/* w83792d.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (C) 2004, 2005 Winbond Electronics Corp. Chunhao Huang <DZShen@Winbond.com.tw>, Rudolf Marek <r.marek@assembler.cz> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Note: 1. This driver is only for 2.6 kernel, 2.4 kernel need a different driver. 2. This driver is only for Winbond W83792D C version device, there are also some motherboards with B version W83792D device. The calculation method to in6-in7(measured value, limits) is a little different between C and B version. C or B version can be identified by CR[0x49h]. */ /* Supports following chips: Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA w83792d 9 7 7 3 0x7a 0x5ca3 yes no */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/sysfs.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_1(w83792d); static unsigned short force_subclients[4]; module_param_array(force_subclients, short, NULL, 0); MODULE_PARM_DESC(force_subclients, "List of subclient addresses: " "{bus, clientaddr, subclientaddr1, subclientaddr2}"); static int init; module_param(init, bool, 0); MODULE_PARM_DESC(init, "Set to one to force chip initialization"); /* The W83792D registers */ static const u8 W83792D_REG_IN[9] = { 0x20, /* Vcore A in DataSheet */ 0x21, /* Vcore B in DataSheet */ 0x22, /* VIN0 in DataSheet */ 0x23, /* VIN1 in DataSheet */ 0x24, /* VIN2 in DataSheet */ 0x25, /* VIN3 in DataSheet */ 0x26, /* 5VCC in DataSheet */ 0xB0, /* 5VSB in DataSheet */ 0xB1 /* VBAT in DataSheet */ }; #define W83792D_REG_LOW_BITS1 0x3E /* Low Bits I in DataSheet */ #define W83792D_REG_LOW_BITS2 0x3F /* Low Bits II in DataSheet */ static const u8 W83792D_REG_IN_MAX[9] = { 0x2B, /* Vcore A High Limit in DataSheet */ 0x2D, /* Vcore B High Limit in DataSheet */ 0x2F, /* VIN0 High Limit in DataSheet */ 0x31, /* VIN1 High Limit in DataSheet */ 0x33, /* VIN2 High Limit in DataSheet */ 0x35, /* VIN3 High Limit in DataSheet */ 0x37, /* 5VCC High Limit in DataSheet */ 0xB4, /* 5VSB High Limit in DataSheet */ 0xB6 /* VBAT High Limit in DataSheet */ }; static const u8 W83792D_REG_IN_MIN[9] = { 0x2C, /* Vcore A Low Limit in DataSheet */ 0x2E, /* Vcore B Low Limit in DataSheet */ 0x30, /* VIN0 Low Limit in DataSheet */ 0x32, /* VIN1 Low Limit in DataSheet */ 0x34, /* VIN2 Low Limit in DataSheet */ 0x36, /* VIN3 Low Limit in DataSheet */ 0x38, /* 5VCC Low Limit in DataSheet */ 0xB5, /* 5VSB Low Limit in DataSheet */ 0xB7 /* VBAT Low Limit in DataSheet */ }; static const u8 W83792D_REG_FAN[7] = { 0x28, /* FAN 1 Count in DataSheet */ 0x29, /* FAN 2 Count in DataSheet */ 0x2A, /* FAN 3 Count in DataSheet */ 0xB8, /* FAN 4 Count in DataSheet */ 0xB9, /* FAN 5 Count in DataSheet */ 0xBA, /* FAN 6 Count in DataSheet */ 0xBE /* FAN 7 Count in DataSheet */ }; static const u8 W83792D_REG_FAN_MIN[7] = { 0x3B, /* FAN 1 Count Low Limit in DataSheet */ 0x3C, /* FAN 2 Count Low Limit in DataSheet */ 0x3D, /* FAN 3 Count Low Limit in DataSheet */ 0xBB, /* FAN 4 Count Low Limit in DataSheet */ 0xBC, /* FAN 5 Count Low Limit in DataSheet */ 0xBD, /* FAN 6 Count Low Limit in DataSheet */ 0xBF /* FAN 7 Count Low Limit in DataSheet */ }; #define W83792D_REG_FAN_CFG 0x84 /* FAN Configuration in DataSheet */ static const u8 W83792D_REG_FAN_DIV[4] = { 0x47, /* contains FAN2 and FAN1 Divisor */ 0x5B, /* contains FAN4 and FAN3 Divisor */ 0x5C, /* contains FAN6 and FAN5 Divisor */ 0x9E /* contains FAN7 Divisor. */ }; static const u8 W83792D_REG_PWM[7] = { 0x81, /* FAN 1 Duty Cycle, be used to control */ 0x83, /* FAN 2 Duty Cycle, be used to control */ 0x94, /* FAN 3 Duty Cycle, be used to control */ 0xA3, /* FAN 4 Duty Cycle, be used to control */ 0xA4, /* FAN 5 Duty Cycle, be used to control */ 0xA5, /* FAN 6 Duty Cycle, be used to control */ 0xA6 /* FAN 7 Duty Cycle, be used to control */ }; #define W83792D_REG_BANK 0x4E #define W83792D_REG_TEMP2_CONFIG 0xC2 #define W83792D_REG_TEMP3_CONFIG 0xCA static const u8 W83792D_REG_TEMP1[3] = { 0x27, /* TEMP 1 in DataSheet */ 0x39, /* TEMP 1 Over in DataSheet */ 0x3A, /* TEMP 1 Hyst in DataSheet */ }; static const u8 W83792D_REG_TEMP_ADD[2][6] = { { 0xC0, /* TEMP 2 in DataSheet */ 0xC1, /* TEMP 2(0.5 deg) in DataSheet */ 0xC5, /* TEMP 2 Over High part in DataSheet */ 0xC6, /* TEMP 2 Over Low part in DataSheet */ 0xC3, /* TEMP 2 Thyst High part in DataSheet */ 0xC4 }, /* TEMP 2 Thyst Low part in DataSheet */ { 0xC8, /* TEMP 3 in DataSheet */ 0xC9, /* TEMP 3(0.5 deg) in DataSheet */ 0xCD, /* TEMP 3 Over High part in DataSheet */ 0xCE, /* TEMP 3 Over Low part in DataSheet */ 0xCB, /* TEMP 3 Thyst High part in DataSheet */ 0xCC } /* TEMP 3 Thyst Low part in DataSheet */ }; static const u8 W83792D_REG_THERMAL[3] = { 0x85, /* SmartFanI: Fan1 target value */ 0x86, /* SmartFanI: Fan2 target value */ 0x96 /* SmartFanI: Fan3 target value */ }; static const u8 W83792D_REG_TOLERANCE[3] = { 0x87, /* (bit3-0)SmartFan Fan1 tolerance */ 0x87, /* (bit7-4)SmartFan Fan2 tolerance */ 0x97 /* (bit3-0)SmartFan Fan3 tolerance */ }; static const u8 W83792D_REG_POINTS[3][4] = { { 0x85, /* SmartFanII: Fan1 temp point 1 */ 0xE3, /* SmartFanII: Fan1 temp point 2 */ 0xE4, /* SmartFanII: Fan1 temp point 3 */ 0xE5 }, /* SmartFanII: Fan1 temp point 4 */ { 0x86, /* SmartFanII: Fan2 temp point 1 */ 0xE6, /* SmartFanII: Fan2 temp point 2 */ 0xE7, /* SmartFanII: Fan2 temp point 3 */ 