/* $Id: diva.c,v 1.33.2.6 2004/02/11 13:21:33 keil Exp $ * * low level stuff for Eicon.Diehl Diva Family ISDN cards * * Author Karsten Keil * Copyright by Karsten Keil * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * For changes and modifications please read * Documentation/isdn/HiSax.cert * * Thanks to Eicon Technology for documents and information * */ #include #include "hisax.h" #include "isac.h" #include "hscx.h" #include "ipac.h" #include "ipacx.h" #include "isdnl1.h" #include #include extern const char *CardType[]; static const char *Diva_revision = "$Revision: 1.33.2.6 $"; #define byteout(addr,val) outb(val,addr) #define bytein(addr) inb(addr) #define DIVA_HSCX_DATA 0 #define DIVA_HSCX_ADR 4 #define DIVA_ISA_ISAC_DATA 2 #define DIVA_ISA_ISAC_ADR 6 #define DIVA_ISA_CTRL 7 #define DIVA_IPAC_ADR 0 #define DIVA_IPAC_DATA 1 #define DIVA_PCI_ISAC_DATA 8 #define DIVA_PCI_ISAC_ADR 0xc #define DIVA_PCI_CTRL 0x10 /* SUB Types */ #define DIVA_ISA 1 #define DIVA_PCI 2 #define DIVA_IPAC_ISA 3 #define DIVA_IPAC_PCI 4 #define DIVA_IPACX_PCI 5 /* CTRL (Read) */ #define DIVA_IRQ_STAT 0x01 #define DIVA_EEPROM_SDA 0x02 /* CTRL (Write) */ #define DIVA_IRQ_REQ 0x01 #define DIVA_RESET 0x08 #define DIVA_EEPROM_CLK 0x40 #define DIVA_PCI_LED_A 0x10 #define DIVA_PCI_LED_B 0x20 #define DIVA_ISA_LED_A 0x20 #define DIVA_ISA_LED_B 0x40 #define DIVA_IRQ_CLR 0x80 /* Siemens PITA */ #define PITA_MISC_REG 0x1c #ifdef __BIG_ENDIAN #define PITA_PARA_SOFTRESET 0x00000001 #define PITA_SER_SOFTRESET 0x00000002 #define PITA_PARA_MPX_MODE 0x00000004 #define PITA_INT0_ENABLE 0x00000200 #else #define PITA_PARA_SOFTRESET 0x01000000 #define PITA_SER_SOFTRESET 0x02000000 #define PITA_PARA_MPX_MODE 0x04000000 #define PITA_INT0_ENABLE 0x00020000 #endif #define PITA_INT0_STATUS 0x02 static inline u_char readreg(unsigned int ale, unsigned int adr, u_char off) { register u_char ret; byteout(ale, off); ret = bytein(adr); return (ret); } static inline void readfifo(unsigned int ale, unsigned int adr, u_char off, u_char * data, int size) { byteout(ale, off); insb(adr, data, size); } static inline void writereg(unsigned int ale, unsigned int adr, u_char off, u_char data) { byteout(ale, off); byteout(adr, data); } static inline void writefifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size) { byteout(ale, off); outsb(adr, data, size); } static inline u_char memreadreg(unsigned long adr, u_char off) { return(*((unsigned char *) (((unsigned int *)adr) + off))); } static inline void memwritereg(unsigned long adr, u_char off, u_char data) { register u_char *p; p = (unsigned char *)(((unsigned int *)adr) + off); *p = data; } /* Interface functions */ static u_char ReadISAC(struct IsdnCardState *cs, u_char offset) { return(readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset)); } static void WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value) { writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset, value); } static void ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size) { readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size); } static void WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size) { writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0, data, size); } static u_char ReadISAC_IPAC(struct IsdnCardState *cs, u_char offset) { return (readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset+0x80)); } static void WriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value) { writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, offset|0x80, value); } static void ReadISACfifo_IPAC(struct IsdnCardState *cs, u_char * data, int size) { readfifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size); } static void WriteISACfifo_IPAC(struct IsdnCardState *cs, u_char * data, int size) { writefifo(cs->hw.diva.isac_adr, cs->hw.diva.isac, 0x80, data, size); } static u_char ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset) { return(readreg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0))); } static void WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value) { writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, offset + (hscx ? 