/* * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem * * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org> * 2000 Bonin Franck <boninf@free.fr> * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com> * * Mainly based on work by Emanuel Pirker and Andreas E. Bombe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * This driver intends to support RFC 2734, which describes a method for * transporting IPv4 datagrams over IEEE-1394 serial busses. * * TODO: * RFC 2734 related: * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2. * * Non-RFC 2734 related: * - Handle fragmented skb's coming from the networking layer. * - Move generic GASP reception to core 1394 code * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead * - Stability improvements * - Performance enhancements * - Consider garbage collecting old partial datagrams after X amount of time */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/workqueue.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/tcp.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <linux/ethtool.h> #include <asm/uaccess.h> #include <asm/delay.h> #include <asm/unaligned.h> #include <net/arp.h> #include "config_roms.h" #include "csr1212.h" #include "eth1394.h" #include "highlevel.h" #include "ieee1394.h" #include "ieee1394_core.h" #include "ieee1394_hotplug.h" #include "ieee1394_transactions.h" #include "ieee1394_types.h" #include "iso.h" #include "nodemgr.h" #define ETH1394_PRINT_G(level, fmt, args...) \ printk(level "%s: " fmt, driver_name, ## args) #define ETH1394_PRINT(level, dev_name, fmt, args...) \ printk(level "%s: %s: " fmt, driver_name, dev_name, ## args) struct fragment_info { struct list_head list; int offset; int len; }; struct partial_datagram { struct list_head list; u16 dgl; u16 dg_size; __be16 ether_type; struct sk_buff *skb; char *pbuf; struct list_head frag_info; }; struct pdg_list { struct list_head list; /* partial datagram list per node */ unsigned int sz; /* partial datagram list size per node */ spinlock_t lock; /* partial datagram lock */ }; struct eth1394_host_info { struct hpsb_host *host; struct net_device *dev; }; struct eth1394_node_ref { struct unit_directory *ud; struct list_head list; }; struct eth1394_node_info { u16 maxpayload; /* max payload */ u8 sspd; /* max speed */ u64 fifo; /* FIFO address */ struct pdg_list pdg; /* partial RX datagram lists */ int dgl; /* outgoing datagram label */ }; static const char driver_name[] = "eth1394"; static struct kmem_cache *packet_task_cache; static struct hpsb_highlevel eth1394_highlevel; /* Use common.lf to determine header len */ static const int hdr_type_len[] = { sizeof(struct eth1394_uf_hdr), sizeof(struct eth1394_ff_hdr), sizeof(struct eth1394_sf_hdr), sizeof(struct eth1394_sf_hdr) }; static const u16 eth1394_speedto_maxpayload[] = { /* S100, S200, S400, S800, S1600, S3200 */ 512, 1024, 2048, 4096, 4096, 4096 }; MODULE_AUTHOR("Ben Collins (bcollins@debian.org)"); MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)"); MODULE_LICENSE("GPL"); /* * The max_partial_datagrams parameter is the maximum number of fragmented * datagrams per node that eth1394 will keep in memory. Providing an upper * bound allows us to limit the amount of memory that partial datagrams * consume in the event that some partial datagrams are never completed. */ static int max_partial_datagrams = 25; module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of partially received fragmented datagrams " "(default = 25)."); static int ether1394_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); static int ether1394_rebuild_header(struct sk_buff *skb); static int ether1394_header_parse(const struct sk_buff *skb, unsigned char *haddr); static int ether1394_header_cache(const struct neighbour *neigh, struct hh_cache *hh); static void ether1394_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); static int ether1394_tx(struct sk_buff *skb, struct net_device *dev); static void ether1394_iso(struct hpsb_iso *iso); static struct ethtool_ops ethtool_ops; static int ether1394_write(struct hpsb_host *host, int srcid, int destid, quadlet_t *data, u64 addr, size_t len, u16 flags); static void ether1394_add_host(struct hpsb_host *host); static void ether1394_remove_host(struct hpsb_host *host); static void ether1394_host_reset(struct hpsb_host *host); /* Function for incoming 1394 packets */ static const struct hpsb_address_ops addr_ops = { .write = ether1394_write, }; /* Ieee1394 highlevel driver functions */ static struct hpsb_highlevel eth1394_highlevel = { .name = driver_name, .add_host = ether1394_add_host, .remove_host = ether1394_remove_host, .host_reset = ether1394_host_reset, }; static int ether1394_recv_init(struct eth1394_priv *priv) { unsigned int iso_buf_size; /* FIXME: rawiso limits us to PAGE_SIZE */ iso_buf_size = min((unsigned int)PAGE_SIZE, 2 * (1U << (priv->host->csr.max_rec + 1))); priv->iso = hpsb_iso_recv_init(priv->host, ETHER1394_GASP_BUFFERS * iso_buf_size, ETHER1394_GASP_BUFFERS, priv->broadcast_channel, HPSB_ISO_DMA_PACKET_PER_BUFFER, 1, ether1394_iso); if (priv->iso == NULL) { ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n"); priv->bc_state = ETHER1394_BC_ERROR; return -EAGAIN; } if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0) priv->bc_state = ETHER1394_BC_STOPPED; else priv->bc_state = ETHER1394_BC_RUNNING; return 0; } /* This is called after an "ifup" */ static int ether1394_open(struct