0xE8 }, /* SmartFanII: Fan2 temp point 4 */ { 0x96, /* SmartFanII: Fan3 temp point 1 */ 0xE9, /* SmartFanII: Fan3 temp point 2 */ 0xEA, /* SmartFanII: Fan3 temp point 3 */ 0xEB } /* SmartFanII: Fan3 temp point 4 */ }; static const u8 W83792D_REG_LEVELS[3][4] = { { 0x88, /* (bit3-0) SmartFanII: Fan1 Non-Stop */ 0x88, /* (bit7-4) SmartFanII: Fan1 Level 1 */ 0xE0, /* (bit7-4) SmartFanII: Fan1 Level 2 */ 0xE0 }, /* (bit3-0) SmartFanII: Fan1 Level 3 */ { 0x89, /* (bit3-0) SmartFanII: Fan2 Non-Stop */ 0x89, /* (bit7-4) SmartFanII: Fan2 Level 1 */ 0xE1, /* (bit7-4) SmartFanII: Fan2 Level 2 */ 0xE1 }, /* (bit3-0) SmartFanII: Fan2 Level 3 */ { 0x98, /* (bit3-0) SmartFanII: Fan3 Non-Stop */ 0x98, /* (bit7-4) SmartFanII: Fan3 Level 1 */ 0xE2, /* (bit7-4) SmartFanII: Fan3 Level 2 */ 0xE2 } /* (bit3-0) SmartFanII: Fan3 Level 3 */ }; #define W83792D_REG_GPIO_EN 0x1A #define W83792D_REG_CONFIG 0x40 #define W83792D_REG_VID_FANDIV 0x47 #define W83792D_REG_CHIPID 0x49 #define W83792D_REG_WCHIPID 0x58 #define W83792D_REG_CHIPMAN 0x4F #define W83792D_REG_PIN 0x4B #define W83792D_REG_I2C_SUBADDR 0x4A #define W83792D_REG_ALARM1 0xA9 /* realtime status register1 */ #define W83792D_REG_ALARM2 0xAA /* realtime status register2 */ #define W83792D_REG_ALARM3 0xAB /* realtime status register3 */ #define W83792D_REG_CHASSIS 0x42 /* Bit 5: Case Open status bit */ #define W83792D_REG_CHASSIS_CLR 0x44 /* Bit 7: Case Open CLR_CHS/Reset bit */ /* control in0/in1 's limit modifiability */ #define W83792D_REG_VID_IN_B 0x17 #define W83792D_REG_VBAT 0x5D #define W83792D_REG_I2C_ADDR 0x48 /* Conversions. Rounding and limit checking is only done on the TO_REG variants. Note that you should be a bit careful with which arguments these macros are called: arguments may be evaluated more than once. Fixing this is just not worth it. */ #define IN_FROM_REG(nr,val) (((nr)<=1)?(val*2): \ ((((nr)==6)||((nr)==7))?(val*6):(val*4))) #define IN_TO_REG(nr,val) (((nr)<=1)?(val/2): \ ((((nr)==6)||((nr)==7))?(val/6):(val/4))) static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 255; rpm = SENSORS_LIMIT(rpm, 1, 1000000); return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define FAN_FROM_REG(val,div) ((val) == 0 ? -1 : \ ((val) == 255 ? 0 : \ 1350000 / ((val) * (div)))) /* for temp1 */ #define TEMP1_TO_REG(val) (SENSORS_LIMIT(((val) < 0 ? (val)+0x100*1000 \ : (val)) / 1000, 0, 0xff)) #define TEMP1_FROM_REG(val) (((val) & 0x80 ? (val)-0x100 : (val)) * 1000) /* for temp2 and temp3, because they need addtional resolution */ #define TEMP_ADD_FROM_REG(val1, val2) \ ((((val1) & 0x80 ? (val1)-0x100 \ : (val1)) * 1000) + ((val2 & 0x80) ? 500 : 0)) #define TEMP_ADD_TO_REG_HIGH(val) \ (SENSORS_LIMIT(((val) < 0 ? (val)+0x100*1000 \ : (val)) / 1000, 0, 0xff)) #define TEMP_ADD_TO_REG_LOW(val) ((val%1000) ? 0x80 : 0x00) #define DIV_FROM_REG(val) (1 << (val)) static inline u8 DIV_TO_REG(long val) { int i; val = SENSORS_LIMIT(val, 1, 128) >> 1; for (i = 0; i < 7; i++) { if (val == 0) break; val >>= 1; } return ((u8) i); } struct w83792d_data { struct device *hwmon_dev; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ /* array of 2 pointers to subclients */ struct i2c_client *lm75[2]; u8 in[9]; /* Register value */ u8 in_max[9]; /* Register value */ u8 in_min[9]; /* Register value */ u16 low_bits; /* Additional resolution to voltage in6-0 */ u8 fan[7]; /* Register value */ u8 fan_min[7]; /* Register value */ u8 temp1[3]; /* current, over, thyst */ u8 temp_add[2][6]; /* Register value */ u8 fan_div[7]; /* Register encoding, shifted right */ u8 pwm[7]; /* We only consider the first 3 set of pwm, although 792 chip has 7 set of pwm. */ u8 pwmenable[3]; u32 alarms; /* realtime status register encoding,combined */ u8 chassis; /* Chassis status */ u8 chassis_clear; /* CLR_CHS, clear chassis intrusion detection */ u8 thermal_cruise[3]; /* Smart FanI: Fan1,2,3 target value */ u8 tolerance[3]; /* Fan1,2,3 tolerance(Smart Fan I/II) */ u8 sf2_points[3][4]; /* Smart FanII: Fan1,2,3 temperature points */ u8 sf2_levels[3][4]; /* Smart FanII: Fan1,2,3 duty cycle levels */ }; static int w83792d_probe(struct i2c_client *client, const struct i2c_device_id *id); static int w83792d_detect(struct i2c_client *client, int kind, struct i2c_board_info *info); static int w83792d_remove(struct i2c_client *client); static struct w83792d_data *w83792d_update_device(struct device *dev); #ifdef DEBUG static void w83792d_print_debug(struct w83792d_data *data, struct device *dev); #endif static void w83792d_init_client(struct i2c_client *client); static const struct i2c_device_id w83792d_id[] = { { "w83792d", w83792d }, { } }; MODULE_DEVICE_TABLE(i2c, w83792d_id); static struct i2c_driver w83792d_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "w83792d", }, .probe = w83792d_probe, .remove = w83792d_remove, .id_table = w83792d_id, .detect = w83792d_detect, .address_data = &addr_data, }; static inline long in_count_from_reg(int nr, struct w83792d_data *data) { /* in7 and in8 do not have low bits, but the formula still works */ return ((data->in[nr] << 2) | ((data->low_bits >> (2 * nr)) & 0x03)); } /* The SMBus locks itself. The Winbond W83792D chip has a bank register, but the driver only accesses registers in bank 0, so we don't have to switch banks and lock access between switches. */ static inline int