/*
 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
 *
 * This file is released under the GPL.
 */

#include <linux/completion.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/crypto.h>
#include <linux/workqueue.h>
#include <linux/backing-dev.h>
#include <linux/percpu.h>
#include <linux/atomic.h>
#include <linux/scatterlist.h>
#include <asm/page.h>
#include <asm/unaligned.h>
#include <crypto/hash.h>
#include <crypto/md5.h>
#include <crypto/algapi.h>

#include <linux/device-mapper.h>

#define DM_MSG_PREFIX "crypt"

/*
 * context holding the current state of a multi-part conversion
 */
struct convert_context {
	struct completion restart;
	struct bio *bio_in;
	struct bio *bio_out;
	unsigned int offset_in;
	unsigned int offset_out;
	unsigned int idx_in;
	unsigned int idx_out;
	sector_t sector;
	atomic_t pending;
};

/*
 * per bio private data
 */
struct dm_crypt_io {
	struct dm_target *target;
	struct bio *base_bio;
	struct work_struct work;

	struct convert_context ctx;

	atomic_t pending;
	int error;
	sector_t sector;
	struct dm_crypt_io *base_io;
};

struct dm_crypt_request {
	struct convert_context *ctx;
	struct scatterlist sg_in;
	struct scatterlist sg_out;
	sector_t iv_sector;
};

struct crypt_config;

struct crypt_iv_operations {
	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
		   const char *opts);
	void (*dtr)(struct crypt_config *cc);
	int (*init)(struct crypt_config *cc);
	int (*wipe)(struct crypt_config *cc);
	int (*generator)(struct crypt_config *cc, u8 *iv,
			 struct dm_crypt_request *dmreq);
	int (*post)(struct crypt_config *cc, u8 *iv,
		    struct dm_crypt_request *dmreq);
};

struct iv_essiv_private {
	struct crypto_hash *hash_tfm;
	u8 *salt;
};

struct iv_benbi_private {
	int shift;
};

#define LMK_SEED_SIZE 64 /* hash + 0 */
struct iv_lmk_private {
	struct crypto_shash *hash_tfm;
	u8 *seed;
};

/*
 * Crypt: maps a linear range of a block device
 * and encrypts / decrypts at the same time.
 */
enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };

/*
 * Duplicated per-CPU state for cipher.
 */
struct crypt_cpu {
	struct ablkcipher_request *req;
	/* ESSIV: struct crypto_cipher *essiv_tfm */
	void *iv_private;
	struct crypto_ablkcipher *tfms[0];
};

/*
 * The fields in here must be read only after initialization,
 * changing state should be in crypt_cpu.
 */
struct crypt_config {
	struct dm_dev *dev;
	sector_t start;

	/*
	 * pool for per bio private data, crypto requests and
	 * encryption requeusts/buffer pages
	 */
	mempool_t *io_pool;
	mempool_t *req_pool;
	mempool_t *page_pool;
	struct bio_set *bs;

	struct workqueue_struct *io_queue;
	struct workqueue_struct *crypt_queue;

	char *cipher;
	char *cipher_string;

	struct crypt_iv_operations *iv_gen_ops;
	union {
		struct iv_essiv_private essiv;
		struct iv_benbi_private benbi;
		struct iv_lmk_private lmk;
	} iv_gen_private;
	sector_t iv_offset;
	unsigned int iv_size;

	/*
	 * Duplicated per cpu state. Access through
	 * per_cpu_ptr() only.
	 */
	struct crypt_cpu __percpu *cpu;
	unsigned tfms_count;

	/*
	 * Layout of each crypto request:
	 *
	 *   struct ablkcipher_request
	 *      context
	 *      padding
	 *   struct dm_crypt_request
	 *      padding
	 *   IV
	 *
	 * The padding is added so that dm_crypt_request and the IV are
	 * correctly aligned.
	 */
	unsigned int dmreq_start;

	unsigned long flags;
	unsigned int key_size;
	unsigned int key_parts;
	u8 key[0];
};