0x40 : 0), value); } static u_char MemReadISAC_IPAC(struct IsdnCardState *cs, u_char offset) { return (memreadreg(cs->hw.diva.cfg_reg, offset+0x80)); } static void MemWriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value) { memwritereg(cs->hw.diva.cfg_reg, offset|0x80, value); } static void MemReadISACfifo_IPAC(struct IsdnCardState *cs, u_char * data, int size) { while(size--) *data++ = memreadreg(cs->hw.diva.cfg_reg, 0x80); } static void MemWriteISACfifo_IPAC(struct IsdnCardState *cs, u_char * data, int size) { while(size--) memwritereg(cs->hw.diva.cfg_reg, 0x80, *data++); } static u_char MemReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset) { return(memreadreg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0))); } static void MemWriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value) { memwritereg(cs->hw.diva.cfg_reg, offset + (hscx ? 0x40 : 0), value); } /* IO-Functions for IPACX type cards */ static u_char MemReadISAC_IPACX(struct IsdnCardState *cs, u_char offset) { return (memreadreg(cs->hw.diva.cfg_reg, offset)); } static void MemWriteISAC_IPACX(struct IsdnCardState *cs, u_char offset, u_char value) { memwritereg(cs->hw.diva.cfg_reg, offset, value); } static void MemReadISACfifo_IPACX(struct IsdnCardState *cs, u_char * data, int size) { while(size--) *data++ = memreadreg(cs->hw.diva.cfg_reg, 0); } static void MemWriteISACfifo_IPACX(struct IsdnCardState *cs, u_char * data, int size) { while(size--) memwritereg(cs->hw.diva.cfg_reg, 0, *data++); } static u_char MemReadHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset) { return(memreadreg(cs->hw.diva.cfg_reg, offset + (hscx ? IPACX_OFF_B2 : IPACX_OFF_B1))); } static void MemWriteHSCX_IPACX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value) { memwritereg(cs->hw.diva.cfg_reg, offset + (hscx ? IPACX_OFF_B2 : IPACX_OFF_B1), value); } /* * fast interrupt HSCX stuff goes here */ #define READHSCX(cs, nr, reg) readreg(cs->hw.diva.hscx_adr, \ cs->hw.diva.hscx, reg + (nr ? 0x40 : 0)) #define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.diva.hscx_adr, \ cs->hw.diva.hscx, reg + (nr ? 0x40 : 0), data) #define READHSCXFIFO(cs, nr, ptr, cnt) readfifo(cs->hw.diva.hscx_adr, \ cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt) #define WRITEHSCXFIFO(cs, nr, ptr, cnt) writefifo(cs->hw.diva.hscx_adr, \ cs->hw.diva.hscx, (nr ? 0x40 : 0), ptr, cnt) #include "hscx_irq.c" static irqreturn_t diva_interrupt(int intno, void *dev_id, struct pt_regs *regs) { struct IsdnCardState *cs = dev_id; u_char val, sval; u_long flags; int cnt=5; spin_lock_irqsave(&cs->lock, flags); while (((sval = bytein(cs->hw.diva.ctrl)) & DIVA_IRQ_REQ) && cnt) { val = readreg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_ISTA + 0x40); if (val) hscx_int_main(cs, val); val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA); if (val) isac_interrupt(cs, val); cnt--; } if (!cnt) printk(KERN_WARNING "Diva: IRQ LOOP\n"); writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0xFF); writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0xFF); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0xFF); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_MASK, 0x0); writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK, 0x0); writereg(cs->hw.diva.hscx_adr, cs->hw.diva.hscx, HSCX_MASK + 0x40, 0x0); spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } static irqreturn_t diva_irq_ipac_isa(int intno, void *dev_id, struct pt_regs *regs) { struct IsdnCardState *cs = dev_id; u_char ista,val; u_long flags; int icnt=5; spin_lock_irqsave(&cs->lock, flags); ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA); Start_IPACISA: if (cs->debug & L1_DEB_IPAC) debugl1(cs, "IPAC ISTA %02X", ista); if (ista & 0x0f) { val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, HSCX_ISTA + 0x40); if (ista & 0x01) val |= 0x01; if (ista & 0x04) val |= 0x02; if (ista & 0x08) val |= 0x04; if (val) hscx_int_main(cs, val); } if (ista & 0x20) { val = 0xfe & readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, ISAC_ISTA + 0x80); if (val) { isac_interrupt(cs, val); } } if (ista & 0x10) { val = 0x01; isac_interrupt(cs, val); } ista = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ISTA); if ((ista & 0x3f) && icnt) { icnt--; goto Start_IPACISA; } if (!icnt) printk(KERN_WARNING "DIVA IPAC IRQ LOOP\n"); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xFF); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xC0); spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } static inline void MemwaitforCEC(struct IsdnCardState *cs, int hscx) { int to = 50; while ((MemReadHSCX(cs, hscx, HSCX_STAR) & 0x04) && to) { udelay(1); to--; } if (!to) printk(KERN_WARNING "HiSax: waitforCEC timeout\n"); } static inline void MemwaitforXFW(struct IsdnCardState *cs, int hscx) { int to = 50; while ((!(MemReadHSCX(cs, hscx, HSCX_STAR) & 0x44) == 0x40) && to) { udelay(1); to--; } if (!to) printk(KERN_WARNING "HiSax: waitforXFW timeout\n"); } static inline void MemWriteHSCXCMDR(struct IsdnCardState *cs, int hscx, u_char data) { MemwaitforCEC(cs, hscx); MemWriteHSCX(cs, hscx, HSCX_CMDR, data); } static void Memhscx_empty_fifo(struct BCState *bcs, int count) { u_char *ptr; struct IsdnCardState *cs = bcs->cs; int cnt; if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO)) debugl1(cs, "hscx_empty_fifo"); if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hscx_empty_fifo: incoming packet too large"); MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80); bcs->hw.hscx.rcvidx = 0; return; } ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx; cnt = count; while (cnt--) *ptr++ = memreadreg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0); MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x80); ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx; bcs->hw.hscx.rcvidx += count; if (cs->debug & L1_DEB_HSCX_FIFO) { char *t = bcs->blog; t += sprintf(t, "hscx_empty_fifo %c cnt %d", bcs->hw.hscx.hscx ? 'B' : 'A', count); QuickHex(t, ptr, count); debugl1(cs, bcs->blog); } } static void Memhscx_fill_fifo(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int more, count, cnt; int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags)? 64: 32; u_char *ptr,*p; if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO)) debugl1(cs, "hscx_fill_fifo"); if (!bcs->tx_skb) return; if (bcs->tx_skb->len <= 0) return; more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0; if (bcs->tx_skb->len > fifo_size) { more = !0; count = fifo_size; } else count = bcs->tx_skb->len; cnt = count; MemwaitforXFW(cs, bcs->hw.hscx.hscx); p = ptr = bcs->tx_skb->data; skb_pull(bcs->tx_skb, count); bcs->tx_cnt -= count; bcs->hw.hscx.count += count; while(cnt--) memwritereg(cs->hw.diva.cfg_reg, bcs->hw.hscx.hscx ? 0x40 : 0, *p++); MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, more ? 0x8 : 0xa); if (cs->debug & L1_DEB_HSCX_FIFO) { char *t = bcs->blog; t += sprintf(t, "hscx_fill_fifo %c cnt %d", bcs->hw.hscx.hscx ? 'B' : 'A', count); QuickHex(t, ptr, count); debugl1(cs, bcs->blog); } } static void Memhscx_interrupt(struct IsdnCardState *cs, u_char val, u_char hscx) { u_char r; struct BCState *bcs = cs->bcs + hscx; struct sk_buff *skb; int fifo_size = test_bit(HW_IPAC, &cs->HW_Flags)? 