w83792d_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static inline int w83792d_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } /* following are the sysfs callback functions */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf,"%ld\n", IN_FROM_REG(nr,(in_count_from_reg(nr, data)))); } #define show_in_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ struct w83792d_data *data = w83792d_update_device(dev); \ return sprintf(buf,"%ld\n", (long)(IN_FROM_REG(nr, (data->reg[nr])*4))); \ } show_in_reg(in_min); show_in_reg(in_max); #define store_in_reg(REG, reg) \ static ssize_t store_in_##reg (struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct w83792d_data *data = i2c_get_clientdata(client); \ u32 val; \ \ val = simple_strtoul(buf, NULL, 10); \ mutex_lock(&data->update_lock); \ data->in_##reg[nr] = SENSORS_LIMIT(IN_TO_REG(nr, val)/4, 0, 255); \ w83792d_write_value(client, W83792D_REG_IN_##REG[nr], data->in_##reg[nr]); \ mutex_unlock(&data->update_lock); \ \ return count; \ } store_in_reg(MIN, min); store_in_reg(MAX, max); #define show_fan_reg(reg) \ static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \ int nr = sensor_attr->index - 1; \ struct w83792d_data *data = w83792d_update_device(dev); \ return sprintf(buf,"%d\n", \ FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ } show_fan_reg(fan); show_fan_reg(fan_min); static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); w83792d_write_value(client, W83792D_REG_FAN_MIN[nr], data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr - 1])); } /* Note: we save and restore the fan minimum here, because its value is determined in part by the fan divisor. This follows the principle of least surprise; the user doesn't expect the fan minimum to change just because the divisor changed. */ static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); unsigned long min; /*u8 reg;*/ u8 fan_div_reg = 0; u8 tmp_fan_div; /* Save fan_min */ mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(simple_strtoul(buf, NULL, 10)); fan_div_reg = w83792d_read_value(client, W83792D_REG_FAN_DIV[nr >> 1]); fan_div_reg &= (nr & 0x01) ? 0x8f : 0xf8; tmp_fan_div = (nr & 0x01) ? (((data->fan_div[nr]) << 4) & 0x70) : ((data->fan_div[nr]) & 0x07); w83792d_write_value(client, W83792D_REG_FAN_DIV[nr >> 1], fan_div_reg | tmp_fan_div); /* Restore fan_min */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); w83792d_write_value(client, W83792D_REG_FAN_MIN[nr], data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } /* read/write the temperature1, includes measured value and limits */ static ssize_t show_temp1(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[nr])); } static ssize_t store_temp1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); s32 val; val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp1[nr] = TEMP1_TO_REG(val); w83792d_write_value(client, W83792D_REG_TEMP1[nr], data->temp1[nr]); mutex_unlock(&data->update_lock); return count; } /* read/write the temperature2-3, includes measured value and limits */ static ssize_t show_temp23(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf,"%ld\n", (long)TEMP_ADD_FROM_REG(data->temp_add[nr][index], data->temp_add[nr][index+1])); } static ssize_t store_temp23(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); s32 val; val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_add[nr][index] = TEMP_ADD_TO_REG_HIGH(val); data->temp_add[nr][index+1] = TEMP_ADD_TO_REG_LOW(val); w83792d_write_value(client, W83792D_REG_TEMP_ADD[nr][index], data->temp_add[nr][index]); w83792d_write_value(client, W83792D_REG_TEMP_ADD[nr][index+1], data->temp_add[nr][index+1]); mutex_unlock(&data->update_lock); return count; } /* get reatime status of all sensors items: voltage, temp, fan */ static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf) { struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", (data->alarms >> nr) & 1); } static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", (data->pwm[nr] & 0x0f) << 4); } static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct w83792d_data *data = w83792d_update_device(dev); long pwm_enable_tmp = 1; switch (data->pwmenable[nr]) { case 0: pwm_enable_tmp = 1; /* manual mode */ break; case 1: pwm_enable_tmp = 3; /*thermal cruise/Smart Fan I */ break; case 2: pwm_enable_tmp = 2; /* Smart Fan II */ break; } return sprintf(buf, "%ld\n", pwm_enable_tmp); } static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u8 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255) >> 4; mutex_lock(&data->update_lock); val |= w83792d_read_value(client, W83792D_REG_PWM[nr]) & 0xf0; data->pwm[nr] = val; w83792d_write_value(client, W83792D_REG_PWM[nr], data->pwm[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t store_pwmenable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 fan_cfg_tmp, cfg1_tmp, cfg2_tmp, cfg3_tmp, cfg4_tmp; val = simple_strtoul(buf, NULL, 10); if (val < 1 || val > 3) return -EINVAL; mutex_lock(&data->update_lock); switch (val) { case 1: data->pwmenable[nr] = 0; /* manual mode */ break; case 2: data->pwmenable[nr] = 2; /* Smart Fan II */ break; case 3: data->pwmenable[nr] = 1; /* thermal cruise/Smart Fan I */ break; } cfg1_tmp = data->pwmenable[0]; cfg2_tmp = (data->pwmenable[1]) << 2; cfg3_tmp = (data->pwmenable[2]) << 4; cfg4_tmp = w83792d_read_value(client,W83792D_REG_FAN_CFG) & 