#define MIN_IOS        16
#define MIN_POOL_PAGES 32
#define MIN_BIO_PAGES  8

static struct kmem_cache *_crypt_io_pool;

static void clone_init(struct dm_crypt_io *, struct bio *);
static void kcryptd_queue_crypt(struct dm_crypt_io *io);
static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);

static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
{
	return this_cpu_ptr(cc->cpu);
}

/*
 * Use this to access cipher attributes that are the same for each CPU.
 */
static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
{
	return __this_cpu_ptr(cc->cpu)->tfms[0];
}

/*
 * Different IV generation algorithms:
 *
 * plain: the initial vector is the 32-bit little-endian version of the sector
 *        number, padded with zeros if necessary.
 *
 * plain64: the initial vector is the 64-bit little-endian version of the sector
 *        number, padded with zeros if necessary.
 *
 * essiv: "encrypted sector|salt initial vector", the sector number is
 *        encrypted with the bulk cipher using a salt as key. The salt
 *        should be derived from the bulk cipher's key via hashing.
 *
 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 *        (needed for LRW-32-AES and possible other narrow block modes)
 *
 * null: the initial vector is always zero.  Provides compatibility with
 *       obsolete loop_fish2 devices.  Do not use for new devices.
 *
 * lmk:  Compatible implementation of the block chaining mode used
 *       by the Loop-AES block device encryption system
 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 *       It operates on full 512 byte sectors and uses CBC
 *       with an IV derived from the sector number, the data and
 *       optionally extra IV seed.
 *       This means that after decryption the first block
 *       of sector must be tweaked according to decrypted data.
 *       Loop-AES can use three encryption schemes:
 *         version 1: is plain aes-cbc mode
 *         version 2: uses 64 multikey scheme with lmk IV generator
 *         version 3: the same as version 2 with additional IV seed
 *                   (it uses 65 keys, last key is used as IV seed)
 *
 * plumb: unimplemented, see:
 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 */

static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
			      struct dm_crypt_request *dmreq)
{
	memset(iv, 0, cc->iv_size);
	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);

	return 0;
}

static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
				struct dm_crypt_request *dmreq)
{
	memset(iv, 0, cc->iv_size);
	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);

	return 0;
}

/* Initialise ESSIV - compute salt but no local memory allocations */
static int crypt_iv_essiv_init(struct crypt_config *cc)
{
	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
	struct hash_desc desc;
	struct scatterlist sg;
	struct crypto_cipher *essiv_tfm;
	int err, cpu;

	sg_init_one(&sg, cc->key, cc->key_size);
	desc.tfm = essiv->hash_tfm;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
	if (err)
		return err;

	for_each_possible_cpu(cpu) {
		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,

		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
				    crypto_hash_digestsize(essiv->hash_tfm));
		if (err)
			return err;
	}

	return 0;
}

/* Wipe salt and reset key derived from volume key */
static int crypt_iv_essiv_wipe(struct crypt_config *cc)
{
	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
	struct crypto_cipher *essiv_tfm;
	int cpu, r, err = 0;

	memset(essiv->salt, 0, salt_size);

	for_each_possible_cpu(cpu) {
		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
		if (r)
			err = r;
	}

	return err;
}

/* Set up per cpu cipher state */
static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
					     struct dm_target *ti,
					     u8 *salt, unsigned saltsize)
{
	struct crypto_cipher *essiv_tfm;
	int err;

	/* Setup the essiv_tfm with the given salt */
	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(essiv_tfm)) {
		ti->error = "Error allocating crypto tfm for ESSIV";
		return essiv_tfm;
	}

	if (crypto_cipher_blocksize(essiv_tfm) !=
	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
		ti->error = "Block size of ESSIV cipher does "
			    "not match IV size of block cipher";
		crypto_free_cipher(essiv_tfm);
		return ERR_PTR(-EINVAL);
	}