net_device *dev) { struct eth1394_priv *priv = netdev_priv(dev); int ret; if (priv->bc_state == ETHER1394_BC_ERROR) { ret = ether1394_recv_init(priv); if (ret) return ret; } netif_start_queue(dev); return 0; } /* This is called after an "ifdown" */ static int ether1394_stop(struct net_device *dev) { /* flush priv->wake */ flush_scheduled_work(); netif_stop_queue(dev); return 0; } /* FIXME: What to do if we timeout? I think a host reset is probably in order, * so that's what we do. Should we increment the stat counters too? */ static void ether1394_tx_timeout(struct net_device *dev) { struct hpsb_host *host = ((struct eth1394_priv *)netdev_priv(dev))->host; ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n"); ether1394_host_reset(host); } static inline int ether1394_max_mtu(struct hpsb_host* host) { return (1 << (host->csr.max_rec + 1)) - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD; } static int ether1394_change_mtu(struct net_device *dev, int new_mtu) { int max_mtu; if (new_mtu < 68) return -EINVAL; max_mtu = ether1394_max_mtu( ((struct eth1394_priv *)netdev_priv(dev))->host); if (new_mtu > max_mtu) { ETH1394_PRINT(KERN_INFO, dev->name, "Local node constrains MTU to %d\n", max_mtu); return -ERANGE; } dev->mtu = new_mtu; return 0; } static void purge_partial_datagram(struct list_head *old) { struct partial_datagram *pd; struct list_head *lh, *n; struct fragment_info *fi; pd = list_entry(old, struct partial_datagram, list); list_for_each_safe(lh, n, &pd->frag_info) { fi = list_entry(lh, struct fragment_info, list); list_del(lh); kfree(fi); } list_del(old); kfree_skb(pd->skb); kfree(pd); } /****************************************** * 1394 bus activity functions ******************************************/ static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl, struct unit_directory *ud) { struct eth1394_node_ref *node; list_for_each_entry(node, inl, list) if (node->ud == ud) return node; return NULL; } static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl, u64 guid) { struct eth1394_node_ref *node; list_for_each_entry(node, inl, list) if (node->ud->ne->guid == guid) return node; return NULL; } static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl, nodeid_t nodeid) { struct eth1394_node_ref *node; list_for_each_entry(node, inl, list) if (node->ud->ne->nodeid == nodeid) return node; return NULL; } static int eth1394_new_node(struct eth1394_host_info *hi, struct unit_directory *ud) { struct eth1394_priv *priv; struct eth1394_node_ref *new_node; struct eth1394_node_info *node_info; new_node = kmalloc(sizeof(*new_node), GFP_KERNEL); if (!new_node) return -ENOMEM; node_info = kmalloc(sizeof(*node_info), GFP_KERNEL); if (!node_info) { kfree(new_node); return -ENOMEM; } spin_lock_init(&node_info->pdg.lock); INIT_LIST_HEAD(&node_info->pdg.list); node_info->pdg.sz = 0; node_info->fifo = CSR1212_INVALID_ADDR_SPACE; ud->device.driver_data = node_info; new_node->ud = ud; priv = netdev_priv(hi->dev); list_add_tail(&new_node->list, &priv->ip_node_list); return 0; } static int eth1394_probe(struct device *dev) { struct unit_directory *ud; struct eth1394_host_info *hi; ud = container_of(dev, struct unit_directory, device); hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host); if (!hi) return -ENOENT; return eth1394_new_node(hi, ud); } static int eth1394_remove(struct device *dev) { struct unit_directory *ud; struct eth1394_host_info *hi; struct eth1394_priv *priv; struct eth1394_node_ref *old_node; struct eth1394_node_info *node_info; struct list_head *lh, *n; unsigned long flags; ud = container_of(dev, struct unit_directory, device); hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host); if (!hi) return -ENOENT; priv = netdev_priv(hi->dev); old_node = eth1394_find_node(&priv->ip_node_list, ud); if (!old_node) return 0; list_del(&old_node->list); kfree(old_node); node_info = (struct eth1394_node_info*)ud->device.driver_data; spin_lock_irqsave(&node_info->pdg.lock, flags); /* The partial datagram list should be empty, but we'll just * make sure anyway... */ list_for_each_safe(lh, n, &node_info->pdg.list) purge_partial_datagram(lh); spin_unlock_irqrestore(&node_info->pdg.lock, flags); kfree(node_info); ud->device.driver_data = NULL; return 0; } static int eth1394_update(struct unit_directory *ud) { struct eth1394_host_info *hi; struct eth1394_priv *priv; struct eth1394_node_ref *node; hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host); if (!hi) return -ENOENT; priv = netdev_priv(hi->dev); node = eth1394_find_node(&priv->ip_node_list, ud); if (node) return 0; return eth1394_new_node(hi, ud); } static const struct ieee1394_device_id eth1394_id_table[] = { { .match_flags = (IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION), .specifier_id = ETHER1394_GASP_SPECIFIER_ID, .version = ETHER1394_GASP_VERSION, }, {} }; MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table); static struct hpsb_protocol_driver eth1394_proto_driver = { .name = driver_name, .id_table = eth1394_id_table, .update = eth1394_update, .driver = { .probe = eth1394_probe, .remove = eth1394_remove, }, }; static void ether1394_reset_priv(struct net_device *dev, int set_mtu) { unsigned long flags; int i; struct eth1394_priv *priv = netdev_priv(dev); struct hpsb_host *host = priv->host; u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3])); int max_speed = IEEE1394_SPEED_MAX; spin_lock_irqsave(&priv->lock, flags); memset(priv->ud_list, 