN1_ACT 0x6b #define FSCHER_REG_FAN1_STATE 0x62 #define FSCHER_REG_FAN1_RIPPLE 0x6f /* fan 2 */ #define FSCHER_REG_FAN2_MIN 0xb5 #define FSCHER_REG_FAN2_ACT 0xbb #define FSCHER_REG_FAN2_STATE 0xb2 #define FSCHER_REG_FAN2_RIPPLE 0xbf /* voltage supervision */ #define FSCHER_REG_VOLT_12 0x45 #define FSCHER_REG_VOLT_5 0x42 #define FSCHER_REG_VOLT_BATT 0x48 /* temperature 0 */ #define FSCHER_REG_TEMP0_ACT 0x64 #define FSCHER_REG_TEMP0_STATE 0x71 /* temperature 1 */ #define FSCHER_REG_TEMP1_ACT 0x32 #define FSCHER_REG_TEMP1_STATE 0x81 /* temperature 2 */ #define FSCHER_REG_TEMP2_ACT 0x35 #define FSCHER_REG_TEMP2_STATE 0x91 /* * Functions declaration */ static int fscher_attach_adapter(struct i2c_adapter *adapter); static int fscher_detect(struct i2c_adapter *adapter, int address, int kind); static int fscher_detach_client(struct i2c_client *client); static struct fscher_data *fscher_update_device(struct device *dev); static void fscher_init_client(struct i2c_client *client); static int fscher_read_value(struct i2c_client *client, u8 reg); static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value); /* * Driver data (common to all clients) */ static struct i2c_driver fscher_driver = { .driver = { .name = "fscher", }, .id = I2C_DRIVERID_FSCHER, .attach_adapter = fscher_attach_adapter, .detach_client = fscher_detach_client, }; /* * Client data (each client gets its own) */ struct fscher_data { struct i2c_client client; struct device *hwmon_dev; struct mutex update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ /* register values */ u8 revision; /* revision of chip */ u8 global_event; /* global event status */ u8 global_control; /* global control register */ u8 watchdog[3]; /* watchdog */ u8 volt[3]; /* 12, 5, battery voltage */ u8 temp_act[3]; /* temperature */ u8 temp_status[3]; /* status of sensor */ u8 fan_act[3]; /* fans revolutions per second */ u8 fan_status[3]; /* fan status */ u8 fan_min[3]; /* fan min value for rps */ u8 fan_ripple[3]; /* divider for rps */ }; /* * Sysfs stuff */ #define sysfs_r(kind, sub, offset, reg) \ static ssize_t show_##kind##sub (struct fscher_data *, char *, int); \ static ssize_t show_##kind##offset##sub (struct device *, struct device_attribute *attr, char *); \ static ssize_t show_##kind##offset##sub (struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct fscher_data *data = fscher_update_device(dev); \ return show_##kind##sub(data, buf, (offset)); \ } #define sysfs_w(kind, sub, offset, reg) \ static ssize_t set_##kind##sub (struct i2c_client *, struct fscher_data *, const char *, size_t, int, int); \ static ssize_t set_##kind##offset##sub (struct device *, struct device_attribute *attr, const char *, size_t); \ static ssize_t set_##kind##offset##sub (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) \ { \ struct i2c_client *client = to_i2c_client(dev); \ struct fscher_data *data = i2c_get_clientdata(client); \ return set_##kind##sub(client, data, buf, count, (offset), reg); \ } #define sysfs_rw_n(kind, sub, offset, reg) \ sysfs_r(kind, sub, offset, reg) \ sysfs_w(kind, sub, offset, reg) \ static DEVICE_ATTR(kind##offset##sub, S_IRUGO | S_IWUSR, show_##kind##offset##sub, set_##kind##offset##sub); #define sysfs_rw(kind, sub, reg) \ sysfs_r(kind, sub, 0, reg) \ sysfs_w(kind, sub, 0, reg) \ static DEVICE_ATTR(kind##sub, S_IRUGO | S_IWUSR, show_##kind##0##sub, set_##kind##0##sub); #define sysfs_ro_n(kind, sub, offset, reg) \ sysfs_r(kind, sub, offset, reg) \ static DEVICE_ATTR(kind##offset##sub, S_IRUGO, show_##kind##offset##sub, NULL); #define sysfs_ro(kind, sub, reg) \ sysfs_r(kind, sub, 0, reg) \ static DEVICE_ATTR(kind, S_IRUGO, show_##kind##0##sub, NULL); #define sysfs_fan(offset, reg_status, reg_min, reg_ripple, reg_act) \ sysfs_rw_n(pwm, , offset, reg_min) \ sysfs_rw_n(fan, _status, offset, reg_status) \ sysfs_rw_n(fan, _div , offset, reg_ripple) \ sysfs_ro_n(fan, _input , offset, reg_act) #define sysfs_temp(offset, reg_status, reg_act) \ sysfs_rw_n(temp, _status, offset, reg_status) \ sysfs_ro_n(temp, _input , offset, reg_act) #define sysfs_in(offset, reg_act) \ sysfs_ro_n(in, _input, offset, reg_act) #define sysfs_revision(reg_revision) \ sysfs_ro(revision, , reg_revision) #define sysfs_alarms(reg_events) \ sysfs_ro(alarms, , reg_events) #define sysfs_control(reg_control) \ sysfs_rw(control, , reg_control) #define sysfs_watchdog(reg_control, reg_status, reg_preset) \ sysfs_rw(watchdog, _control, reg_control) \ sysfs_rw(watchdog, _status , reg_status) \ sysfs_rw(watchdog, _preset , reg_preset) sysfs_fan(1, FSCHER_REG_FAN0_STATE, FSCHER_REG_FAN0_MIN, FSCHER_REG_FAN0_RIPPLE, FSCHER_REG_FAN0_ACT) sysfs_fan(2, FSCHER_REG_FAN1_STATE, FSCHER_REG_FAN1_MIN, FSCHER_REG_FAN1_RIPPLE, FSCHER_REG_FAN1_ACT) sysfs_fan(3, FSCHER_REG_FAN2_STATE, FSCHER_REG_FAN2_MIN, FSCHER_REG_FAN2_RIPPLE, FSCHER_REG_FAN2_ACT) sysfs_temp(1, FSCHER_REG_TEMP0_STATE, FSCHER_REG_TEMP0_ACT) sysfs_temp(2, FSCHER_REG_TEMP1_STATE, FSCHER_REG_TEMP1_ACT) sysfs_temp(3, FSCHER_REG_TEMP2_STATE, FSCHER_REG_TEMP2_ACT) sysfs_in(0, FSCHER_REG_VOLT_12) sysfs_in(1, FSCHER_REG_VOLT_5) sysfs_in(2, FSCHER_REG_VOLT_BATT) sysfs_revision(FSCHER_REG_REVISION) sysfs_alarms(FSCHER_REG_EVENTS) sysfs_control(FSCHER_REG_CONTROL) sysfs_watchdog(FSCHER_REG_WDOG_CONTROL, FSCHER_REG_WDOG_STATE, FSCHER_REG_WDOG_PRESET) static struct attribute *fscher_attributes[] = { &dev_attr_revision.attr, &dev_attr_alarms.attr, &dev_attr_control.attr, &dev_attr_watchdog_status.attr, &dev_attr_watchdog_control.attr, &dev_attr_watchdog_preset.attr, &dev_attr_in0_input.attr, &dev_attr_in1_input.attr, &dev_attr_in2_input.attr, &dev_attr_fan1_status.attr, &dev_attr_fan1_div.attr, &dev_attr_fan1_input.attr, &dev_attr_pwm1.attr, &dev_attr_fan2_status.attr, &dev_attr_fan2_div.attr, &dev_attr_fan2_input.attr, &dev_attr_pwm2.attr, &dev_attr_fan3_status.attr, &dev_attr_fan3_div.attr, &dev_attr_fan3_input.attr, &dev_attr_pwm3.attr, &dev_attr_temp1_status.attr, &dev_attr_temp1_input.attr, &dev_attr_temp2_status.attr, &dev_attr_temp2_input.attr, &dev_attr_temp3_status.attr, &dev_attr_temp3_input.attr, NULL }; static const struct attribute_group fscher_group = { .attrs = fscher_attributes, }; /* * Real code */ static int fscher_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, fscher_detect); } static int fscher_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct fscher_data *data; int err = 0; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; /* OK. For now, we presume we have a valid client. We now create the * client structure, even though we cannot fill it completely yet. * But it allows us to access i2c_smbus_read_byte_data. */ if (!