	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
	if (err) {
		ti->error = "Failed to set key for ESSIV cipher";
		crypto_free_cipher(essiv_tfm);
		return ERR_PTR(err);
	}

	return essiv_tfm;
}

static void crypt_iv_essiv_dtr(struct crypt_config *cc)
{
	int cpu;
	struct crypt_cpu *cpu_cc;
	struct crypto_cipher *essiv_tfm;
	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;

	crypto_free_hash(essiv->hash_tfm);
	essiv->hash_tfm = NULL;

	kzfree(essiv->salt);
	essiv->salt = NULL;

	for_each_possible_cpu(cpu) {
		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
		essiv_tfm = cpu_cc->iv_private;

		if (essiv_tfm)
			crypto_free_cipher(essiv_tfm);

		cpu_cc->iv_private = NULL;
	}
}

static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
			      const char *opts)
{
	struct crypto_cipher *essiv_tfm = NULL;
	struct crypto_hash *hash_tfm = NULL;
	u8 *salt = NULL;
	int err, cpu;

	if (!opts) {
		ti->error = "Digest algorithm missing for ESSIV mode";
		return -EINVAL;
	}

	/* Allocate hash algorithm */
	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(hash_tfm)) {
		ti->error = "Error initializing ESSIV hash";
		err = PTR_ERR(hash_tfm);
		goto bad;
	}

	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
	if (!salt) {
		ti->error = "Error kmallocing salt storage in ESSIV";
		err = -ENOMEM;
		goto bad;
	}

	cc->iv_gen_private.essiv.salt = salt;
	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;

	for_each_possible_cpu(cpu) {
		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
					crypto_hash_digestsize(hash_tfm));
		if (IS_ERR(essiv_tfm)) {
			crypt_iv_essiv_dtr(cc);
			return PTR_ERR(essiv_tfm);
		}
		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
	}

	return 0;

bad:
	if (hash_tfm && !IS_ERR(hash_tfm))
		crypto_free_hash(hash_tfm);
	kfree(salt);
	return err;
}

static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
			      struct dm_crypt_request *dmreq)
{
	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;

	memset(iv, 0, cc->iv_size);
	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);

	return 0;
}

static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
			      const char *opts)
{
	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
	int log = ilog2(bs);

	/* we need to calculate how far we must shift the sector count
	 * to get the cipher block count, we use this shift in _gen */

	if (1 << log != bs) {
		ti->error = "cypher blocksize is not a power of 2";
		return -EINVAL;
	}

	if (log > 9) {
		ti->error = "cypher blocksize is > 512";
		return -EINVAL;
	}

	cc->iv_gen_private.benbi.shift = 9 - log;

	return 0;
}

static void crypt_iv_benbi_dtr(struct crypt_config *cc)
{
}

static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
			      struct dm_crypt_request *dmreq)
{
	__be64 val;

	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */

	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));

	return 0;
}

static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
			     struct dm_crypt_request *dmreq)
{
	memset(iv, 0, cc->iv_size);

	return 0;
}

static void crypt_iv_lmk_dtr(struct crypt_config *cc)
{
	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;

	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
		crypto_free_shash(lmk->hash_tfm);
	lmk->hash_tfm = NULL;

	kzfree(lmk->seed);
	lmk->seed = NULL;
}

static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
			    const char *opts)
{
	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;

	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
	if (IS_ERR(lmk->hash_tfm)) {
		ti->error = "Error initializing LMK hash";
		return PTR_ERR(lmk->hash_tfm);
	}

	/* No seed in LMK version 2 */
	if (cc->key_parts == cc->tfms_count) {
		lmk->seed = NULL;
		return 0;
	}

	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
	if (!lmk->seed) {
		crypt_iv_lmk_dtr(cc);
		ti->error = "Error kmallocing seed storage in LMK";
		return -ENOMEM;
	}

	return 0;
}

static int crypt_iv_lmk_init(struct crypt_config *cc)
{
	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
	int subkey_size = cc->key_size / cc->key_parts;