0xc0; fan_cfg_tmp = ((cfg4_tmp | cfg3_tmp) | cfg2_tmp) | cfg1_tmp; w83792d_write_value(client, W83792D_REG_FAN_CFG, fan_cfg_tmp); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", data->pwm[nr] >> 7); } static ssize_t store_pwm_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; val = simple_strtoul(buf, NULL, 10); if (val != 0 && val != 1) return -EINVAL; mutex_lock(&data->update_lock); data->pwm[nr] = w83792d_read_value(client, W83792D_REG_PWM[nr]); if (val) { /* PWM mode */ data->pwm[nr] |= 0x80; } else { /* DC mode */ data->pwm[nr] &= 0x7f; } w83792d_write_value(client, W83792D_REG_PWM[nr], data->pwm[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_regs_chassis(struct device *dev, struct device_attribute *attr, char *buf) { struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", data->chassis); } static ssize_t show_chassis_clear(struct device *dev, struct device_attribute *attr, char *buf) { struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", data->chassis_clear); } static ssize_t store_chassis_clear(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 temp1 = 0, temp2 = 0; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->chassis_clear = SENSORS_LIMIT(val, 0 ,1); temp1 = ((data->chassis_clear) << 7) & 0x80; temp2 = w83792d_read_value(client, W83792D_REG_CHASSIS_CLR) & 0x7f; w83792d_write_value(client, W83792D_REG_CHASSIS_CLR, temp1 | temp2); mutex_unlock(&data->update_lock); return count; } /* For Smart Fan I / Thermal Cruise */ static ssize_t show_thermal_cruise(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%ld\n", (long)data->thermal_cruise[nr-1]); } static ssize_t store_thermal_cruise(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 target_tmp=0, target_mask=0; val = simple_strtoul(buf, NULL, 10); target_tmp = val; target_tmp = target_tmp & 0x7f; mutex_lock(&data->update_lock); target_mask = w83792d_read_value(client, W83792D_REG_THERMAL[nr]) & 0x80; data->thermal_cruise[nr] = SENSORS_LIMIT(target_tmp, 0, 255); w83792d_write_value(client, W83792D_REG_THERMAL[nr], (data->thermal_cruise[nr]) | target_mask); mutex_unlock(&data->update_lock); return count; } /* For Smart Fan I/Thermal Cruise and Smart Fan II */ static ssize_t show_tolerance(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%ld\n", (long)data->tolerance[nr-1]); } static ssize_t store_tolerance(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 tol_tmp, tol_mask; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); tol_mask = w83792d_read_value(client, W83792D_REG_TOLERANCE[nr]) & ((nr == 1) ? 0x0f : 0xf0); tol_tmp = SENSORS_LIMIT(val, 0, 15); tol_tmp &= 0x0f; data->tolerance[nr] = tol_tmp; if (nr == 1) { tol_tmp <<= 4; } w83792d_write_value(client, W83792D_REG_TOLERANCE[nr], tol_mask | tol_tmp); mutex_unlock(&data->update_lock); return count; } /* For Smart Fan II */ static ssize_t show_sf2_point(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%ld\n", (long)data->sf2_points[index-1][nr-1]); } static ssize_t store_sf2_point(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr - 1; int index = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 mask_tmp = 0; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->sf2_points[index][nr] = SENSORS_LIMIT(val, 0, 127); mask_tmp = w83792d_read_value(client, W83792D_REG_POINTS[index][nr]) & 0x80; w83792d_write_value(client, W83792D_REG_POINTS[index][nr], mask_tmp|data->sf2_points[index][nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_sf2_level(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct w83792d_data *data = w83792d_update_device(dev); return sprintf(buf, "%d\n", (((data->sf2_levels[index-1][nr]) * 100) / 15)); } static ssize_t store_sf2_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index - 1; struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); u32 val; u8 mask_tmp=0, level_tmp=0; val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->sf2_levels[index][nr] = SENSORS_LIMIT((val * 15) / 100, 0, 15); mask_tmp = w83792d_read_value(client, W83792D_REG_LEVELS[index][nr]) & ((nr==3) ? 0xf0 : 0x0f); if (nr==3) { level_tmp = data->sf2_levels[index][nr]; } else { level_tmp = data->sf2_levels[index][nr] << 4; } w83792d_write_value(client, W83792D_REG_LEVELS[index][nr], level_tmp | mask_tmp); mutex_unlock(&data->update_lock); return count; } static int w83792d_detect_subclients(struct i2c_client *new_client) { int i, id, err; int address = new_client->addr; u8 val; struct i2c_adapter *adapter = new_client->adapter; struct w83792d_data *data = i2c_get_clientdata(new_client); id = i2c_adapter_id(adapter); if (force_subclients[0] == id && force_subclients[1] == address) { for (i = 2; i <= 3; i++) { if (force_subclients[i] < 0x48 || force_subclients[i] > 0x4f) { dev_err(&new_client->dev, "invalid subclient " "address %d; must be 0x48-0x4f\n", force_subclients[i]); err = -ENODEV; goto ERROR_SC_0; } } w83792d_write_value(new_client, W83792D_REG_I2C_SUBADDR, (force_subclients[2] & 0x07) | ((force_subclients[3] & 0x07) << 4)); } val = w83792d_read_value(new_client, W83792D_REG_I2C_SUBADDR); if (!(val & 0x08)) { data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7)); } if (!