/* * IBM eServer eHCA Infiniband device driver for Linux on POWER * * Functions for EQs, NEQs and interrupts * * Authors: Heiko J Schick * Khadija Souissi * Hoang-Nam Nguyen * Joachim Fenkes * * Copyright (c) 2005 IBM Corporation * * All rights reserved. * * This source code is distributed under a dual license of GPL v2.0 and OpenIB * BSD. * * OpenIB BSD License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "ehca_classes.h" #include "ehca_irq.h" #include "ehca_iverbs.h" #include "ehca_tools.h" #include "hcp_if.h" #include "hipz_fns.h" #include "ipz_pt_fn.h" #define EQE_COMPLETION_EVENT EHCA_BMASK_IBM( 1, 1) #define EQE_CQ_QP_NUMBER EHCA_BMASK_IBM( 8, 31) #define EQE_EE_IDENTIFIER EHCA_BMASK_IBM( 2, 7) #define EQE_CQ_NUMBER EHCA_BMASK_IBM( 8, 31) #define EQE_QP_NUMBER EHCA_BMASK_IBM( 8, 31) #define EQE_QP_TOKEN EHCA_BMASK_IBM(32, 63) #define EQE_CQ_TOKEN EHCA_BMASK_IBM(32, 63) #define NEQE_COMPLETION_EVENT EHCA_BMASK_IBM( 1, 1) #define NEQE_EVENT_CODE EHCA_BMASK_IBM( 2, 7) #define NEQE_PORT_NUMBER EHCA_BMASK_IBM( 8, 15) #define NEQE_PORT_AVAILABILITY EHCA_BMASK_IBM(16, 16) #define NEQE_DISRUPTIVE EHCA_BMASK_IBM(16, 16) #define ERROR_DATA_LENGTH EHCA_BMASK_IBM(52, 63) #define ERROR_DATA_TYPE EHCA_BMASK_IBM( 0, 7) static void queue_comp_task(struct ehca_cq *__cq); static struct ehca_comp_pool *pool; #ifdef CONFIG_HOTPLUG_CPU static struct notifier_block comp_pool_callback_nb; #endif static inline void comp_event_callback(struct ehca_cq *cq) { if (!cq->ib_cq.comp_handler) return; spin_lock(&cq->cb_lock); cq->ib_cq.comp_handler(&cq->ib_cq, cq->ib_cq.cq_context); spin_unlock(&cq->cb_lock); return; } static void print_error_data(struct ehca_shca *shca, void *data, u64 *rblock, int length) { u64 type = EHCA_BMASK_GET(ERROR_DATA_TYPE, rblock[2]); u64 resource = rblock[1]; switch (type) { case 0x1: /* Queue Pair */ { struct ehca_qp *qp = (struct ehca_qp *)data; /* only print error data if AER is set */ if (rblock[6] == 0) return; ehca_err(&shca->ib_device, "QP 0x%x (resource=%lx) has errors.", qp->ib_qp.qp_num, resource); break; } case 0x4: /* Completion Queue */ { struct ehca_cq *cq = (struct ehca_cq *)data; ehca_err(&shca->ib_device, "CQ 0x%x (resource=%lx) has errors.", cq->cq_number, resource); break; } default: ehca_err(&shca->ib_device, "Unknown errror type: %lx on %s.", type, shca->ib_device.name); break; } ehca_err(&shca->ib_device, "Error data is available: %lx.", resource); ehca_err(&shca->ib_device, "EHCA ----- error data begin " "---------------------------------------------------"); ehca_dmp(rblock, length, "resource=%lx", resource); ehca_err(&shca->ib_device, "EHCA ----- error data end " "----------------------------------------------------"); return; } int ehca_error_data(struct ehca_shca *shca, void *data, u64 resource) { unsigned long ret; u64 *rblock; unsigned long block_count; rblock = ehca_alloc_fw_ctrlblock(GFP_ATOMIC); if (!rblock) { ehca_err(&shca->ib_device, "Cannot allocate rblock memory."); ret = -ENOMEM; goto error_data1; } /* rblock must be 4K aligned and should be 4K large */ ret = hipz_h_error_data(shca->ipz_hca_handle, resource, rblock, &block_count); if (ret == H_R_STATE) ehca_err(&shca->ib_device, "No error data is available: %lx.", resource); else if (ret == H_SUCCESS) { int length; length = EHCA_BMASK_GET(ERROR_DATA_LENGTH, rblock[0]); if (length > EHCA_PAGESIZE) length = EHCA_PAGESIZE; print_error_data(shca, data, rblock, length); } else ehca_err(&shca->ib_device, "Error data could not be fetched: %lx", resource); ehca_free_fw_ctrlblock(rblock); error_data1: return ret; } static void qp_event_callback(struct ehca_shca *shca, u64 eqe, enum ib_event_type event_type, int fatal) { struct ib_event event; struct ehca_qp *qp; u32 token = EHCA_BMASK_GET(EQE_QP_TOKEN, eqe); read_lock(&ehca_qp_idr_lock); qp = idr_find(&ehca_qp_idr, token); read_unlock(&ehca_qp_idr_lock); if (!qp) return; if (fatal) ehca_error_data(shca, qp, qp->ipz_qp_handle.handle); event.device = &shca->ib_device; if (qp->ext_type == EQPT_SRQ) { if (!qp->ib_srq.event_handler) return; event.event = fatal ? IB_EVENT_SRQ_ERR : event_type; event.element.srq = &qp->ib_srq; qp->ib_srq.event_handler(&event, qp->ib_srq.srq_context); } else { if (!qp->ib_qp.event_handler) return; event.event = event_type; event.element.qp = &qp->ib_qp; qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context); } return; } static void cq_event_callback(struct ehca_shca *shca, u64 eqe) { struct ehca_cq *cq; u32 token = EHCA_BMASK_GET(EQE_CQ_TOKEN, eqe); read_lock(&ehca_cq_idr_lock); cq = idr_find(&ehca_cq_idr, token); if (cq) atomic_inc(&cq->nr_events); read_unlock(&ehca_cq_idr_lock); if (!cq) return; ehca_error_data(shca, cq, cq->ipz_cq_handle.handle); if (atomic_dec_and_test(&cq->nr_events)) wake_up(&cq->wait_completion); return; } static void parse_identifier(struct ehca_shca *shca, u64 eqe) { u8 identifier = EHCA_BMASK_GET(EQE_EE_IDENTIFIER, eqe); switch (identifier) { case 0x02: /* path migrated */ qp_event_callback(shca, eqe, IB_EVENT_PATH_MIG, 0); break; case 0x03: /* communication established */ qp_event_callback(shca, eqe, IB_EVENT_COMM_EST, 0); break; case 0x04: /* send queue drained */ qp_event_callback(shca, eqe, IB_EVENT_SQ_DRAINED, 0); break; case 0x05: /* QP error */ case 0x06: /* QP error */ qp_event_callback(shca, eqe, IB_EVENT_QP_FATAL, 1); break; case 0x07: /* CQ error */ case 0x08: /* CQ error */ cq_event_callback(shca, eqe); break; case 0x09: /* MRMWPTE error */ ehca_err(&shca->ib_device, "MRMWPTE error."); break; case 0x0A: /* port event */ ehca_err(&shca->ib_device, "Port event."); break; case 0x0B: /* MR access error */ ehca_err(&shca->ib_device, "MR access error."); break; case 0x0C: /* EQ error */ ehca_err(&shca->ib_device, "EQ error."); break; case 0x0D: /* P/Q_Key mismatch */ ehca_err(&shca->ib_device, "P/Q_Key mismatch."); break; case 0x10: /* sampling complete */ ehca_err(&shca->ib_device, "Sampling complete."); break; case 0x11: /* unaffiliated access error */ ehca_err(&shca->ib_device, "Unaffiliated access error."); break; case 0x12: /* path migrating error */ ehca_err(&shca->ib_device, "Path migration error."); break; case 0x13: /* interface trace stopped */ ehca_err(&shca->ib_device, "Interface trace stopped."); break; case 0x14: /* first error capture info available */ ehca_info(&shca->ib_device, "First error capture available"); break; case 0x15: /* SRQ limit reached */ qp_event_callback(shca, eqe, IB_EVENT_SRQ_LIMIT_REACHED, 0); break; default: ehca_err(&shca->ib_device, "Unknown identifier: %x on %s.", identifier, shca->ib_device.name); break; } return; } static void dispatch_port_event(struct ehca_shca *shca, int port_num, enum