	/* LMK seed is on the position of LMK_KEYS + 1 key */
	if (lmk->seed)
		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
		       crypto_shash_digestsize(lmk->hash_tfm));

	return 0;
}

static int crypt_iv_lmk_wipe(struct crypt_config *cc)
{
	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;

	if (lmk->seed)
		memset(lmk->seed, 0, LMK_SEED_SIZE);

	return 0;
}

static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
			    struct dm_crypt_request *dmreq,
			    u8 *data)
{
	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
	struct {
		struct shash_desc desc;
		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
	} sdesc;
	struct md5_state md5state;
	u32 buf[4];
	int i, r;

	sdesc.desc.tfm = lmk->hash_tfm;
	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	r = crypto_shash_init(&sdesc.desc);
	if (r)
		return r;

	if (lmk->seed) {
		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
		if (r)
			return r;
	}

	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
	if (r)
		return r;

	/* Sector is cropped to 56 bits here */
	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
	buf[2] = cpu_to_le32(4024);
	buf[3] = 0;
	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
	if (r)
		return r;

	/* No MD5 padding here */
	r = crypto_shash_export(&sdesc.desc, &md5state);
	if (r)
		return r;

	for (i = 0; i < MD5_HASH_WORDS; i++)
		__cpu_to_le32s(&md5state.hash[i]);
	memcpy(iv, &md5state.hash, cc->iv_size);

	return 0;
}

static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
			    struct dm_crypt_request *dmreq)
{
	u8 *src;
	int r = 0;

	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
		src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
		kunmap_atomic(src, KM_USER0);
	} else
		memset(iv, 0, cc->iv_size);

	return r;
}

static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
			     struct dm_crypt_request *dmreq)
{
	u8 *dst;
	int r;

	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
		return 0;

	dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);

	/* Tweak the first block of plaintext sector */
	if (!r)
		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);

	kunmap_atomic(dst, KM_USER0);
	return r;
}

static struct crypt_iv_operations crypt_iv_plain_ops = {
	.generator = crypt_iv_plain_gen
};

static struct crypt_iv_operations crypt_iv_plain64_ops = {
	.generator = crypt_iv_plain64_gen
};

static struct crypt_iv_operations crypt_iv_essiv_ops = {
	.ctr       = crypt_iv_essiv_ctr,
	.dtr       = crypt_iv_essiv_dtr,
	.init      = crypt_iv_essiv_init,
	.wipe      = crypt_iv_essiv_wipe,
	.generator = crypt_iv_essiv_gen
};

static struct crypt_iv_operations crypt_iv_benbi_ops = {
	.ctr	   = crypt_iv_benbi_ctr,
	.dtr	   = crypt_iv_benbi_dtr,
	.generator = crypt_iv_benbi_gen
};

static struct crypt_iv_operations crypt_iv_null_ops = {
	.generator = crypt_iv_null_gen
};

static struct crypt_iv_operations crypt_iv_lmk_ops = {
	.ctr	   = crypt_iv_lmk_ctr,
	.dtr	   = crypt_iv_lmk_dtr,
	.init	   = crypt_iv_lmk_init,
	.wipe	   = crypt_iv_lmk_wipe,
	.generator = crypt_iv_lmk_gen,
	.post	   = crypt_iv_lmk_post
};

static void crypt_convert_init(struct crypt_config *cc,
			       struct convert_context *ctx,
			       struct bio *bio_out, struct bio *bio_in,
			       sector_t sector)
{
	ctx->bio_in = bio_in;
	ctx->bio_out = bio_out;
	ctx->offset_in = 0;
	ctx->offset_out = 0;
	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
	ctx->sector = sector + cc->iv_offset;
	init_completion(&ctx->restart);
}

static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
					     struct ablkcipher_request *req)
{
	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
}

static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
					       struct dm_crypt_request *dmreq)
{
	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
}