64: 32; int count; if (!test_bit(BC_FLG_INIT, &bcs->Flag)) return; if (val & 0x80) { /* RME */ r = MemReadHSCX(cs, hscx, HSCX_RSTA); if ((r & 0xf0) != 0xa0) { if (!(r & 0x80)) if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX invalid frame"); if ((r & 0x40) && bcs->mode) if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX RDO mode=%d", bcs->mode); if (!(r & 0x20)) if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX CRC error"); MemWriteHSCXCMDR(cs, hscx, 0x80); } else { count = MemReadHSCX(cs, hscx, HSCX_RBCL) & ( test_bit(HW_IPAC, &cs->HW_Flags)? 0x3f: 0x1f); if (count == 0) count = fifo_size; Memhscx_empty_fifo(bcs, count); if ((count = bcs->hw.hscx.rcvidx - 1) > 0) { if (cs->debug & L1_DEB_HSCX_FIFO) debugl1(cs, "HX Frame %d", count); if (!(skb = dev_alloc_skb(count))) printk(KERN_WARNING "HSCX: receive out of memory\n"); else { memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count); skb_queue_tail(&bcs->rqueue, skb); } } } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } if (val & 0x40) { /* RPF */ Memhscx_empty_fifo(bcs, fifo_size); if (bcs->mode == L1_MODE_TRANS) { /* receive audio data */ if (!(skb = dev_alloc_skb(fifo_size))) printk(KERN_WARNING "HiSax: receive out of memory\n"); else { memcpy(skb_put(skb, fifo_size), bcs->hw.hscx.rcvbuf, fifo_size); skb_queue_tail(&bcs->rqueue, skb); } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } } if (val & 0x10) { /* XPR */ if (bcs->tx_skb) { if (bcs->tx_skb->len) { Memhscx_fill_fifo(bcs); return; } else { if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->hw.hscx.count; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } dev_kfree_skb_irq(bcs->tx_skb); bcs->hw.hscx.count = 0; bcs->tx_skb = NULL; } } if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { bcs->hw.hscx.count = 0; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); Memhscx_fill_fifo(bcs); } else { test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); schedule_event(bcs, B_XMTBUFREADY); } } } static inline void Memhscx_int_main(struct IsdnCardState *cs, u_char val) { u_char exval; struct BCState *bcs; if (val & 0x01) { // EXB bcs = cs->bcs + 1; exval = MemReadHSCX(cs, 1, HSCX_EXIR); if (exval & 0x40) { if (bcs->mode == 1) Memhscx_fill_fifo(bcs); else { /* Here we lost an TX interrupt, so * restart transmitting the whole frame. */ if (bcs->tx_skb) { skb_push(bcs->tx_skb, bcs->hw.hscx.count); bcs->tx_cnt += bcs->hw.hscx.count; bcs->hw.hscx.count = 0; } MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01); if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX B EXIR %x Lost TX", exval); } } else if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HSCX B EXIR %x", exval); } if (val & 0xf8) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HSCX B interrupt %x", val); Memhscx_interrupt(cs, val, 1); } if (val & 0x02) { // EXA bcs = cs->bcs; exval = MemReadHSCX(cs, 0, HSCX_EXIR); if (exval & 0x40) { if (bcs->mode == L1_MODE_TRANS) Memhscx_fill_fifo(bcs); else { /* Here we lost an TX interrupt, so * restart transmitting the whole frame. */ if (bcs->tx_skb) { skb_push(bcs->tx_skb, bcs->hw.hscx.count); bcs->tx_cnt += bcs->hw.hscx.count; bcs->hw.hscx.count = 0; } MemWriteHSCXCMDR(cs, bcs->hw.hscx.hscx, 0x01); if (cs->debug & L1_DEB_WARN) debugl1(cs, "HSCX A EXIR %x Lost TX", exval); } } else if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HSCX A EXIR %x", exval); } if (val & 0x04) { // ICA exval = MemReadHSCX(cs, 0, HSCX_ISTA); if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HSCX A interrupt %x", exval); Memhscx_interrupt(cs, exval, 0); } } static irqreturn_t diva_irq_ipac_pci(int intno, void *dev_id, struct pt_regs *regs) { struct IsdnCardState *cs = dev_id; u_char ista,val; int icnt=5; u_char *cfg; u_long flags; spin_lock_irqsave(&cs->lock, flags); cfg = (u_char *) cs->hw.diva.pci_cfg; val = *cfg; if (!