ib_event_type type, const char *msg) { struct ib_event event; ehca_info(&shca->ib_device, "port %d %s.", port_num, msg); event.device = &shca->ib_device; event.event = type; event.element.port_num = port_num; ib_dispatch_event(&event); } static void notify_port_conf_change(struct ehca_shca *shca, int port_num) { struct ehca_sma_attr new_attr; struct ehca_sma_attr *old_attr = &shca->sport[port_num - 1].saved_attr; ehca_query_sma_attr(shca, port_num, &new_attr); if (new_attr.sm_sl != old_attr->sm_sl || new_attr.sm_lid != old_attr->sm_lid) dispatch_port_event(shca, port_num, IB_EVENT_SM_CHANGE, "SM changed"); if (new_attr.lid != old_attr->lid || new_attr.lmc != old_attr->lmc) dispatch_port_event(shca, port_num, IB_EVENT_LID_CHANGE, "LID changed"); if (new_attr.pkey_tbl_len != old_attr->pkey_tbl_len || memcmp(new_attr.pkeys, old_attr->pkeys, sizeof(u16) * new_attr.pkey_tbl_len)) dispatch_port_event(shca, port_num, IB_EVENT_PKEY_CHANGE, "P_Key changed"); *old_attr = new_attr; } static void parse_ec(struct ehca_shca *shca, u64 eqe) { u8 ec = EHCA_BMASK_GET(NEQE_EVENT_CODE, eqe); u8 port = EHCA_BMASK_GET(NEQE_PORT_NUMBER, eqe); switch (ec) { case 0x30: /* port availability change */ if (EHCA_BMASK_GET(NEQE_PORT_AVAILABILITY, eqe)) { shca->sport[port - 1].port_state = IB_PORT_ACTIVE; dispatch_port_event(shca, port, IB_EVENT_PORT_ACTIVE, "is active"); ehca_query_sma_attr(shca, port, &shca->sport[port - 1].saved_attr); } else { shca->sport[port - 1].port_state = IB_PORT_DOWN; dispatch_port_event(shca, port, IB_EVENT_PORT_ERR, "is inactive"); } break; case 0x31: /* port configuration change * disruptive change is caused by * LID, PKEY or SM change */ if (EHCA_BMASK_GET(NEQE_DISRUPTIVE, eqe)) { ehca_warn(&shca->ib_device, "disruptive port " "%d configuration change", port); shca->sport[port - 1].port_state = IB_PORT_DOWN; dispatch_port_event(shca, port, IB_EVENT_PORT_ERR, "is inactive"); shca->sport[port - 1].port_state = IB_PORT_ACTIVE; dispatch_port_event(shca, port, IB_EVENT_PORT_ACTIVE, "is active"); } else notify_port_conf_change(shca, port); break; case 0x32: /* adapter malfunction */ ehca_err(&shca->ib_device, "Adapter malfunction."); break; case 0x33: /* trace stopped */ ehca_err(&shca->ib_device, "Traced stopped."); break; default: ehca_err(&shca->ib_device, "Unknown event code: %x on %s.", ec, shca->ib_device.name); break; } return; } static inline void reset_eq_pending(struct ehca_cq *cq) { u64 CQx_EP; struct h_galpa gal = cq->galpas.kernel; hipz_galpa_store_cq(gal, cqx_ep, 0x0); CQx_EP = hipz_galpa_load(gal, CQTEMM_OFFSET(cqx_ep)); return; } irqreturn_t ehca_interrupt_neq(int irq, void *dev_id) { struct ehca_shca *shca = (struct ehca_shca*)dev_id; tasklet_hi_schedule(&shca->neq.interrupt_task); return IRQ_HANDLED; } void ehca_tasklet_neq(unsigned long data) { struct ehca_shca *shca = (struct ehca_shca*)data; struct ehca_eqe *eqe; u64 ret; eqe = (struct ehca_eqe *)ehca_poll_eq(shca, &shca->neq); while (eqe) { if (!EHCA_BMASK_GET(NEQE_COMPLETION_EVENT, eqe->entry)) parse_ec(shca, eqe->entry); eqe = (struct ehca_eqe *)ehca_poll_eq(shca, &shca->neq); } ret = hipz_h_reset_event(shca->ipz_hca_handle, shca->neq.ipz_eq_handle, 0xFFFFFFFFFFFFFFFFL); if (ret != H_SUCCESS) ehca_err(&shca->ib_device, "Can't clear notification events."); return; } irqreturn_t ehca_interrupt_eq(int