static u8 *iv_of_dmreq(struct crypt_config *cc,
		       struct dm_crypt_request *dmreq)
{
	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
}

static int crypt_convert_block(struct crypt_config *cc,
			       struct convert_context *ctx,
			       struct ablkcipher_request *req)
{
	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
	struct dm_crypt_request *dmreq;
	u8 *iv;
	int r = 0;

	dmreq = dmreq_of_req(cc, req);
	iv = iv_of_dmreq(cc, dmreq);

	dmreq->iv_sector = ctx->sector;
	dmreq->ctx = ctx;
	sg_init_table(&dmreq->sg_in, 1);
	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
		    bv_in->bv_offset + ctx->offset_in);

	sg_init_table(&dmreq->sg_out, 1);
	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
		    bv_out->bv_offset + ctx->offset_out);

	ctx->offset_in += 1 << SECTOR_SHIFT;
	if (ctx->offset_in >= bv_in->bv_len) {
		ctx->offset_in = 0;
		ctx->idx_in++;
	}

	ctx->offset_out += 1 << SECTOR_SHIFT;
	if (ctx->offset_out >= bv_out->bv_len) {
		ctx->offset_out = 0;
		ctx->idx_out++;
	}

	if (cc->iv_gen_ops) {
		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
		if (r < 0)
			return r;
	}

	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
				     1 << SECTOR_SHIFT, iv);

	if (bio_data_dir(ctx->bio_in) == WRITE)
		r = crypto_ablkcipher_encrypt(req);
	else
		r = crypto_ablkcipher_decrypt(req);

	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
		r = cc->iv_gen_ops->post(cc, iv, dmreq);

	return r;
}

static void kcryptd_async_done(struct crypto_async_request *async_req,
			       int error);

static void crypt_alloc_req(struct crypt_config *cc,
			    struct convert_context *ctx)
{
	struct crypt_cpu *this_cc = this_crypt_config(cc);
	unsigned key_index = ctx->sector & (cc->tfms_count - 1);

	if (!this_cc->req)
		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);

	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
	ablkcipher_request_set_callback(this_cc->req,
	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
}

/*
 * Encrypt / decrypt data from one bio to another one (can be the same one)
 */
static int crypt_convert(struct crypt_config *cc,
			 struct convert_context *ctx)
{
	struct crypt_cpu *this_cc = this_crypt_config(cc);
	int r;

	atomic_set(&ctx->pending, 1);

	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
	      ctx->idx_out < ctx->bio_out->bi_vcnt) {

		crypt_alloc_req(cc, ctx);

		atomic_inc(&ctx->pending);

		r = crypt_convert_block(cc, ctx, this_cc->req);

		switch (r) {
		/* async */
		case -EBUSY:
			wait_for_completion(&ctx->restart);
			INIT_COMPLETION(ctx->restart);
			/* fall through*/
		case -EINPROGRESS:
			this_cc->req = NULL;
			ctx->sector++;
			continue;

		/* sync */
		case 0:
			atomic_dec(&ctx->pending);
			ctx->sector++;
			cond_resched();
			continue;

		/* error */
		default:
			atomic_dec(&ctx->pending);
			return r;
		}
	}

	return 0;
}

static void dm_crypt_bio_destructor(struct bio *bio)
{
	struct dm_crypt_io *io = bio->bi_private;
	struct crypt_config *cc = io->target->private;

	bio_free(bio, cc->bs);
}

/*
 * Generate a new unfragmented bio with the given size
 * This should never violate the device limitations
 * May return a smaller bio when running out of pages, indicated by
 * *out_of_pages set to 1.
 */
static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
				      unsigned *out_of_pages)
{
	struct crypt_config *cc = io->target->private;
	struct bio *clone;
	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
	unsigned i, len;
	struct page *page;

	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
	if (!clone)
		return NULL;

	clone_init(io, clone);
	*out_of_pages = 0;

	for (i = 0; i < nr_iovecs; i++) {
		page = mempool_alloc(cc->page_pool, gfp_mask);
		if (!page) {
			*out_of_pages = 1;
			break;
		}