(val & 0x80)) { if ((data->lm75[0] != NULL) && ((val & 0x7) == ((val >> 4) & 0x7))) { dev_err(&new_client->dev, "duplicate addresses 0x%x, " "use force_subclient\n", data->lm75[0]->addr); err = -ENODEV; goto ERROR_SC_1; } data->lm75[1] = i2c_new_dummy(adapter, 0x48 + ((val >> 4) & 0x7)); } return 0; /* Undo inits in case of errors */ ERROR_SC_1: if (data->lm75[0] != NULL) i2c_unregister_device(data->lm75[0]); ERROR_SC_0: return err; } static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in, NULL, 1); static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in, NULL, 2); static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in, NULL, 3); static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in, NULL, 4); static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in, NULL, 5); static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in, NULL, 6); static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_in, NULL, 7); static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_in, NULL, 8); static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0); static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1); static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2); static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3); static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4); static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5); static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6); static SENSOR_DEVICE_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7); static SENSOR_DEVICE_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8); static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0); static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1); static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2); static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3); static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4); static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5); static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6); static SENSOR_DEVICE_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7); static SENSOR_DEVICE_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8); static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0); static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0); static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0); static SENSOR_DEVICE_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, show_temp1, store_temp1, 0, 1); static SENSOR_DEVICE_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 0, 2); static SENSOR_DEVICE_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 1, 2); static SENSOR_DEVICE_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1, store_temp1, 0, 2); static SENSOR_DEVICE_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 0, 4); static SENSOR_DEVICE_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp23, store_temp23, 1, 4); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL); static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 7); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 12); static SENSOR_DEVICE_ATTR(fan7_alarm, S_IRUGO, show_alarm, NULL, 15); static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19); static SENSOR_DEVICE_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20); static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21); static SENSOR_DEVICE_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22); static SENSOR_DEVICE_ATTR(fan6_alarm, S_IRUGO, show_alarm, NULL, 23); static DEVICE_ATTR(chassis, S_IRUGO, show_regs_chassis, NULL); static DEVICE_ATTR(chassis_clear, S_IRUGO | S_IWUSR, show_chassis_clear, store_chassis_clear); static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1); static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 1); static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 2); static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwmenable, store_pwmenable, 3); static SENSOR_DEVICE_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode, store_pwm_mode, 0); static SENSOR_DEVICE_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode, store_pwm_mode, 1); static SENSOR_DEVICE_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode, store_pwm_mode, 2); static SENSOR_DEVICE_ATTR(tolerance1, S_IWUSR | S_IRUGO, show_tolerance, store_tolerance, 1); static SENSOR_DEVICE_ATTR(tolerance2, S_IWUSR | S_IRUGO, show_tolerance, store_tolerance, 2); static SENSOR_DEVICE_ATTR(tolerance3, S_IWUSR | S_IRUGO, show_tolerance, store_tolerance, 3); static SENSOR_DEVICE_ATTR(thermal_cruise1, S_IWUSR | S_IRUGO, show_thermal_cruise, store_thermal_cruise, 1); static SENSOR_DEVICE_ATTR(thermal_cruise2, S_IWUSR | S_IRUGO, show_thermal_cruise, store_thermal_cruise, 2); static SENSOR_DEVICE_ATTR(thermal_cruise3, S_IWUSR | S_IRUGO, show_thermal_cruise, store_thermal_cruise, 3); static SENSOR_DEVICE_ATTR_2(sf2_point1_fan1, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 1, 1); static SENSOR_DEVICE_ATTR_2(sf2_point2_fan1, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 2, 1); static SENSOR_DEVICE_ATTR_2(sf2_point3_fan1, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 3, 1); static SENSOR_DEVICE_ATTR_2(sf2_point4_fan1, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 4, 1); static SENSOR_DEVICE_ATTR_2(sf2_point1_fan2, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 1, 2); static SENSOR_DEVICE_ATTR_2(sf2_point2_fan2, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 