irq, void *dev_id) { struct ehca_shca *shca = (struct ehca_shca*)dev_id; tasklet_hi_schedule(&shca->eq.interrupt_task); return IRQ_HANDLED; } static inline void process_eqe(struct ehca_shca *shca, struct ehca_eqe *eqe) { u64 eqe_value; u32 token; struct ehca_cq *cq; eqe_value = eqe->entry; ehca_dbg(&shca->ib_device, "eqe_value=%lx", eqe_value); if (EHCA_BMASK_GET(EQE_COMPLETION_EVENT, eqe_value)) { ehca_dbg(&shca->ib_device, "Got completion event"); token = EHCA_BMASK_GET(EQE_CQ_TOKEN, eqe_value); read_lock(&ehca_cq_idr_lock); cq = idr_find(&ehca_cq_idr, token); if (cq) atomic_inc(&cq->nr_events); read_unlock(&ehca_cq_idr_lock); if (cq == NULL) { ehca_err(&shca->ib_device, "Invalid eqe for non-existing cq token=%x", token); return; } reset_eq_pending(cq); if (ehca_scaling_code) queue_comp_task(cq); else { comp_event_callback(cq); if (atomic_dec_and_test(&cq->nr_events)) wake_up(&cq->wait_completion); } } else { ehca_dbg(&shca->ib_device, "Got non completion event"); parse_identifier(shca, eqe_value); } } void ehca_process_eq(struct ehca_shca *shca, int is_irq) { struct ehca_eq *eq = &shca->eq; struct ehca_eqe_cache_entry *eqe_cache = eq->eqe_cache; u64 eqe_value; unsigned long flags; int eqe_cnt, i; int eq_empty = 0; spin_lock_irqsave(&eq->irq_spinlock, flags); if (is_irq) { const int max_query_cnt = 100; int query_cnt = 0; int int_state = 1; do { int_state = hipz_h_query_int_state( shca->ipz_hca_handle, eq->ist); query_cnt++; iosync(); } while (int_state && query_cnt < max_query_cnt); if (unlikely((query_cnt == max_query_cnt))) ehca_dbg(&shca->ib_device, "int_state=%x query_cnt=%x", int_state, query_cnt); } /* read out all eqes */ eqe_cnt = 0; do { u32 token; eqe_cache[eqe_cnt].eqe = (struct ehca_eqe *)ehca_poll_eq(shca, eq); if (!eqe_cache[eqe_cnt].eqe) break; eqe_value = eqe_cache[eqe_cnt].eqe->entry; if (EHCA_BMASK_GET(EQE_COMPLETION_EVENT, eqe_value)) { token = EHCA_BMASK_GET(EQE_CQ_TOKEN, eqe_value); read_lock(&ehca_cq_idr_lock); eqe_cache[eqe_cnt].cq = idr_find(&ehca_cq_idr, token); if (eqe_cache[eqe_cnt].cq) atomic_inc(&eqe_cache[eqe_cnt].cq->nr_events); read_unlock(&ehca_cq_idr_lock); if (!eqe_cache[eqe_cnt].cq) { ehca_err(&shca->ib_device, "Invalid eqe for non-existing cq " "token=%x", token); continue; } } else eqe_cache[eqe_cnt].cq = NULL; eqe_cnt++; } while (eqe_cnt < EHCA_EQE_CACHE_SIZE); if (!eqe_cnt) { if (is_irq) ehca_dbg(&shca->ib_device, "No eqe found for irq event"); goto unlock_irq_spinlock; } else if (!is_irq) ehca_dbg(&shca->ib_device, "deadman found %x eqe", eqe_cnt); if (unlikely(eqe_cnt == EHCA_EQE_CACHE_SIZE)) ehca_dbg(&shca->ib_device, "too many eqes for one irq event"); /* enable irq for new packets */ for (i = 0; i < eqe_cnt; i++) { if (eq->eqe_cache[i].cq) reset_eq_pending(eq->eqe_cache[i].cq); } /* check eq */ spin_lock(&eq->spinlock); eq_empty = (!ipz_eqit_eq_peek_valid(&shca->eq.ipz_queue)); spin_unlock(&eq->spinlock); /* call completion handler for cached eqes */ for (i = 0; i < eqe_cnt; i++) if (eq->eqe_cache[i].cq) { if (ehca_scaling_code) queue_comp_task(eq->eqe_cache[i].cq); else { struct ehca_cq *cq = eq->eqe_cache[i].cq; comp_event_callback(cq); if (atomic_dec_and_test(&cq->nr_events)) wake_up(&cq->wait_completion); } } else { ehca_dbg(&shca->ib_device, "Got non completion event"); parse_identifier(shca, eq->eqe_cache[i].eqe->entry); } /* poll