(data = kzalloc(sizeof(struct fscher_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } /* The common I2C client data is placed right before the * Hermes-specific data. */ new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &fscher_driver; new_client->flags = 0; /* Do the remaining detection unless force or force_fscher parameter */ if (kind < 0) { if ((i2c_smbus_read_byte_data(new_client, FSCHER_REG_IDENT_0) != 0x48) /* 'H' */ || (i2c_smbus_read_byte_data(new_client, FSCHER_REG_IDENT_1) != 0x45) /* 'E' */ || (i2c_smbus_read_byte_data(new_client, FSCHER_REG_IDENT_2) != 0x52)) /* 'R' */ goto exit_free; } /* Fill in the remaining client fields and put it into the * global list */ strlcpy(new_client->name, "fscher", I2C_NAME_SIZE); data->valid = 0; mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto exit_free; fscher_init_client(new_client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&new_client->dev.kobj, &fscher_group))) goto exit_detach; data->hwmon_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: sysfs_remove_group(&new_client->dev.kobj, &fscher_group); exit_detach: i2c_detach_client(new_client); exit_free: kfree(data); exit: return err; } static int fscher_detach_client(struct i2c_client *client) { struct fscher_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &fscher_group); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static int fscher_read_value(struct i2c_client *client, u8 reg) { dev_dbg(&client->dev, "read reg 0x%02x\n", reg); return i2c_smbus_read_byte_data(client, reg); } static int fscher_write_value(struct i2c_client *client, u8 reg, u8 value) { dev_dbg(&client->dev, "write reg 0x%02x, val 0x%02x\n", reg, value); return i2c_smbus_write_byte_data(client, reg, value); } /* Called when we have found a new FSC Hermes. */ static void fscher_init_client(struct i2c_client *client) { struct fscher_data *data = i2c_get_clientdata(client); /* Read revision from chip */ data->revision = fscher_read_value(client, FSCHER_REG_REVISION); } static struct fscher_data *fscher_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct fscher_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { dev_dbg(&client->dev, "Starting fscher update\n"); data->temp_act[0] = fscher_read_value(client, FSCHER_REG_TEMP0_ACT); data->temp_act[1] = fscher_read_value(client, FSCHER_REG_TEMP1_ACT); data->temp_act[2] = fscher_read_value(client, FSCHER_REG_TEMP2_ACT); data->temp_status[0] = fscher_read_value(client, FSCHER_REG_TEMP0_STATE); data->temp_status[1] = fscher_read_value(client, FSCHER_REG_TEMP1_STATE); data->temp_status[2] = fscher_read_value(client, FSCHER_REG_TEMP2_STATE); data->volt[0] = fscher_read_value(client, FSCHER_REG_VOLT_12); data->volt[1] = fscher_read_value(client, FSCHER_REG_VOLT_5); data->volt[2] = fscher_read_value(client, FSCHER_REG_VOLT_BATT); data->fan_act[0] = fscher_read_value(client, FSCHER_REG_FAN0_ACT); data->fan_act[1] = fscher_read_value(client, FSCHER_REG_FAN1_ACT); data->fan_act[2] = fscher_read_value(client, FSCHER_REG_FAN2_ACT); data->fan_status[0] = fscher_read_value(client, FSCHER_REG_FAN0_STATE); data->fan_status[1] = fscher_read_value(client, FSCHER_REG_FAN1_STATE); data->fan_status[2] = fscher_read_value(client, FSCHER_REG_FAN2_STATE); data->fan_min[0] = fscher_read_value(client, FSCHER_REG_FAN0_MIN); data->fan_min[1] = fscher_read_value(client, FSCHER