2, 2); static SENSOR_DEVICE_ATTR_2(sf2_point3_fan2, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 3, 2); static SENSOR_DEVICE_ATTR_2(sf2_point4_fan2, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 4, 2); static SENSOR_DEVICE_ATTR_2(sf2_point1_fan3, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 1, 3); static SENSOR_DEVICE_ATTR_2(sf2_point2_fan3, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 2, 3); static SENSOR_DEVICE_ATTR_2(sf2_point3_fan3, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 3, 3); static SENSOR_DEVICE_ATTR_2(sf2_point4_fan3, S_IRUGO | S_IWUSR, show_sf2_point, store_sf2_point, 4, 3); static SENSOR_DEVICE_ATTR_2(sf2_level1_fan1, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 1, 1); static SENSOR_DEVICE_ATTR_2(sf2_level2_fan1, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 2, 1); static SENSOR_DEVICE_ATTR_2(sf2_level3_fan1, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 3, 1); static SENSOR_DEVICE_ATTR_2(sf2_level1_fan2, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 1, 2); static SENSOR_DEVICE_ATTR_2(sf2_level2_fan2, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 2, 2); static SENSOR_DEVICE_ATTR_2(sf2_level3_fan2, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 3, 2); static SENSOR_DEVICE_ATTR_2(sf2_level1_fan3, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 1, 3); static SENSOR_DEVICE_ATTR_2(sf2_level2_fan3, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 2, 3); static SENSOR_DEVICE_ATTR_2(sf2_level3_fan3, S_IRUGO | S_IWUSR, show_sf2_level, store_sf2_level, 3, 3); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 1); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 2); static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 3); static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 4); static SENSOR_DEVICE_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 5); static SENSOR_DEVICE_ATTR(fan6_input, S_IRUGO, show_fan, NULL, 6); static SENSOR_DEVICE_ATTR(fan7_input, S_IRUGO, show_fan, NULL, 7); static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 1); static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 2); static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 3); static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 4); static SENSOR_DEVICE_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 5); static SENSOR_DEVICE_ATTR(fan6_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 6); static SENSOR_DEVICE_ATTR(fan7_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 7); static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 1); static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 2); static SENSOR_DEVICE_ATTR(fan3_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 3); static SENSOR_DEVICE_ATTR(fan4_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 4); static SENSOR_DEVICE_ATTR(fan5_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 5); static SENSOR_DEVICE_ATTR(fan6_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 6); static SENSOR_DEVICE_ATTR(fan7_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 7); static struct attribute *w83792d_attributes_fan[4][5] = { { &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan4_div.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_fan5_input.dev_attr.attr, &sensor_dev_attr_fan5_min.dev_attr.attr, &sensor_dev_attr_fan5_div.dev_attr.attr, &sensor_dev_attr_fan5_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_fan6_input.dev_attr.attr, &sensor_dev_attr_fan6_min.dev_attr.attr, &sensor_dev_attr_fan6_div.dev_attr.attr, &sensor_dev_attr_fan6_alarm.dev_attr.attr, NULL }, { &sensor_dev_attr_fan7_input.dev_attr.attr, &sensor_dev_attr_fan7_min.dev_attr.attr, &sensor_dev_attr_fan7_div.dev_attr.attr, &sensor_dev_attr_fan7_alarm.dev_attr.attr, NULL } }; static const struct attribute_group w83792d_group_fan[4] = { { .attrs = w83792d_attributes_fan[0] }, { .attrs = w83792d_attributes_fan[1] }, { .attrs = w83792d_attributes_fan[2] }, { .attrs = w83792d_attributes_fan[3] }, }; static struct attribute *w83792d_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, &sensor_dev_attr_in8_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_mode.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm2_mode.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm3_mode.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_chassis.attr, &dev_attr_chassis_clear.attr, &sensor_dev_attr_tolerance1.dev_attr.attr, &sensor_dev_attr_thermal_cruise1.dev_attr.attr, &sensor_dev_attr_tolerance2.dev_attr.attr, &sensor_dev_attr_thermal_cruise2.dev_attr.attr, &sensor_dev_attr_tolerance3.dev_attr.attr, &sensor_dev_attr_thermal_cruise3.dev_attr.attr, &sensor_dev_attr_sf2_point1_fan1.dev_attr.attr, &sensor_dev_attr_sf2_point2_fan1.dev_attr.attr, &sensor_dev_attr_sf2_point3_fan1.dev_attr.attr, &sensor_dev_attr_sf2_point4_fan1.dev_attr.attr, &sensor_dev_attr_sf2_point1_fan2.dev_attr.attr, &sensor_dev_attr_sf2_point2_fan2.dev_attr.attr, &sensor_dev_attr_sf2_point3_fan2.dev_attr.attr, &sensor_dev_attr_sf2_point4_fan2.dev_attr.attr, &sensor_dev_attr_sf2_point1_fan3.dev_attr.attr, &sensor_dev_attr_sf2_point2_fan3.dev_attr.attr, &sensor_dev_attr_sf2_point3_fan3.dev_attr.attr, &sensor_dev_attr_sf2_point4_fan3.dev_attr.attr, &sensor_dev_attr_sf2_level1_fan1.dev_attr.attr, &sensor_dev_attr_sf2_level2_fan1.dev_attr.attr, &sensor_dev_attr_sf2_level3_fan1.dev_attr.attr, &sensor_dev_attr_sf2_level1_fan2.dev_attr.attr, &sensor_dev_attr_sf2_level2_fan2.dev_attr.attr, &sensor_dev_attr_sf2_level3_fan2.dev_attr.attr, &sensor_dev_attr_sf2_level1_fan3.dev_attr.attr, &sensor_dev_attr_sf2_level2_fan3.dev_attr.attr, &sensor_dev_attr_sf2_level3_fan3.