(val & PITA_INT0_STATUS)) { spin_unlock_irqrestore(&cs->lock, flags); return IRQ_NONE; /* other shared IRQ */ } *cfg = PITA_INT0_STATUS; /* Reset pending INT0 */ ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA); Start_IPACPCI: if (cs->debug & L1_DEB_IPAC) debugl1(cs, "IPAC ISTA %02X", ista); if (ista & 0x0f) { val = memreadreg(cs->hw.diva.cfg_reg, HSCX_ISTA + 0x40); if (ista & 0x01) val |= 0x01; if (ista & 0x04) val |= 0x02; if (ista & 0x08) val |= 0x04; if (val) Memhscx_int_main(cs, val); } if (ista & 0x20) { val = 0xfe & memreadreg(cs->hw.diva.cfg_reg, ISAC_ISTA + 0x80); if (val) { isac_interrupt(cs, val); } } if (ista & 0x10) { val = 0x01; isac_interrupt(cs, val); } ista = memreadreg(cs->hw.diva.cfg_reg, IPAC_ISTA); if ((ista & 0x3f) && icnt) { icnt--; goto Start_IPACPCI; } if (!icnt) printk(KERN_WARNING "DIVA IPAC PCI IRQ LOOP\n"); memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xFF); memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xC0); spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } static irqreturn_t diva_irq_ipacx_pci(int intno, void *dev_id, struct pt_regs *regs) { struct IsdnCardState *cs = dev_id; u_char val; u_char *cfg; u_long flags; spin_lock_irqsave(&cs->lock, flags); cfg = (u_char *) cs->hw.diva.pci_cfg; val = *cfg; if (!(val &PITA_INT0_STATUS)) { spin_unlock_irqrestore(&cs->lock, flags); return IRQ_NONE; // other shared IRQ } interrupt_ipacx(cs); // handler for chip *cfg = PITA_INT0_STATUS; // Reset PLX interrupt spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } static void release_io_diva(struct IsdnCardState *cs) { int bytecnt; if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI) ) { u_int *cfg = (unsigned int *)cs->hw.diva.pci_cfg; *cfg = 0; /* disable INT0/1 */ *cfg = 2; /* reset pending INT0 */ iounmap((void *)cs->hw.diva.cfg_reg); iounmap((void *)cs->hw.diva.pci_cfg); return; } else if (cs->subtyp != DIVA_IPAC_ISA) { del_timer(&cs->hw.diva.tl); if (cs->hw.diva.cfg_reg) byteout(cs->hw.diva.ctrl, 0); /* LED off, Reset */ } if ((cs->subtyp == DIVA_ISA) || (cs->subtyp == DIVA_IPAC_ISA)) bytecnt = 8; else bytecnt = 32; if (cs->hw.diva.cfg_reg) { release_region(cs->hw.diva.cfg_reg, bytecnt); } } static void reset_diva(struct IsdnCardState *cs) { if (cs->subtyp == DIVA_IPAC_ISA) { writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x20); mdelay(10); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_POTA2, 0x00); mdelay(10); writereg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_MASK, 0xc0); } else if (cs->subtyp == DIVA_IPAC_PCI) { unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg + PITA_MISC_REG); *ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE; mdelay(10); *ireg = PITA_PARA_MPX_MODE; mdelay(10); memwritereg(cs->hw.diva.cfg_reg, IPAC_MASK, 0xc0); } else if (cs->subtyp == DIVA_IPACX_PCI) { unsigned int *ireg = (unsigned int *)(cs->hw.diva.pci_cfg + PITA_MISC_REG); *ireg = PITA_PARA_SOFTRESET | PITA_PARA_MPX_MODE; mdelay(10); *ireg = PITA_PARA_MPX_MODE | PITA_SER_SOFTRESET; mdelay(10); MemWriteISAC_IPACX(cs, IPACX_MASK, 0xff); // Interrupts off } else { /* DIVA 2.0 */ cs->hw.diva.ctrl_reg = 0; /* Reset On */ byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg); mdelay(10); cs->hw.diva.ctrl_reg |= DIVA_RESET; /* Reset Off */ byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg); mdelay(10); if (cs->subtyp == DIVA_ISA) cs->hw.diva.ctrl_reg |= DIVA_ISA_LED_A; else { /* Workaround PCI9060 */ byteout(cs->hw.diva.pci_cfg + 0x69, 9); cs->hw.diva.ctrl_reg |= DIVA_PCI_LED_A; } byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg); } } #define DIVA_ASSIGN 1 static void diva_led_handler(struct IsdnCardState *cs) { int blink = 0; if ((cs->subtyp == DIVA_IPAC_ISA) || (cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI) ) return; del_timer(&cs->hw.diva.tl); if (cs->hw.diva.status & DIVA_ASSIGN) cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ? DIVA_ISA_LED_A : DIVA_PCI_LED_A; else { cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ? DIVA_ISA_LED_A : DIVA_PCI_LED_A; blink = 250; } if (cs->hw.diva.status & 0xf000) cs->hw.diva.ctrl_reg |= (DIVA_ISA == cs->subtyp) ? DIVA_ISA_LED_B : DIVA_PCI_LED_B; else if (cs->hw.diva.status & 0x0f00) { cs->hw.diva.ctrl_reg ^= (DIVA_ISA == cs->subtyp) ? DIVA_ISA_LED_B : DIVA_PCI_LED_B; blink = 500; } else cs->hw.diva.ctrl_reg &= ~((DIVA_ISA == cs->subtyp) ? DIVA_ISA_LED_B : DIVA_PCI_LED_B); byteout(cs->hw.diva.ctrl, cs->hw.diva.ctrl_reg); if (blink) { init_timer(&cs->hw.diva.tl); cs->hw.diva.tl.expires = jiffies + ((blink * HZ) / 1000); add_timer(&cs->hw.diva.tl); } } static int Diva_card_msg(struct IsdnCardState *cs, int mt, void *arg) { u_int *ireg; u_long flags; switch (mt) { case CARD_RESET: spin_lock_irqsave(&cs->lock, flags); reset_diva(cs); spin_unlock_irqrestore(&cs->lock, flags); return(0); case CARD_RELEASE: release_io_diva(cs); return(0); case CARD_INIT: spin_lock_irqsave(&cs->lock, flags); reset_diva(cs); if (cs->subtyp == DIVA_IPACX_PCI) { ireg = (unsigned int *)cs->hw.diva.pci_cfg; *ireg = PITA_INT0_ENABLE; init_ipacx(cs, 3); // init chip and enable interrupts spin_unlock_irqrestore(&cs->lock, flags); return (0); } if (cs->subtyp == DIVA_IPAC_PCI) { ireg = (unsigned int *)cs->hw.diva.pci_cfg; *ireg = PITA_INT0_ENABLE; } inithscxisac(cs, 3); spin_unlock_irqrestore(&cs->lock, flags); return(0); case CARD_TEST: return(0); case (MDL_REMOVE | REQUEST): cs->hw.diva.status = 0; break; case (MDL_ASSIGN | REQUEST): cs->hw.diva.status |= DIVA_ASSIGN; break; case MDL_INFO_SETUP: if ((long)arg) cs->hw.diva.status |= 0x0200; else cs->hw.diva.status |= 0x0100; break; case MDL_INFO_CONN: if ((long)arg) cs->hw.diva.status |= 0x2000; else cs->hw.diva.status |= 0x1000; break; case MDL_INFO_REL: if ((long)arg) { cs->hw.diva.status &= ~0x2000; cs->hw.diva.status &= ~0x0200; } else { cs->hw.diva.status &= ~0x1000; cs->hw.diva.status &= ~0x0100; } break; } if ((cs->subtyp != DIVA_IPAC_ISA) && (cs->subtyp != DIVA_IPAC_PCI) && (cs->subtyp != DIVA_IPACX_PCI)) { spin_lock_irqsave(&cs->lock, flags); diva_led_handler(cs); spin_unlock_irqrestore(&cs->lock, flags); } return(0); } static struct pci_dev *dev_diva __initdata = NULL; static struct pci_dev *dev_diva_u __initdata = NULL; static struct pci_dev *dev_diva201 __initdata = NULL; static struct pci_dev *dev_diva202 __initdata = NULL; #ifdef __ISAPNP__ static struct isapnp_device_id diva_ids[] __initdata = { { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51), ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51), (unsigned long) "Diva picola" }, { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x51), ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x51), (unsigned long) "Diva picola" }, { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71), ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71), (unsigned long) "Diva 2.0" }, { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0x71), ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0x71), (unsigned long) "Diva 2.0" }, { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1), ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1), (unsigned long) "Diva 2.01" }, { ISAPNP_VENDOR('G', 'D', 'I'), ISAPNP_FUNCTION(0xA1), ISAPNP_VENDOR('E', 'I', 'C'), ISAPNP_FUNCTION(0xA1), (unsigned long) "Diva 2.01" }, { 0, } }; static struct isapnp_device_id *ipid __initdata = &diva_ids[0]; static struct pnp_card *pnp_c __devinitdata = NULL; #endif int __init setup_diva(struct IsdnCard *card) { int bytecnt = 8; u_char val; struct IsdnCardState *cs = card->cs; char tmp[64]; strcpy(tmp, Diva_revision); printk(KERN_INFO "HiSax: Eicon.Diehl Diva driver Rev. %s\n", HiSax_getrev(tmp)); if (cs->typ != ISDN_CTYPE_DIEHLDIVA) return(0); cs->hw.diva.status = 0; if (card->para[1]) { cs->hw.diva.ctrl_reg = 0; cs->hw.diva.cfg_reg = card->para[1]; val = readreg(cs->hw.diva.cfg_reg + DIVA_IPAC_ADR, cs->hw.diva.cfg_reg + DIVA_IPAC_DATA, IPAC_ID); printk(KERN_INFO "Diva: IPAC version %x\n", val); if ((val == 1) || (val==2)) { cs->subtyp = DIVA_IPAC_ISA; cs->hw.diva.ctrl = 0; cs->hw.diva.isac = card->para[1] + DIVA_IPAC_DATA; cs->hw.diva.hscx = card->para[1] + DIVA_IPAC_DATA; cs->hw.diva.isac_adr = card->para[1] + DIVA_IPAC_ADR; cs->hw.diva.hscx_adr = card->para[1] + DIVA_IPAC_ADR; test_and_set_bit(HW_IPAC, &cs->HW_Flags); } else { cs->subtyp = DIVA_ISA; cs->hw.diva.ctrl = card->para[1] + DIVA_ISA_CTRL; cs->hw.diva.isac = card->para[1] + DIVA_ISA_ISAC_DATA; cs->hw.diva.hscx = card->para[1] + DIVA_HSCX_DATA; cs->hw.diva.isac_adr = card->para[1] + DIVA_ISA_ISAC_ADR; cs->hw.diva.hscx_adr = card->para[1] + DIVA_HSCX_ADR; } cs->irq = card->para[0]; } else { #ifdef __ISAPNP__ if (isapnp_present()) { struct pnp_dev *pnp_d; while(ipid->card_vendor) { if ((pnp_c = pnp_find_card(ipid->card_vendor, ipid->card_device, pnp_c))) { pnp_d = NULL; if ((pnp_d = pnp_find_dev(pnp_c, ipid->vendor, ipid->function, pnp_d))) { int err; printk(KERN_INFO "HiSax: %s detected\n", (char *)ipid->driver_data); pnp_disable_dev(pnp_d); err = pnp_activate_dev(pnp_d); if (err<0) { printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n", __FUNCTION__, err); return(0); } card->para[1] = pnp_port_start(pnp_d, 0); card->para[0] = pnp_irq(pnp_d, 0); if (!card->para[0] || !card->para[1]) { printk(KERN_ERR "Diva PnP:some resources are missing %ld/%lx\n", card->para[0], card->para[1]); pnp_disable_dev(pnp_d); return(0); } cs->hw.diva.cfg_reg = card->para[1]; cs->irq = card->para[0]; if (ipid->function == ISAPNP_FUNCTION(0xA1)) { cs->subtyp = DIVA_IPAC_ISA; cs->hw.diva.ctrl = 0; cs->hw.diva.isac = card->para[1] + DIVA_IPAC_DATA; cs->hw.diva.hscx = card->para[1] + DIVA_IPAC_DATA; cs->hw.diva.isac_adr = card->para[1] + DIVA_IPAC_ADR; cs->hw.diva.hscx_adr = card->para[1] + DIVA_IPAC_ADR; test_and_set_bit(HW_IPAC, &cs->HW_Flags); } else { cs->subtyp = DIVA_ISA; cs->hw.diva.ctrl = card->para[1] + DIVA_ISA_CTRL; cs->hw.diva.isac = card->para[1] + DIVA_ISA_ISAC_DATA; cs->hw.diva.hscx = card->para[1] + DIVA_HSCX_DATA; cs->hw.diva.isac_adr = card->para[1] + DIVA_ISA_ISAC_ADR; cs->hw.diva.hscx_adr = card->para[1] + DIVA_HSCX_ADR; } goto ready; } else { printk(KERN_ERR "Diva PnP: PnP error card found, no device\n"); return(0); } } ipid++; pnp_c=NULL; } if (!ipid->card_vendor) { printk(KERN_INFO "Diva PnP: no ISAPnP card found\n"); } } #endif #ifdef CONFIG_PCI cs->subtyp = 0; if ((dev_diva = pci_find_device(PCI_VENDOR_ID_EICON, PCI_DEVICE_ID_EICON_DIVA20, dev_diva))) { if (pci_enable_device(dev_diva)) return(0); cs->subtyp = DIVA_PCI; cs->irq = dev_diva->irq; cs->hw.diva.cfg_reg = pci_resource_start(dev_diva, 2); } else if ((dev_diva_u = pci_find_device(PCI_VENDOR_ID_EICON, PCI_DEVICE_ID_EICON_DIVA20_U, dev_diva_u))) { if (pci_enable_device(dev_diva_u)) return(0); cs->subtyp = DIVA_PCI; cs->irq = dev_diva_u->irq; cs->hw.diva.cfg_reg = pci_resource_start(dev_diva_u, 2); } else if ((dev_diva201 = pci_find_device(PCI_VENDOR_ID_EICON, PCI_DEVICE_ID_EICON_DIVA201, dev_diva201))) { if (pci_enable_device(dev_diva201)) return(0); cs->subtyp = DIVA_IPAC_PCI; cs->irq = dev_diva201->irq; cs->hw.diva.pci_cfg = (ulong) ioremap(pci_resource_start(dev_diva201, 0), 4096); cs->hw.diva.cfg_reg = (ulong) ioremap(pci_resource_start(dev_diva201, 1), 4096); } else if ((dev_diva202 = pci_find_device(PCI_VENDOR_ID_EICON, PCI_DEVICE_ID_EICON_DIVA202, dev_diva202))) { if (pci_enable_device(dev_diva202)) return(0); cs->subtyp = DIVA_IPACX_PCI; cs->irq = dev_diva202->irq; cs->hw.diva.pci_cfg = (ulong) ioremap(pci_resource_start(dev_diva202, 0), 4096); cs->hw.diva.cfg_reg = (ulong) ioremap(pci_resource_start(dev_diva202, 1), 4096); } else { printk(KERN_WARNING "Diva: No PCI card found\n"); return(0); } if (!cs->irq) { printk(KERN_WARNING "Diva: No IRQ for PCI card found\n"); return(0); } if (!cs->hw.diva.cfg_reg) { printk(KERN_WARNING "Diva: No IO-Adr for PCI card found\n"); return(0); } cs->irq_flags |= IRQF_SHARED; #else printk(KERN_WARNING "Diva: cfgreg 0 and NO_PCI_BIOS\n"); printk(KERN_WARNING "Diva: unable to config DIVA PCI\n"); return (0); #endif /* CONFIG_PCI */ if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI) ) { cs->hw.diva.ctrl = 0; cs->hw.diva.isac = 0; cs->hw.diva.hscx = 0; cs->hw.diva.isac_adr = 0; cs->hw.diva.hscx_adr = 0; test_and_set_bit(HW_IPAC, &cs->HW_Flags); bytecnt = 0; } else { cs->hw.diva.ctrl = cs->hw.diva.cfg_reg + DIVA_PCI_CTRL; cs->hw.diva.isac = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_DATA; cs->hw.diva.hscx = cs->hw.diva.cfg_reg + DIVA_HSCX_DATA; cs->hw.diva.isac_adr = cs->hw.diva.cfg_reg + DIVA_PCI_ISAC_ADR; cs->hw.diva.hscx_adr = cs->hw.diva.cfg_reg + DIVA_HSCX_ADR; bytecnt = 32; } } ready: printk(KERN_INFO "Diva: %s card configured at %#lx IRQ %d\n", (cs->subtyp == DIVA_PCI) ? "PCI" : (cs->subtyp == DIVA_ISA) ? "ISA" : (cs->subtyp == DIVA_IPAC_ISA) ? "IPAC ISA" : (cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI", cs->hw.diva.cfg_reg, cs->irq); if ((cs->subtyp == DIVA_IPAC_PCI) || (cs->subtyp == DIVA_IPACX_PCI) || (cs->subtyp == DIVA_PCI) ) printk(KERN_INFO "Diva: %s space at %#lx\n", (cs->subtyp == DIVA_PCI) ? "PCI" : (cs->subtyp == DIVA_IPAC_PCI) ? "IPAC PCI" : "IPACX PCI", cs->hw.diva.pci_cfg); if ((cs->subtyp != DIVA_IPAC_PCI) && (cs->subtyp != DIVA_IPACX_PCI) ) { if (!request_region(cs->hw.diva.cfg_reg, bytecnt, "diva isdn")) { printk(KERN_WARNING "HiSax: %s config port %lx-%lx already in use\n", CardType[card->typ], cs->hw.diva.cfg_reg, cs->hw.diva.cfg_reg + bytecnt); return (0); } } cs->BC_Read_Reg = &ReadHSCX; cs->BC_Write_Reg = &WriteHSCX; cs->BC_Send_Data = &hscx_fill_fifo; cs->cardmsg = &Diva_card_msg; setup_isac(cs); if (cs->subtyp == DIVA_IPAC_ISA) { cs->readisac = &ReadISAC_IPAC; cs->writeisac = &WriteISAC_IPAC; cs->readisacfifo = &ReadISACfifo_IPAC; cs->writeisacfifo = &WriteISACfifo_IPAC; cs->irq_func = &diva_irq_ipac_isa; val = readreg(cs->hw.diva.isac_adr, cs->hw.diva.isac, IPAC_ID); printk(KERN_INFO "Diva: IPAC version %x\n", val); } else if (cs->subtyp == DIVA_IPAC_PCI) { cs->readisac = &MemReadISAC_IPAC; cs->writeisac = &MemWriteISAC_IPAC; cs->readisacfifo = &MemReadISACfifo_IPAC; cs->writeisacfifo = &MemWriteISACfifo_IPAC; cs->BC_Read_Reg = &MemReadHSCX; cs->BC_Write_Reg = &MemWriteHSCX; cs->BC_Send_Data = &Memhscx_fill_fifo; cs->irq_func = &diva_irq_ipac_pci; val = memreadreg(cs->hw.diva.cfg_reg, IPAC_ID); printk(KERN_INFO "Diva: IPAC version %x\n", val); } else if (cs->subtyp == DIVA_IPACX_PCI) { cs->readisac = &MemReadISAC_IPACX; cs->writeisac = &MemWriteISAC_IPACX; cs->readisacfifo = &MemReadISACfifo_IPACX; cs->writeisacfifo = &MemWriteISACfifo_IPACX; cs->BC_Read_Reg = &MemReadHSCX_IPACX; cs->BC_Write_Reg = &MemWriteHSCX_IPACX; cs->BC_Send_Data = NULL; // function located in ipacx module cs->irq_func = &diva_irq_ipacx_pci; printk(KERN_INFO "Diva: IPACX Design Id: %x\n", MemReadISAC_IPACX(cs, IPACX_ID) &0x3F); } else { /* DIVA 2.0 */ cs->hw.diva.tl.function = (void *) diva_led_handler; cs->hw.diva.tl.data = (long) cs; init_timer(&cs->hw.diva.tl); cs->readisac = &ReadISAC; cs->writeisac = &WriteISAC; cs->readisacfifo = &ReadISACfifo; cs->writeisacfifo = &WriteISACfifo; cs->irq_func = &diva_interrupt; ISACVersion(cs, "Diva:"); if (HscxVersion(cs, "Diva:")) { printk(KERN_WARNING "Diva: wrong HSCX versions check IO address\n"); release_io_diva(cs); return (0); } } return (1); }