_REG_FAN1_MIN); data->fan_min[2] = fscher_read_value(client, FSCHER_REG_FAN2_MIN); data->fan_ripple[0] = fscher_read_value(client, FSCHER_REG_FAN0_RIPPLE); data->fan_ripple[1] = fscher_read_value(client, FSCHER_REG_FAN1_RIPPLE); data->fan_ripple[2] = fscher_read_value(client, FSCHER_REG_FAN2_RIPPLE); data->watchdog[0] = fscher_read_value(client, FSCHER_REG_WDOG_PRESET); data->watchdog[1] = fscher_read_value(client, FSCHER_REG_WDOG_STATE); data->watchdog[2] = fscher_read_value(client, FSCHER_REG_WDOG_CONTROL); data->global_event = fscher_read_value(client, FSCHER_REG_EVENT_STATE); data->global_control = fscher_read_value(client, FSCHER_REG_CONTROL); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } #define FAN_INDEX_FROM_NUM(nr) ((nr) - 1) static ssize_t set_fan_status(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* bits 0..1, 3..7 reserved => mask with 0x04 */ unsigned long v = simple_strtoul(buf, NULL, 10) & 0x04; mutex_lock(&data->update_lock); data->fan_status[FAN_INDEX_FROM_NUM(nr)] &= ~v; fscher_write_value(client, reg, v); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_status(struct fscher_data *data, char *buf, int nr) { /* bits 0..1, 3..7 reserved => mask with 0x04 */ return sprintf(buf, "%u\n", data->fan_status[FAN_INDEX_FROM_NUM(nr)] & 0x04); } static ssize_t set_pwm(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { unsigned long v = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[FAN_INDEX_FROM_NUM(nr)] = v > 0xff ? 0xff : v; fscher_write_value(client, reg, data->fan_min[FAN_INDEX_FROM_NUM(nr)]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm(struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%u\n", data->fan_min[FAN_INDEX_FROM_NUM(nr)]); } static ssize_t set_fan_div(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* supported values: 2, 4, 8 */ unsigned long v = simple_strtoul(buf, NULL, 10); switch (v) { case 2: v = 1; break; case 4: v = 2; break; case 8: v = 3; break; default: dev_err(&client->dev, "fan_div value %ld not " "supported. Choose one of 2, 4 or 8!\n", v); return -EINVAL; } mutex_lock(&data->update_lock); /* bits 2..7 reserved => mask with 0x03 */ data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] &= ~0x03; data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] |= v; fscher_write_value(client, reg, data->fan_ripple[FAN_INDEX_FROM_NUM(nr)]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_div(struct fscher_data *data, char *buf, int nr) { /* bits 2..7 reserved => mask with 0x03 */ return sprintf(buf, "%u\n", 1 << (data->fan_ripple[FAN_INDEX_FROM_NUM(nr)] & 0x03)); } #define RPM_FROM_REG(val) (val*60) static ssize_t show_fan_input (struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[FAN_INDEX_FROM_NUM(nr)])); } #define TEMP_INDEX_FROM_NUM(nr) ((nr) - 1) static ssize_t set_temp_status(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* bits 2..7 reserved, 0 read only => mask with 0x02 */ unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02; mutex_lock(&data->update_lock); data->temp_status[TEMP_INDEX_FROM_NUM(nr)] &= ~v; fscher_write_value(client, reg, v); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_status(struct fscher_data *data, char *buf, int nr) { /* bits 2..7 reserved => mask with 0x03 */ return sprintf(buf, "%u\n", data->temp_status[TEMP_INDEX_FROM_NUM(nr)] & 