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, NULL }; static const struct attribute_group w83792d_group = { .attrs = w83792d_attributes, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int w83792d_detect(struct i2c_client *client, int kind, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int val1, val2; unsigned short address = client->addr; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { return -ENODEV; } /* The w83792d may be stuck in some other bank than bank 0. This may make reading other information impossible. Specify a force=... or force_*=... parameter, and the Winbond will be reset to the right bank. */ if (kind < 0) { if (w83792d_read_value(client, W83792D_REG_CONFIG) & 0x80) { return -ENODEV; } val1 = w83792d_read_value(client, W83792D_REG_BANK); val2 = w83792d_read_value(client, W83792D_REG_CHIPMAN); /* Check for Winbond ID if in bank 0 */ if (!(val1 & 0x07)) { /* is Bank0 */ if (((!(val1 & 0x80)) && (val2 != 0xa3)) || ((val1 & 0x80) && (val2 != 0x5c))) { return -ENODEV; } } /* If Winbond chip, address of chip and W83792D_REG_I2C_ADDR should match */ if (w83792d_read_value(client, W83792D_REG_I2C_ADDR) != address) { return -ENODEV; } } /* We have either had a force parameter, or we have already detected the Winbond. Put it now into bank 0 and Vendor ID High Byte */ w83792d_write_value(client, W83792D_REG_BANK, (w83792d_read_value(client, W83792D_REG_BANK) & 0x78) | 0x80); /* Determine the chip type. */ if (kind <= 0) { /* get vendor ID */ val2 = w83792d_read_value(client, W83792D_REG_CHIPMAN); if (val2 != 0x5c) { /* the vendor is NOT Winbond */ return -ENODEV; } val1 = w83792d_read_value(client, W83792D_REG_WCHIPID); if (val1 == 0x7a) { kind = w83792d; } else { if (kind == 0) dev_warn(&adapter->dev, "w83792d: Ignoring 'force' parameter for" " unknown chip at adapter %d, address" " 0x%02x\n", i2c_adapter_id(adapter), address); return -ENODEV; } } strlcpy(info->type, "w83792d", I2C_NAME_SIZE); return 0; } static int w83792d_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct w83792d_data *data; struct device *dev = &client->dev; int i, val1, err; data = kzalloc(sizeof(struct w83792d_data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto ERROR0; } i2c_set_clientdata(client, data); data->valid = 0; mutex_init(&data->update_lock); err = w83792d_detect_subclients(client); if (err) goto ERROR1; /* Initialize the chip */ w83792d_init_client(client); /* A few vars need to be filled upon startup */ for (i = 0; i < 7; i++) { data->fan_min[i] = w83792d_read_value(client, W83792D_REG_FAN_MIN[i]); } /* Register sysfs hooks */ if ((err = sysfs_create_group(&dev->kobj, &w83792d_group))) goto ERROR3; /* Read GPIO enable register to check if pins for fan 4,5 are used as GPIO */ val1 = w83792d_read_value(client, W83792D_REG_GPIO_EN); if (!(val1 & 0x40)) if ((err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[0]))) goto exit_remove_files; if (!(val1 & 0x20)) if ((err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[1]))) goto exit_remove_files; val1 = w83792d_read_value(client, W83792D_REG_PIN); if (val1 & 0x40) if ((err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[2]))) goto exit_remove_files; if (val1 & 0x04) if ((err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[3]))) goto exit_remove_files; data->hwmon_dev = hwmon_device_register(dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: sysfs_remove_group(&dev->kobj, &w83792d_group); for (i = 0; i < ARRAY_SIZE(w83792d_group_fan); i++) sysfs_remove_group(&dev->kobj, &w83792d_group_fan[i]); ERROR3: if (data->lm75[0] != NULL) i2c_unregister_device(data->lm75[0]); if (data->lm75[1] != NULL) i2c_unregister_device(data->lm75[1]); ERROR1: kfree(data); ERROR0: return err; } static int w83792d_remove(struct i2c_client *client) { struct w83792d_data *data = i2c_get_clientdata(client); int i; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &w83792d_group); for (i = 0; i < ARRAY_SIZE(w83792d_group_fan); i++) sysfs_remove_group(&client->dev.kobj, &w83792d_group_fan[i]); if (data->lm75[0] != NULL) i2c_unregister_device(data->lm75[0]); if (data->lm75[1] != NULL) i2c_unregister_device(data->lm75[1]); kfree(data); return 0; } static void w83792d_init_client(struct i2c_client *client) { u8 temp2_cfg, temp3_cfg, vid_in_b; if (init) { w83792d_write_value(client, W83792D_REG_CONFIG, 0x80); } /* Clear the bit6 of W83792D_REG_VID_IN_B(set it into 0): W83792D_REG_VID_IN_B bit6 = 0: the high/low limit of vin0/vin1 can be modified by user; W83792D_REG_VID_IN_B bit6 = 1: the high/low limit of vin0/vin1 auto-updated, can NOT be modified by user. */ vid_in_b = w83792d_read_value(client, W83792D_REG_VID_IN_B); w83792d_write_value(client, W83792D_REG_VID_IN_B, vid_in_b & 0xbf); temp2_cfg = w83792d_read_value(client, W83792D_REG_TEMP2_CONFIG); temp3_cfg = w83792d_read_value(client, W83792D_REG_TEMP3_CONFIG); w83792d_write_value(client, W83792D_REG_TEMP2_CONFIG, temp2_cfg & 