0, sizeof(priv->ud_list)); priv->bc_maxpayload = 512; /* Determine speed limit */ /* FIXME: This is broken for nodes with link speed < PHY speed, * and it is suboptimal for S200B...S800B hardware. * The result of nodemgr's speed probe should be used somehow. */ for (i = 0; i < host->node_count; i++) { /* take care of S100B...S400B PHY ports */ if (host->speed[i] == SELFID_SPEED_UNKNOWN) { max_speed = IEEE1394_SPEED_100; break; } if (max_speed > host->speed[i]) max_speed = host->speed[i]; } priv->bc_sspd = max_speed; if (set_mtu) { /* Use the RFC 2734 default 1500 octets or the maximum payload * as initial MTU */ dev->mtu = min(1500, ether1394_max_mtu(host)); /* Set our hardware address while we're at it */ memcpy(dev->dev_addr, &guid, sizeof(u64)); memset(dev->broadcast, 0xff, sizeof(u64)); } spin_unlock_irqrestore(&priv->lock, flags); } static const struct header_ops ether1394_header_ops = { .create = ether1394_header, .rebuild = ether1394_rebuild_header, .cache = ether1394_header_cache, .cache_update = ether1394_header_cache_update, .parse = ether1394_header_parse, }; static const struct net_device_ops ether1394_netdev_ops = { .ndo_open = ether1394_open, .ndo_stop = ether1394_stop, .ndo_start_xmit = ether1394_tx, .ndo_tx_timeout = ether1394_tx_timeout, .ndo_change_mtu = ether1394_change_mtu, }; static void ether1394_init_dev(struct net_device *dev) { dev->header_ops = ðer1394_header_ops; dev->netdev_ops = ðer1394_netdev_ops; SET_ETHTOOL_OPS(dev, ðtool_ops); dev->watchdog_timeo = ETHER1394_TIMEOUT; dev->flags = IFF_BROADCAST | IFF_MULTICAST; dev->features = NETIF_F_HIGHDMA; dev->addr_len = ETH1394_ALEN; dev->hard_header_len = ETH1394_HLEN; dev->type = ARPHRD_IEEE1394; /* FIXME: This value was copied from ether_setup(). Is it too much? */ dev->tx_queue_len = 1000; } /* * Wake the queue up after commonly encountered transmit failure conditions are * hopefully over. Currently only tlabel exhaustion is accounted for. */ static void ether1394_wake_queue(struct work_struct *work) { struct eth1394_priv *priv; struct hpsb_packet *packet; priv = container_of(work, struct eth1394_priv, wake); packet = hpsb_alloc_packet(0); /* This is really bad, but unjam the queue anyway. */ if (!packet) goto out; packet->host = priv->host; packet->node_id = priv->wake_node; /* * A transaction label is all we really want. If we get one, it almost * always means we can get a lot more because the ieee1394 core recycled * a whole batch of tlabels, at last. */ if (hpsb_get_tlabel(packet) == 0) hpsb_free_tlabel(packet); hpsb_free_packet(packet); out: netif_wake_queue(priv->wake_dev); } /* * This function is called every time a card is found. It is generally called * when the module is installed. This is where we add all of our ethernet * devices. One for each host. */ static void ether1394_add_host(struct hpsb_host *host) { struct eth1394_host_info *hi = NULL; struct net_device *dev = NULL; struct eth1394_priv *priv; u64 fifo_addr; if (hpsb_config_rom_ip1394_add(host) != 0) { ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n"); return; } fifo_addr = hpsb_allocate_and_register_addrspace( ð1394_highlevel, host, &addr_ops, ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN, CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE); if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) { ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n"); hpsb_config_rom_ip1394_remove(host); return; } dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev); if (dev == NULL) { ETH1394_PRINT_G(KERN_ERR, "Out of memory\n"); goto out; } SET_NETDEV_DEV(dev, &host->device); priv = netdev_priv(dev); INIT_LIST_HEAD(&priv->ip_node_list); spin_lock_init(&priv->lock); priv->host = host; priv->local_fifo = fifo_addr; INIT_WORK(&priv->wake, ether1394_wake_queue); priv->wake_dev = dev; hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi)); if (hi == NULL) { ETH1394_PRINT_G(KERN_ERR, "Out of memory\n"); goto out; } ether1394_reset_priv(dev, 1); if (register_netdev(dev)) { ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n"); goto out; } ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n", host->id); hi->host = host; hi->dev = dev; /* Ignore validity in hopes that it will be set in the future. It'll * be checked when the eth device is opened. */ priv->broadcast_channel = host->csr.broadcast_channel & 0x3f; ether1394_recv_init(priv); return; out: if (dev) free_netdev(dev); if (hi) hpsb_destroy_hostinfo(ð1394_highlevel, host); hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr); hpsb_config_rom_ip1394_remove(host); } /* Remove a card from our list */ static void ether1394_remove_host(struct hpsb_host *host) { struct eth1394_host_info *hi; struct eth1394_priv *priv; hi = hpsb_get_hostinfo(ð1394_highlevel, host); if (!hi) return; priv = netdev_priv(hi->dev); hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo); hpsb_config_rom_ip1394_remove(host); if (priv->iso) hpsb_iso_shutdown(priv->iso); unregister_netdev(hi->dev); free_netdev(hi->dev); } /* A bus reset happened */ static void ether1394_host_reset(struct hpsb_host *host) { struct eth1394_host_info *hi; struct eth1394_priv *priv; struct net_device *dev; struct list_head *lh, *n; struct eth1394_node_ref *node; struct eth1394_node_info *node_info; unsigned long flags; hi = hpsb_get_hostinfo(ð1394_highlevel, host); /* This can happen for hosts that we don't use */ if (!hi) return; dev = hi->dev; priv = netdev_priv(dev); /* Reset our private host data, but not our MTU */ netif_stop_queue(dev); ether1394_reset_priv(dev, 0); list_for_each_entry(node, &priv->ip_node_list, list) { node_info = node->ud->device.driver_data; spin_lock_irqsave(&node_info->pdg.lock, flags); list_for_each_safe(lh, n, &node_info->pdg.list) purge_partial_datagram(lh); INIT_LIST_HEAD(&(node_info->pdg.list)); node_info->pdg.sz = 0; spin_unlock_irqrestore(&node_info->pdg.lock, flags); } netif_wake_queue(dev); } /****************************************** * HW Header net device functions ******************************************/ /* These functions have been adapted from net/ethernet/eth.c */ /* Create a fake MAC header for an arbitrary protocol layer. * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp). */ static int ether1394_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN); eth->h_proto = htons(type); if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { memset(eth->h_dest, 0, dev->addr_len); return dev->hard_header_len; } if (daddr) { memcpy(eth->h_dest, daddr, dev->addr_len); return dev->hard_header_len; } return -dev->hard_header_len; } /* Rebuild the faked MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * * This routine CANNOT use cached dst->neigh! * Really, it is used only when dst->neigh is wrong. */ static int ether1394_rebuild_header(struct sk_buff *skb) { struct eth1394hdr *eth = (struct eth1394hdr *)skb->data; if (eth->h_proto == htons(ETH_P_IP)) return arp_find((unsigned char *)ð->h_dest, skb); ETH1394_PRINT(KERN_DEBUG, skb->dev->name, "unable to resolve type %04x addresses\n", ntohs(eth->h_proto)); return 0; } static int ether1394_header_parse(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN); return ETH1394_ALEN; } static int ether1394_header_cache(const struct neighbour *neigh, struct hh_cache *hh) { __be16 type = hh->hh_type; struct net_device *dev = neigh->dev; struct eth1394hdr *eth = (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN); if (type == htons(ETH_P_802_3)) return -1; eth->h_proto = type; memcpy(eth->h_dest, neigh->ha, dev->addr_len); hh->hh_len = ETH1394_HLEN; return 0; } /* Called by Address Resolution module to notify changes in address. */ static void ether1394_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr) { memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len); } /****************************************** * Datagram reception code ******************************************/ /* Copied from net/ethernet/eth.c */ static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev) { struct eth1394hdr *eth; unsigned char *rawp; skb_reset_mac_header(skb); skb_pull(skb, ETH1394_HLEN); eth = eth1394_hdr(skb); if (*eth->h_dest & 1) { if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0) skb->pkt_type = PACKET_BROADCAST; #if 0 else skb->pkt_type = PACKET_MULTICAST; #endif } else { if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len)) skb->pkt_type = PACKET_OTHERHOST; } if (ntohs(eth->h_proto) >= 1536) return eth->h_proto; rawp = skb->data; if (*(unsigned short *)rawp == 0xFFFF) return htons(ETH_P_802_3); return htons(ETH_P_802_2); } /* Parse an encapsulated IP1394 header into an ethernet frame packet. * We also perform ARP translation here, if need be. */ static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev, nodeid_t srcid, nodeid_t destid, __be16 ether_type) { struct eth1394_priv *priv = netdev_priv(dev); __be64 dest_hw; __be16 ret = 0; /* Setup our hw addresses. We use these to build the ethernet header. */ if (destid == (LOCAL_BUS | ALL_NODES)) dest_hw = ~cpu_to_be64(0); /* broadcast */ else dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 | priv->host->csr.guid_lo); /* If this is an ARP packet, convert it. First, we want to make * use of some of the fields, since they tell us a little bit * about the sending machine. */ if (ether_type == htons(ETH_P_ARP)) { struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data; struct arphdr *arp = (struct arphdr *)skb->data; unsigned char *arp_ptr = (unsigned char *)(arp + 1); u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 | ntohl(arp1394->fifo_lo); u8 max_rec = min(priv->host->csr.max_rec, (u8)(arp1394->max_rec)); int sspd = arp1394->sspd; u16 maxpayload; struct eth1394_node_ref *node; struct eth1394_node_info *node_info; __be64 guid; /* Sanity check. MacOSX seems to be sending us 131 in this * field (atleast on my Panther G5). Not sure why. */ if (sspd > 5 || sspd < 0) sspd = 0; maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1))); guid = get_unaligned(&arp1394->s_uniq_id); node = eth1394_find_node_guid(&priv->ip_node_list, be64_to_cpu(guid)); if (!node) return cpu_to_be16(0); node_info = (struct eth1394_node_info *)node->ud->device.driver_data; /* Update our speed/payload/fifo_offset table */ node_info->maxpayload = maxpayload; node_info->sspd = sspd; node_info->fifo = fifo_addr; /* Now that we're done with the 1394 specific stuff, we'll * need to alter some of the data. Believe it or not, all * that needs to be done is sender_IP_address needs to be * moved, the destination hardware address get stuffed * in and the hardware address length set to 8. * * IMPORTANT: The code below overwrites 1394 specific data * needed above so keep the munging of the data for the * higher level IP stack last. */ arp->ar_hln = 8; arp_ptr += arp->ar_hln; /* skip over sender unique id */ *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */ arp_ptr += arp->ar_pln; /* skip over sender IP addr */ if (arp->ar_op == htons(ARPOP_REQUEST)) memset(arp_ptr, 0, sizeof(u64)); else memcpy(arp_ptr, dev->dev_addr, sizeof(u64)); } /* Now add the ethernet header. */ if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL, skb->len) >= 0) ret = ether1394_type_trans(skb, dev); return ret; } static int fragment_overlap(struct list_head *frag_list, int offset, int len) { struct fragment_info *fi; int end = offset + len; list_for_each_entry(fi, frag_list, list) if (offset < fi->offset + fi->len && end > fi->offset) return 1; return 0; } static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl) { struct partial_datagram *pd; list_for_each_entry(pd, pdgl, list) if (pd->dgl == dgl) return &pd->list; return NULL; } /* Assumes that new fragment does not overlap any existing fragments */ static int new_fragment(struct list_head *frag_info, int offset, int len) { struct list_head *lh; struct fragment_info *fi, *fi2, *new; list_for_each(lh, frag_info) { fi = list_entry(lh, struct fragment_info, list); if (fi->offset + fi->len == offset) { /* The new fragment can be tacked on to the end */ fi->len += len; /* Did the new fragment plug a hole? */ fi2 = list_entry(lh->next, struct fragment_info, list); if (fi->offset + fi->len == fi2->offset) { /* glue fragments together */ fi->len += fi2->len; list_del(lh->next); kfree(fi2); } return 0; } else if (offset + len == fi->offset) { /* The new fragment can be tacked on to the beginning */ fi->offset = offset; fi->len += len; /* Did the new fragment plug a hole? */ fi2 = list_entry(lh->prev, struct fragment_info, list); if (fi2->offset + fi2->len == fi->offset) { /* glue fragments together */ fi2->len += fi->len; list_del(lh); kfree(fi); } return 0; } else if (offset > fi->offset + fi->len) { break; } else if (offset + len < fi->offset) { lh = lh->prev; break; } } new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) return -ENOMEM; new->offset = offset; new->len = len; list_add(&new->list, lh); return 0; } static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl, int dgl, int dg_size, char *frag_buf, int frag_off, int frag_len) { struct partial_datagram *new; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) return -ENOMEM; INIT_LIST_HEAD(&new->frag_info); if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) { kfree(new); return -ENOMEM; } new->dgl = dgl; new->dg_size = dg_size; new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15); if (!new->skb) { struct fragment_info *fi = list_entry(new->frag_info.next, struct fragment_info, list); kfree(fi); kfree(new); return -ENOMEM; } skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15); new->pbuf = skb_put(new->skb, dg_size); memcpy(new->pbuf + frag_off, frag_buf, frag_len); list_add(&new->list, pdgl); return 0; } static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh, char *frag_buf, int frag_off, int frag_len) { struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list); if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) return -ENOMEM; memcpy(pd->pbuf + frag_off, frag_buf, frag_len); /* Move list entry to beginnig of list so that oldest partial * datagrams percolate to the end of the list */ list_move(lh, pdgl); return 0; } static int is_datagram_complete(struct list_head *lh, int dg_size) { struct partial_datagram *pd; struct fragment_info *fi; pd = list_entry(lh, struct partial_datagram, list); fi = list_entry(pd->frag_info.next, struct fragment_info, list); return (fi->len == dg_size); } /* Packet reception. We convert the IP1394 encapsulation header to an * ethernet header, and fill it with some of our other fields. This is * an incoming packet from the 1394 bus. */ static int ether1394_data_handler(struct net_device *dev, int srcid, int destid, char *buf, int len) { struct sk_buff *skb; unsigned long flags; struct eth1394_priv *priv = netdev_priv(dev); union eth1394_hdr *hdr = (union eth1394_hdr *)buf; __be16 ether_type = cpu_to_be16(0); /* initialized to clear warning */ int hdr_len; struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)]; struct eth1394_node_info *node_info; if (!ud) { struct eth1394_node_ref *node; node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid); if (unlikely(!node)) { HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid " "lookup failure: " NODE_BUS_FMT, NODE_BUS_ARGS(priv->host, srcid)); dev->stats.rx_dropped++; return -1; } ud = node->ud; priv->ud_list[NODEID_TO_NODE(srcid)] = ud; } node_info = (struct eth1394_node_info *)ud->device.driver_data; /* First, did we receive a fragmented or unfragmented datagram? */ hdr->words.word1 = ntohs(hdr->words.word1); hdr_len = hdr_type_len[hdr->common.lf]; if (hdr->common.lf == ETH1394_HDR_LF_UF) { /* An unfragmented datagram has been received by the ieee1394 * bus. Build an skbuff around it so we can pass it to the * high level network layer. */ skb = dev_alloc_skb(len + dev->hard_header_len + 15); if (unlikely(!skb)) { ETH1394_PRINT_G(KERN_ERR, "Out of memory\n"); dev->stats.rx_dropped++; return -1; } skb_reserve(skb, (dev->hard_header_len + 15) & ~15); memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len); ether_type = hdr->uf.ether_type; } else { /* A datagram fragment has been received, now the fun begins. */ struct list_head *pdgl, *lh; struct partial_datagram *pd; int fg_off; int fg_len = len - hdr_len; int dg_size; int