0x03); } #define TEMP_FROM_REG(val) (((val) - 128) * 1000) static ssize_t show_temp_input(struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[TEMP_INDEX_FROM_NUM(nr)])); } /* * The final conversion is specified in sensors.conf, as it depends on * mainboard specific values. We export the registers contents as * pseudo-hundredths-of-Volts (range 0V - 2.55V). Not that it makes much * sense per se, but it minimizes the conversions count and keeps the * values within a usual range. */ #define VOLT_FROM_REG(val) ((val) * 10) static ssize_t show_in_input(struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%u\n", VOLT_FROM_REG(data->volt[nr])); } static ssize_t show_revision(struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%u\n", data->revision); } static ssize_t show_alarms(struct fscher_data *data, char *buf, int nr) { /* bits 2, 5..6 reserved => mask with 0x9b */ return sprintf(buf, "%u\n", data->global_event & 0x9b); } static ssize_t set_control(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* bits 1..7 reserved => mask with 0x01 */ unsigned long v = simple_strtoul(buf, NULL, 10) & 0x01; mutex_lock(&data->update_lock); data->global_control = v; fscher_write_value(client, reg, v); mutex_unlock(&data->update_lock); return count; } static ssize_t show_control(struct fscher_data *data, char *buf, int nr) { /* bits 1..7 reserved => mask with 0x01 */ return sprintf(buf, "%u\n", data->global_control & 0x01); } static ssize_t set_watchdog_control(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* bits 0..3 reserved => mask with 0xf0 */ unsigned long v = simple_strtoul(buf, NULL, 10) & 0xf0; mutex_lock(&data->update_lock); data->watchdog[2] &= ~0xf0; data->watchdog[2] |= v; fscher_write_value(client, reg, data->watchdog[2]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_watchdog_control(struct fscher_data *data, char *buf, int nr) { /* bits 0..3 reserved, bit 5 write only => mask with 0xd0 */ return sprintf(buf, "%u\n", data->watchdog[2] & 0xd0); } static ssize_t set_watchdog_status(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { /* bits 0, 2..7 reserved => mask with 0x02 */ unsigned long v = simple_strtoul(buf, NULL, 10) & 0x02; mutex_lock(&data->update_lock); data->watchdog[1] &= ~v; fscher_write_value(client, reg, v); mutex_unlock(&data->update_lock); return count; } static ssize_t show_watchdog_status(struct fscher_data *data, char *buf, int nr) { /* bits 0, 2..7 reserved => mask with 0x02 */ return sprintf(buf, "%u\n", data->watchdog[1] & 0x02); } static ssize_t set_watchdog_preset(struct i2c_client *client, struct fscher_data *data, const char *buf, size_t count, int nr, int reg) { unsigned long v = simple_strtoul(buf, NULL, 10) & 0xff; mutex_lock(&data->update_lock); data->watchdog[0] = v; fscher_write_value(client, reg, data->watchdog[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_watchdog_preset(struct fscher_data *data, char *buf, int nr) { return sprintf(buf, "%u\n", data->watchdog[0]); } static int __init sensors_fscher_init(void) { return i2c_add_driver(&fscher_driver); } static void __exit sensors_fscher_exit(void) { i2c_del_driver(&fscher_driver); } MODULE_AUTHOR("Reinhard Nissl <rnissl@gmx.de>"); MODULE_DESCRIPTION("FSC Hermes driver"); MODULE_LICENSE("GPL"); module_init(sensors_fscher_init); module_exit(sensors_fscher_exit);