eq if not empty */ if (eq_empty) goto unlock_irq_spinlock; do { struct ehca_eqe *eqe; eqe = (struct ehca_eqe *)ehca_poll_eq(shca, &shca->eq); if (!eqe) break; process_eqe(shca, eqe); } while (1); unlock_irq_spinlock: spin_unlock_irqrestore(&eq->irq_spinlock, flags); } void ehca_tasklet_eq(unsigned long data) { ehca_process_eq((struct ehca_shca*)data, 1); } static inline int find_next_online_cpu(struct ehca_comp_pool *pool) { int cpu; unsigned long flags; WARN_ON_ONCE(!in_interrupt()); if (ehca_debug_level) ehca_dmp(&cpu_online_map, sizeof(cpumask_t), ""); spin_lock_irqsave(&pool->last_cpu_lock, flags); cpu = next_cpu(pool->last_cpu, cpu_online_map); if (cpu == NR_CPUS) cpu = first_cpu(cpu_online_map); pool->last_cpu = cpu; spin_unlock_irqrestore(&pool->last_cpu_lock, flags); return cpu; } static void __queue_comp_task(struct ehca_cq *__cq, struct ehca_cpu_comp_task *cct) { unsigned long flags; spin_lock_irqsave(&cct->task_lock, flags); spin_lock(&__cq->task_lock); if (__cq->nr_callbacks == 0) { __cq->nr_callbacks++; list_add_tail(&__cq->entry, &cct->cq_list); cct->cq_jobs++; wake_up(&cct->wait_queue); } else __cq->nr_callbacks++; spin_unlock(&__cq->task_lock); spin_unlock_irqrestore(&cct->task_lock, flags); } static void queue_comp_task(struct ehca_cq *__cq) { int cpu_id; struct ehca_cpu_comp_task *cct; int cq_jobs; unsigned long flags; cpu_id = find_next_online_cpu(pool); BUG_ON(!cpu_online(cpu_id)); cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu_id); BUG_ON(!cct); spin_lock_irqsave(&cct->task_lock, flags); cq_jobs = cct->cq_jobs; spin_unlock_irqrestore(&cct->task_lock, flags); if (cq_jobs > 0) { cpu_id = find_next_online_cpu(pool); cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu_id); BUG_ON(!cct); } __queue_comp_task(__cq, cct); } static void run_comp_task(struct ehca_cpu_comp_task *cct) { struct ehca_cq *cq; unsigned long flags; spin_lock_irqsave(&cct->task_lock, flags); while (!list_empty(&cct->cq_list)) { cq = list_entry(cct->cq_list.next, struct ehca_cq, entry); spin_unlock_irqrestore(&cct->task_lock, flags); comp_event_callback(cq); if (atomic_dec_and_test(&cq->nr_events)) wake_up(&cq->wait_completion); spin_lock_irqsave(&cct->task_lock, flags); spin_lock(&cq->task_lock); cq->nr_callbacks--; if (!cq->nr_callbacks) { list_del_init(cct->cq_list.next); cct->cq_jobs--; } spin_unlock(&cq->task_lock); } spin_unlock_irqrestore(&cct->task_lock, flags); } static int comp_task(void *__cct) { struct ehca_cpu_comp_task *cct = __cct; int cql_empty; DECLARE_WAITQUEUE(wait, current); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { add_wait_queue(&cct->wait_queue, &wait); spin_lock_irq(&cct->task_lock); cql_empty = list_empty(&cct->cq_list); spin_unlock_irq(&cct->task_lock); if (cql_empty) schedule(); else __set_current_state(TASK_RUNNING); remove_wait_queue(&cct->wait_queue, &wait); spin_lock_irq(&cct->task_lock); cql_empty = list_empty(&cct->cq_list); spin_unlock_irq(&cct->task_lock); if (!cql_empty) run_comp_task(__cct); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); return 0; } static struct task_struct *create_comp_task(struct ehca_comp_pool *pool, int cpu) { struct ehca_cpu_comp_task *cct; cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu); spin_lock_init(&cct->task_lock); INIT_LIST_HEAD(&cct->cq_list); init_waitqueue_head(&cct->wait_queue); cct->task = kthread_create(comp_task, cct, "ehca_comp/%d", cpu); return cct->task; } static void destroy_comp_task(struct ehca_comp_pool *pool, int cpu) { struct ehca_cpu_comp_task *cct; struct task_struct *task; unsigned long flags_cct; cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu); spin_lock_irqsave(&cct->task_lock, flags_cct); task = cct->task; cct->task = NULL; cct->cq_jobs = 0; spin_unlock_irqrestore(&cct->task_lock, flags_cct); if (task) kthread_stop(task); } #ifdef CONFIG_HOTPLUG_CPU static void take_over_work(struct ehca_comp_pool *pool, int cpu) { struct ehca_cpu_comp_task *cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu); LIST_HEAD(list); struct ehca_cq *cq; unsigned long flags_cct; spin_lock_irqsave(&cct->task_lock, flags_cct); list_splice_init(&cct->cq_list, &list); while (!list_empty(&list)) { cq = list_entry(cct->cq_list.next, struct ehca_cq, entry); list_del(&cq->entry); __queue_comp_task(cq, per_cpu_ptr(pool->cpu_comp_tasks, smp_processor_id())); } spin_unlock_irqrestore(&cct->task_lock, flags_cct); } static int comp_pool_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct ehca_cpu_comp_task *cct; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: ehca_gen_dbg("CPU: %x (CPU_PREPARE)", cpu); if (!create_comp_task(pool, cpu)) { ehca_gen_err("Can't create comp_task for cpu: %x", cpu); return NOTIFY_BAD; } break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: ehca_gen_dbg("CPU: %x (CPU_CANCELED)", cpu); cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu); kthread_bind(cct->task, any_online_cpu(cpu_online_map)); destroy_comp_task(pool, cpu); break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: ehca_gen_dbg("CPU: %x (CPU_ONLINE)", cpu); cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu); kthread_bind(cct->task, cpu); wake_up_process(cct->task); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: ehca_gen_dbg("CPU: %x (CPU_DOWN_PREPARE)", cpu); break; case CPU_DOWN_FAILED: case CPU_DOWN_FAILED_FROZEN: ehca_gen_dbg("CPU: %x (CPU_DOWN_FAILED)", cpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: ehca_gen_dbg("CPU: %x (CPU_DEAD)", cpu); destroy_comp_task(pool, cpu); take_over_work(pool, cpu); break; } return NOTIFY_OK; } #endif int ehca_create_comp_pool(void) { int cpu; struct task_struct *task; if (!ehca_scaling_code) return 0; pool = kzalloc(sizeof(struct ehca_comp_pool), GFP_KERNEL); if (pool == NULL) return -ENOMEM; spin_lock_init(&pool->last_cpu_lock); pool->last_cpu = any_online_cpu(cpu_online_map); pool->cpu_comp_tasks = alloc_percpu(struct ehca_cpu_comp_task); if (pool->cpu_comp_tasks == NULL) { kfree(pool); return -EINVAL; } for_each_online_cpu(cpu) { task = create_comp_task(pool, cpu); if (task) { kthread_bind(task, cpu); wake_up_process(task); } } #ifdef CONFIG_HOTPLUG_CPU comp_pool_callback_nb.notifier_call = comp_pool_callback; comp_pool_callback_nb.priority = 0; register_cpu_notifier(&comp_pool_callback_nb); #endif printk(KERN_INFO "eHCA scaling code enabled\n"); return 0; } void ehca_destroy_comp_pool(void) { int i; if (!ehca_scaling_code) return; #ifdef CONFIG_HOTPLUG_CPU unregister_cpu_notifier(&comp_pool_callback_nb); #endif for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) destroy_comp_task(pool, i); } free_percpu(pool->cpu_comp_tasks); kfree(pool); }