		/*
		 * if additional pages cannot be allocated without waiting,
		 * return a partially allocated bio, the caller will then try
		 * to allocate additional bios while submitting this partial bio
		 */
		if (i == (MIN_BIO_PAGES - 1))
			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;

		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;

		if (!bio_add_page(clone, page, len, 0)) {
			mempool_free(page, cc->page_pool);
			break;
		}

		size -= len;
	}

	if (!clone->bi_size) {
		bio_put(clone);
		return NULL;
	}

	return clone;
}

static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
{
	unsigned int i;
	struct bio_vec *bv;

	for (i = 0; i < clone->bi_vcnt; i++) {
		bv = bio_iovec_idx(clone, i);
		BUG_ON(!bv->bv_page);
		mempool_free(bv->bv_page, cc->page_pool);
		bv->bv_page = NULL;
	}
}

static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
					  struct bio *bio, sector_t sector)
{
	struct crypt_config *cc = ti->private;
	struct dm_crypt_io *io;

	io = mempool_alloc(cc->io_pool, GFP_NOIO);
	io->target = ti;
	io->base_bio = bio;
	io->sector = sector;
	io->error = 0;
	io->base_io = NULL;
	atomic_set(&io->pending, 0);

	return io;
}

static void crypt_inc_pending(struct dm_crypt_io *io)
{
	atomic_inc(&io->pending);
}

/*
 * One of the bios was finished. Check for completion of
 * the whole request and correctly clean up the buffer.
 * If base_io is set, wait for the last fragment to complete.
 */
static void crypt_dec_pending(struct dm_crypt_io *io)
{
	struct crypt_config *cc = io->target->private;
	struct bio *base_bio = io->base_bio;
	struct dm_crypt_io *base_io = io->base_io;
	int error = io->error;

	if (!atomic_dec_and_test(&io->pending))
		return;

	mempool_free(io, cc->io_pool);

	if (likely(!base_io))
		bio_endio(base_bio, error);
	else {
		if (error && !base_io->error)
			base_io->error = error;
		crypt_dec_pending(base_io);
	}
}

/*
 * kcryptd/kcryptd_io:
 *
 * Needed because it would be very unwise to do decryption in an
 * interrupt context.
 *
 * kcryptd performs the actual encryption or decryption.
 *
 * kcryptd_io performs the IO submission.
 *
 * They must be separated as otherwise the final stages could be
 * starved by new requests which can block in the first stages due
 * to memory allocation.
 *
 * The work is done per CPU global for all dm-crypt instances.
 * They should not depend on each other and do not block.
 */
static void crypt_endio(struct bio *clone, int error)
{
	struct dm_crypt_io *io = clone->bi_private;
	struct crypt_config *cc = io->target->private;
	unsigned rw = bio_data_dir(clone);

	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
		error = -EIO;

	/*
	 * free the processed pages
	 */
	if (rw == WRITE)
		crypt_free_buffer_pages(cc, clone);

	bio_put(clone);

	if (rw == READ && !error) {
		kcryptd_queue_crypt(io);
		return;
	}

	if (unlikely(error))
		io->error = error;

	crypt_dec_pending(io);
}

static void clone_init(struct dm_crypt_io *io, struct bio *clone)
{
	struct crypt_config *cc = io->target->private;

	clone->bi_private = io;
	clone->bi_end_io  = crypt_endio;
	clone->bi_bdev    = cc->dev->bdev;
	clone->bi_rw      = io->base_bio->bi_rw;
	clone->bi_destructor = dm_crypt_bio_destructor;
}

static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
{
	struct crypt_config *cc = io->target->private;
	struct bio *base_bio = io->base_bio;
	struct bio *clone;