0xe6); w83792d_write_value(client, W83792D_REG_TEMP3_CONFIG, temp3_cfg & 0xe6); /* Start monitoring */ w83792d_write_value(client, W83792D_REG_CONFIG, (w83792d_read_value(client, W83792D_REG_CONFIG) & 0xf7) | 0x01); } static struct w83792d_data *w83792d_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct w83792d_data *data = i2c_get_clientdata(client); int i, j; u8 reg_array_tmp[4], reg_tmp; mutex_lock(&data->update_lock); if (time_after (jiffies - data->last_updated, (unsigned long) (HZ * 3)) || time_before(jiffies, data->last_updated) || !data->valid) { dev_dbg(dev, "Starting device update\n"); /* Update the voltages measured value and limits */ for (i = 0; i < 9; i++) { data->in[i] = w83792d_read_value(client, W83792D_REG_IN[i]); data->in_max[i] = w83792d_read_value(client, W83792D_REG_IN_MAX[i]); data->in_min[i] = w83792d_read_value(client, W83792D_REG_IN_MIN[i]); } data->low_bits = w83792d_read_value(client, W83792D_REG_LOW_BITS1) + (w83792d_read_value(client, W83792D_REG_LOW_BITS2) << 8); for (i = 0; i < 7; i++) { /* Update the Fan measured value and limits */ data->fan[i] = w83792d_read_value(client, W83792D_REG_FAN[i]); data->fan_min[i] = w83792d_read_value(client, W83792D_REG_FAN_MIN[i]); /* Update the PWM/DC Value and PWM/DC flag */ data->pwm[i] = w83792d_read_value(client, W83792D_REG_PWM[i]); } reg_tmp = w83792d_read_value(client, W83792D_REG_FAN_CFG); data->pwmenable[0] = reg_tmp & 0x03; data->pwmenable[1] = (reg_tmp>>2) & 0x03; data->pwmenable[2] = (reg_tmp>>4) & 0x03; for (i = 0; i < 3; i++) { data->temp1[i] = w83792d_read_value(client, W83792D_REG_TEMP1[i]); } for (i = 0; i < 2; i++) { for (j = 0; j < 6; j++) { data->temp_add[i][j] = w83792d_read_value( client,W83792D_REG_TEMP_ADD[i][j]); } } /* Update the Fan Divisor */ for (i = 0; i < 4; i++) { reg_array_tmp[i] = w83792d_read_value(client, W83792D_REG_FAN_DIV[i]); } data->fan_div[0] = reg_array_tmp[0] & 0x07; data->fan_div[1] = (reg_array_tmp[0] >> 4) & 0x07; data->fan_div[2] = reg_array_tmp[1] & 0x07; data->fan_div[3] = (reg_array_tmp[1] >> 4) & 0x07; data->fan_div[4] = reg_array_tmp[2] & 0x07; data->fan_div[5] = (reg_array_tmp[2] >> 4) & 0x07; data->fan_div[6] = reg_array_tmp[3] & 0x07; /* Update the realtime status */ data->alarms = w83792d_read_value(client, W83792D_REG_ALARM1) + (w83792d_read_value(client, W83792D_REG_ALARM2) << 8) + (w83792d_read_value(client, W83792D_REG_ALARM3) << 16); /* Update CaseOpen status and it's CLR_CHS. */ data->chassis = (w83792d_read_value(client, W83792D_REG_CHASSIS) >> 5) & 0x01; data->chassis_clear = (w83792d_read_value(client, W83792D_REG_CHASSIS_CLR) >> 7) & 0x01; /* Update Thermal Cruise/Smart Fan I target value */ for (i = 0; i < 3; i++) { data->thermal_cruise[i] = w83792d_read_value(client, W83792D_REG_THERMAL[i]) & 0x7f; } /* Update Smart Fan I/II tolerance */ reg_tmp = w83792d_read_value(client, W83792D_REG_TOLERANCE[0]); data->tolerance[0] = reg_tmp & 0x0f; data->tolerance[1] = (reg_tmp >> 4) & 0x0f; data->tolerance[2] = w83792d_read_value(client, W83792D_REG_TOLERANCE[2]) & 0x0f; /* Update Smart Fan II temperature points */ for (i = 0; i < 3; i++) { for (j = 0; j < 4; j++) { data->sf2_points[i][j] = w83792d_read_value( client,W83792D_REG_POINTS[i][j]) & 0x7f; } } /* Update Smart Fan II duty cycle levels */ for (i = 0; i < 3; i++) { reg_tmp = w83792d_read_value(client, W83792D_REG_LEVELS[i][0]); data->sf2_levels[i][0] = reg_tmp & 0x0f; data->sf2_levels[i][1] = (reg_tmp >> 4) & 0x0f; reg_tmp = w83792d_read_value(client, W83792D_REG_LEVELS[i][2]); data->sf2_levels[i][2] = (reg_tmp >> 4) & 0x0f; data->sf2_levels[i][3] = reg_tmp & 0x0f; } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); #ifdef DEBUG w83792d_print_debug(data, dev); #endif return data; } #ifdef DEBUG static void w83792d_print_debug(struct w83792d_data *data, struct device *dev) { int i=0, j=0; dev_dbg(dev, "==========The following is the debug message...========\n"); dev_dbg(dev, "9 set of Voltages: =====>\n"); for (i=0; i<9; i++) { dev_dbg(dev, "vin[%d] is: 0x%x\n", i, data->in[i]); dev_dbg(dev, "vin[%d] max is: 0x%x\n", i, data->in_max[i]); dev_dbg(dev, "vin[%d] min is: 0x%x\n", i, data->in_min[i]); } dev_dbg(dev, "Low Bit1 is: 0x%x\n", data->low_bits & 0xff); dev_dbg(dev, "Low Bit2 is: 0x%x\n", data->low_bits >> 8); dev_dbg(dev, "7 set of Fan Counts and Duty Cycles: =====>\n"); for (i=0; i<7; i++) { dev_dbg(dev, "fan[%d] is: 0x%x\n", i, data->fan[i]); dev_dbg(dev, "fan[%d] min is: 0x%x\n", i, data->fan_min[i]); dev_dbg(dev, "pwm[%d] is: 0x%x\n", i, data->pwm[i]); } dev_dbg(dev, "3 set of Temperatures: =====>\n"); for (i=0; i<3; i++) { dev_dbg(dev, "temp1[%d] is: 0x%x\n", i, data->temp1[i]); } for (i=0; i<2; i++) { for (j=0; j<6; j++) { dev_dbg(dev, "temp_add[%d][%d] is: 0x%x\n", i, j, data->temp_add[i][j]); } } for (i=0; i<7; i++) { dev_dbg(dev, "fan_div[%d] is: 0x%x\n", i, data->fan_div[i]); } dev_dbg(dev, "==========End of the debug message...==================\n"); dev_dbg(dev, "\n"); } #endif static int __init sensors_w83792d_init(void) { return i2c_add_driver(&w83792d_driver); } static void __exit sensors_w83792d_exit(void) { i2c_del_driver(&w83792d_driver); } MODULE_AUTHOR("Chunhao Huang @ Winbond <DZShen@Winbond.com.tw>"); MODULE_DESCRIPTION("W83792AD/D driver for linux-2.6"); MODULE_LICENSE("GPL"); module_init(sensors_w83792d_init); module_exit(sensors_w83792d_exit);