dgl; int retval; struct pdg_list *pdg = &(node_info->pdg); hdr->words.word3 = ntohs(hdr->words.word3); /* The 4th header word is reserved so no need to do ntohs() */ if (hdr->common.lf == ETH1394_HDR_LF_FF) { ether_type = hdr->ff.ether_type; dgl = hdr->ff.dgl; dg_size = hdr->ff.dg_size + 1; fg_off = 0; } else { hdr->words.word2 = ntohs(hdr->words.word2); dgl = hdr->sf.dgl; dg_size = hdr->sf.dg_size + 1; fg_off = hdr->sf.fg_off; } spin_lock_irqsave(&pdg->lock, flags); pdgl = &(pdg->list); lh = find_partial_datagram(pdgl, dgl); if (lh == NULL) { while (pdg->sz >= max_partial_datagrams) { /* remove the oldest */ purge_partial_datagram(pdgl->prev); pdg->sz--; } retval = new_partial_datagram(dev, pdgl, dgl, dg_size, buf + hdr_len, fg_off, fg_len); if (retval < 0) { spin_unlock_irqrestore(&pdg->lock, flags); goto bad_proto; } pdg->sz++; lh = find_partial_datagram(pdgl, dgl); } else { pd = list_entry(lh, struct partial_datagram, list); if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) { /* Overlapping fragments, obliterate old * datagram and start new one. */ purge_partial_datagram(lh); retval = new_partial_datagram(dev, pdgl, dgl, dg_size, buf + hdr_len, fg_off, fg_len); if (retval < 0) { pdg->sz--; spin_unlock_irqrestore(&pdg->lock, flags); goto bad_proto; } } else { retval = update_partial_datagram(pdgl, lh, buf + hdr_len, fg_off, fg_len); if (retval < 0) { /* Couldn't save off fragment anyway * so might as well obliterate the * datagram now. */ purge_partial_datagram(lh); pdg->sz--; spin_unlock_irqrestore(&pdg->lock, flags); goto bad_proto; } } /* fragment overlap */ } /* new datagram or add to existing one */ pd = list_entry(lh, struct partial_datagram, list); if (hdr->common.lf == ETH1394_HDR_LF_FF) pd->ether_type = ether_type; if (is_datagram_complete(lh, dg_size)) { ether_type = pd->ether_type; pdg->sz--; skb = skb_get(pd->skb); purge_partial_datagram(lh); spin_unlock_irqrestore(&pdg->lock, flags); } else { /* Datagram is not complete, we're done for the * moment. */ spin_unlock_irqrestore(&pdg->lock, flags); return 0; } } /* unframgented datagram or fragmented one */ /* Write metadata, and then pass to the receive level */ skb->dev = dev; skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ /* Parse the encapsulation header. This actually does the job of * converting to an ethernet frame header, aswell as arp * conversion if needed. ARP conversion is easier in this * direction, since we are using ethernet as our backend. */ skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid, ether_type); spin_lock_irqsave(&priv->lock, flags); if (!skb->protocol) { dev->stats.rx_errors++; dev->stats.rx_dropped++; dev_kfree_skb_any(skb); } else if (netif_rx(skb) == NET_RX_DROP) { dev->stats.rx_errors++; dev->stats.rx_dropped++; } else { dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; } spin_unlock_irqrestore(&priv->lock, flags); bad_proto: if (netif_queue_stopped(dev)) netif_wake_queue(dev); return 0; } static int ether1394_write(struct hpsb_host *host, int srcid, int destid, quadlet_t *data, u64 addr, size_t len, u16 flags) { struct eth1394_host_info *hi; hi = hpsb_get_hostinfo(ð1394_highlevel, host); if (unlikely(!hi)) { ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n", host->id); return RCODE_ADDRESS_ERROR; } if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len)) return RCODE_ADDRESS_ERROR; else return RCODE_COMPLETE; } static void ether1394_iso(struct hpsb_iso *iso) { __be32 *data; char *buf; struct eth1394_host_info *hi; struct net_device *dev; struct eth1394_priv *priv; unsigned int len; u32 specifier_id; u16 source_id; int i; int nready; hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host); if (unlikely(!hi)) { ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n", iso->host->id); return; } dev = hi->dev; nready = hpsb_iso_n_ready(iso); for (i = 0; i < nready; i++) { struct hpsb_iso_packet_info *info = &iso->infos[(iso->first_packet + i) % iso->buf_packets]; data = (__be32 *)(iso->data_buf.kvirt + info->offset); /* skip over GASP header */ buf = (char *)data + 8; len = info->len - 8; specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 | (be32_to_cpu(data[1]) & 0xff000000) >> 24; source_id = be32_to_cpu(data[0]) >> 16; priv = netdev_priv(dev); if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) || specifier_id != ETHER1394_GASP_SPECIFIER_ID) { /* This packet is not for us */ continue; } ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES, buf, len); } hpsb_iso_recv_release_packets(iso, i); dev->last_rx = jiffies; } /****************************************** * Datagram transmission code ******************************************/ /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire * arphdr) is the same format as the ip1394 header, so they overlap. The rest * needs to be munged a bit. The remainder of the arphdr is formatted based * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to * judge. * * Now that the EUI is used for the hardware address all we need to do to make * this work for 1394 is to insert 2 quadlets that contain max_rec size, * speed, and unicast FIFO address information between the sender_unique_id * and the IP addresses. */ static void ether1394_arp_to_1394arp(struct sk_buff *skb, struct net_device *dev) { struct eth1394_priv *priv = netdev_priv(dev); struct arphdr *arp = (struct arphdr *)skb->data; unsigned char *arp_ptr = (unsigned char *)(arp + 1); struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data; arp1394->hw_addr_len = 16; arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN); arp1394->max_rec = priv->host->csr.max_rec; arp1394->sspd = priv->host->csr.lnk_spd; arp1394->fifo_hi = htons(priv->local_fifo >> 32); arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0); } /* We need to encapsulate the standard header with our own. We use the * ethernet header's proto for our own. */ static unsigned int ether1394_encapsulate_prep(unsigned int max_payload, __be16 proto, union eth1394_hdr *hdr, u16 dg_size, u16 dgl) { unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF]; /* Does it all fit in one packet? */ if (dg_size <= adj_max_payload) { hdr->uf.lf = ETH1394_HDR_LF_UF; hdr->uf.ether_type = proto; } else { hdr->ff.lf = ETH1394_HDR_LF_FF; hdr->ff.ether_type = proto; hdr->ff.dg_size = dg_size - 1; hdr->ff.dgl = dgl; adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF]; } return DIV_ROUND_UP(dg_size, adj_max_payload); } static unsigned int ether1394_encapsulate(struct sk_buff *skb, unsigned int max_payload, union eth1394_hdr *hdr) { union eth1394_hdr *bufhdr; int ftype = hdr->common.lf; int hdrsz = hdr_type_len[ftype]; unsigned int adj_max_payload = max_payload - hdrsz; switch (ftype) { case ETH1394_HDR_LF_UF: bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz); bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = hdr->words.word2; break; case ETH1394_HDR_LF_FF: bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz); bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = hdr->words.word2; bufhdr->words.word3 = htons(hdr->words.word3); bufhdr->words.word4 = 0; /* Set frag type here for future interior fragments */ hdr->common.lf = ETH1394_HDR_LF_IF; hdr->sf.fg_off = 0; break; default: hdr->sf.fg_off += adj_max_payload; bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload); if (max_payload >= skb->len) hdr->common.lf = ETH1394_HDR_LF_LF; bufhdr->words.word1 = htons(hdr->words.word1); bufhdr->words.word2 = htons(hdr->words.word2); bufhdr->words.word3 = htons(hdr->words.word3); bufhdr->words.word4 = 0; } return min(max_payload, skb->len); } static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host) { struct hpsb_packet *p; p = hpsb_alloc_packet(0); if (p) { p->host = host; p->generation = get_hpsb_generation(host); p->type = hpsb_async; } return p; } static int ether1394_prep_write_packet(struct hpsb_packet *p, struct hpsb_host *host, nodeid_t node, u64 addr, void *data, int tx_len) { p->node_id = node; if (hpsb_get_tlabel(p)) return -EAGAIN; p->tcode = TCODE_WRITEB; p->header_size = 16; p->expect_response = 1; p->header[0] = p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4; p->header[1] = host->node_id << 16 | addr >> 32; p->header[2] = addr & 0xffffffff; p->header[3] = tx_len << 16; p->data_size = (tx_len + 3) & ~3; p->data = data; return 0; } static void ether1394_prep_gasp_packet(struct hpsb_packet *p, struct eth1394_priv *priv, struct sk_buff *skb, int length) { p->header_size = 4; p->tcode = TCODE_STREAM_DATA; p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 | TCODE_STREAM_DATA << 4; p->data_size = length; p->data = (quadlet_t *)skb->data - 2; p->data[0] = cpu_to_be32(priv->host->node_id << 16 | ETHER1394_GASP_SPECIFIER_ID_HI); p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 | ETHER1394_GASP_VERSION); p->speed_code = priv->bc_sspd; /* prevent hpsb_send_packet() from overriding our speed code */ p->node_id = LOCAL_BUS | ALL_NODES; } static void ether1394_free_packet(struct hpsb_packet *packet) { if (packet->tcode != TCODE_STREAM_DATA) hpsb_free_tlabel(packet); hpsb_free_packet(packet); } static void ether1394_complete_cb(void *__ptask); static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len) { struct eth1394_priv *priv = ptask->priv; struct hpsb_packet *packet = NULL; packet = ether1394_alloc_common_packet(priv->host); if (!packet) return -ENOMEM; if (ptask->tx_type == ETH1394_GASP) { int length = tx_len + 2 * sizeof(quadlet_t); ether1394_prep_gasp_packet(packet, priv, ptask->skb, length); } else if (ether1394_prep_write_packet(packet, priv->host, ptask->dest_node, ptask->addr, ptask->skb->data, tx_len)) { hpsb_free_packet(packet); return -EAGAIN; } ptask->packet = packet; hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb, ptask); if (hpsb_send_packet(packet) < 0) { ether1394_free_packet(packet); return -EIO; } return 0; } /* Task function to be run when a datagram transmission is completed */ static void ether1394_dg_complete(struct packet_task *ptask, int fail) { struct sk_buff *skb = ptask->skb; struct net_device *dev = skb->dev; struct eth1394_priv *priv = netdev_priv(dev); unsigned long flags; /* Statistics */ spin_lock_irqsave(&priv->lock, flags); if (fail) { dev->stats.tx_dropped++; dev->stats.tx_errors++; } else { dev->stats.tx_bytes += skb->len; dev->stats.tx_packets++; } spin_unlock_irqrestore(&priv->lock, flags); dev_kfree_skb_any(skb); kmem_cache_free(packet_task_cache, ptask); } /* Callback for when a packet has been sent and the status of that packet is * known */ static void ether1394_complete_cb(void *__ptask) { struct packet_task *ptask = (struct packet_task *)__ptask; struct hpsb_packet *packet = ptask->packet; int fail = 0; if (packet->tcode != TCODE_STREAM_DATA) fail = hpsb_packet_success(packet); ether1394_free_packet(packet); ptask->outstanding_pkts--; if (ptask->outstanding_pkts > 0 && !fail) { int tx_len, err; /* Add the encapsulation header to the fragment */ tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload, &ptask->hdr); err = ether1394_send_packet(ptask, tx_len); if (err) { if (err == -EAGAIN) ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n"); ether1394_dg_complete(ptask, 1); } } else { ether1394_dg_complete(ptask, fail); } } /* Transmit a packet (called by kernel) */ static int ether1394_tx(struct sk_buff *skb, struct net_device *dev) { struct eth1394hdr hdr_buf; struct eth1394_priv *priv = netdev_priv(dev); __be16 proto; unsigned long flags; nodeid_t dest_node; eth1394_tx_type tx_type; unsigned int tx_len; unsigned int max_payload; u16 dg_size; u16 dgl; struct packet_task *ptask; struct eth1394_node_ref *node; struct eth1394_node_info *node_info = NULL; ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC); if (ptask == NULL) goto fail; /* XXX Ignore this for now. Noticed that when MacOSX is the IRM, * it does not set our validity bit. We need to compensate for * that somewhere else, but not in eth1394. */ #if 0 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) goto fail; #endif skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto fail; /* Get rid of the fake eth1394 header, but first make a copy. * We might need to rebuild the header on tx failure. */ memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); skb_pull(skb, ETH1394_HLEN); proto = hdr_buf.h_proto; dg_size = skb->len; /* Set the transmission type for the packet. ARP packets and IP * broadcast packets are sent via GASP. */ if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 || proto == htons(ETH_P_ARP) || (proto == htons(ETH_P_IP) && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { tx_type = ETH1394_GASP; dest_node = LOCAL_BUS | ALL_NODES; max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD; BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD); dgl = priv->bc_dgl; if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF]) priv->bc_dgl++; } else { __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); node = eth1394_find_node_guid(&priv->ip_node_list, be64_to_cpu(guid)); if (!node) goto fail; node_info = (struct eth1394_node_info *)node->ud->device.driver_data; if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) goto fail; dest_node = node->ud->ne->nodeid; max_payload = node_info->maxpayload; BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD); dgl = node_info->dgl; if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF]) node_info->dgl++; tx_type = ETH1394_WRREQ; } /* If this is an ARP packet, convert it */ if (proto == htons(ETH_P_ARP)) ether1394_arp_to_1394arp(skb, dev); ptask->hdr.words.word1 = 0; ptask->hdr.words.word2 = 0; ptask->hdr.words.word3 = 0; ptask->hdr.words.word4 = 0; ptask->skb = skb; ptask->priv = priv; ptask->tx_type = tx_type; if (tx_type != ETH1394_GASP) { u64 addr; spin_lock_irqsave(&priv->lock, flags); addr = node_info->fifo; spin_unlock_irqrestore(&priv->lock, flags); ptask->addr = addr; ptask->dest_node = dest_node; } ptask->tx_type = tx_type; ptask->max_payload = max_payload; ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto, &ptask->hdr, dg_size, dgl); /* Add the encapsulation header to the fragment */ tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr); dev->trans_start = jiffies; if (ether1394_send_packet(ptask, tx_len)) { if (dest_node == (LOCAL_BUS | ALL_NODES)) goto fail; /* At this point we want to restore the packet. When we return * here with NETDEV_TX_BUSY we will get another entrance in this * routine with the same skb and we need it to look the same. * So we pull 4 more bytes, then build the header again. */ skb_pull(skb, 4); ether1394_header(skb, dev, ntohs(hdr_buf.h_proto), hdr_buf.h_dest, NULL, 0); /* Most failures of ether1394_send_packet are recoverable. */ netif_stop_queue(dev); priv->wake_node = dest_node; schedule_work(&priv->wake); kmem_cache_free(packet_task_cache, ptask); return NETDEV_TX_BUSY; } return NETDEV_TX_OK; fail: if (ptask) kmem_cache_free(packet_task_cache, ptask); if (skb != NULL) dev_kfree_skb(skb); spin_lock_irqsave(&priv->lock, flags); dev->stats.tx_dropped++; dev->stats.tx_errors++; spin_unlock_irqrestore(&priv->lock, flags); /* * FIXME: According to a patch from 2003-02-26, "returning non-zero * causes serious problems" here, allegedly. Before that patch, * -ERRNO was returned which is not appropriate under Linux 2.6. * Perhaps more needs to be done? Stop the queue in serious * conditions and restart it elsewhere? */ /* return NETDEV_TX_BUSY; */ return NETDEV_TX_OK; } static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, driver_name); strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */ } static struct ethtool_ops ethtool_ops = { .get_drvinfo = ether1394_get_drvinfo }; static int __init ether1394_init_module(void) { int err; packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task), 0, 0, NULL); if (!packet_task_cache) return -ENOMEM; hpsb_register_highlevel(ð1394_highlevel); err = hpsb_register_protocol(ð1394_proto_driver); if (err) { hpsb_unregister_highlevel(ð1394_highlevel); kmem_cache_destroy(packet_task_cache); } return err; } static void __exit ether1394_exit_module(void) { hpsb_unregister_protocol(ð1394_proto_driver); hpsb_unregister_highlevel(ð1394_highlevel); kmem_cache_destroy(packet_task_cache); } module_init(ether1394_init_module); module_exit(ether1394_exit_module);