	/*
	 * The block layer might modify the bvec array, so always
	 * copy the required bvecs because we need the original
	 * one in order to decrypt the whole bio data *afterwards*.
	 */
	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
	if (!clone)
		return 1;

	crypt_inc_pending(io);

	clone_init(io, clone);
	clone->bi_idx = 0;
	clone->bi_vcnt = bio_segments(base_bio);
	clone->bi_size = base_bio->bi_size;
	clone->bi_sector = cc->start + io->sector;
	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
	       sizeof(struct bio_vec) * clone->bi_vcnt);

	generic_make_request(clone);
	return 0;
}

static void kcryptd_io_write(struct dm_crypt_io *io)
{
	struct bio *clone = io->ctx.bio_out;
	generic_make_request(clone);
}

static void kcryptd_io(struct work_struct *work)
{
	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);

	if (bio_data_dir(io->base_bio) == READ) {
		crypt_inc_pending(io);
		if (kcryptd_io_read(io, GFP_NOIO))
			io->error = -ENOMEM;
		crypt_dec_pending(io);
	} else
		kcryptd_io_write(io);
}

static void kcryptd_queue_io(struct dm_crypt_io *io)
{
	struct crypt_config *cc = io->target->private;

	INIT_WORK(&io->work, kcryptd_io);
	queue_work(cc->io_queue, &io->work);
}

static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
					  int error, int async)
{
	struct bio *clone = io->ctx.bio_out;
	struct crypt_config *cc = io->target->private;

	if (unlikely(error < 0)) {
		crypt_free_buffer_pages(cc, clone);
		bio_put(clone);
		io->error = -EIO;
		crypt_dec_pending(io);
		return;
	}

	/* crypt_convert should have filled the clone bio */
	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);

	clone->bi_sector = cc->start + io->sector;

	if (async)
		kcryptd_queue_io(io);
	else
		generic_make_request(clone);
}

static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
{
	struct crypt_config *cc = io->target->private;
	struct bio *clone;
	struct dm_crypt_io *new_io;
	int crypt_finished;
	unsigned out_of_pages = 0;
	unsigned remaining = io->base_bio->bi_size;
	sector_t sector = io->sector;
	int r;

	/*
	 * Prevent io from disappearing until this function completes.
	 */
	crypt_inc_pending(io);
	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);

	/*
	 * The allocated buffers can be smaller than the whole bio,
	 * so repeat the whole process until all the data can be handled.
	 */
	while (remaining) {
		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
		if (unlikely(!clone)) {
			io->error = -ENOMEM;
			break;
		}

		io->ctx.bio_out = clone;
		io->ctx.idx_out = 0;

		remaining -= clone->bi_size;
		sector += bio_sectors(clone);

		crypt_inc_pending(io);
		r = crypt_convert(cc, &io->ctx);
		crypt_finished = atomic_dec_and_test(&io->ctx.pending);

		/* Encryption was already finished, submit io now */
		if (crypt_finished) {
			kcryptd_crypt_write_io_submit(io, r, 0);

			/*
			 * If there was an error, do not try next fragments.
			 * For async, error is processed in async handler.
			 */
			if (unlikely(r < 0))
				break;

			io->sector = sector;
		}

		/*
		 * Out of memory -> run queues
		 * But don't wait if split was due to the io size restriction
		 */
		if (unlikely(out_of_pages))
			congestion_wait(BLK_RW_ASYNC, HZ/100);

		/*
		 * With async crypto it is unsafe to share the crypto context
		 * between fragments, so switch to a new dm_crypt_io structure.
		 */
		if (unlikely(!crypt_finished && remaining)) {
			new_io = crypt_io_alloc(io->target, io->base_bio,
						sector);
			crypt_inc_pending(new_io);
			crypt_convert_init(cc, &new_io->ctx, NULL,
					   io->base_bio, sector);
			new_io->ctx.idx_in = io->ctx.idx_in;
			new_io->ctx.offset_in = io->ctx.offset_in;

			/*
			 * Fragments after the first use the base_io
			 * pending count.
			 */
			if (!io->base_io)
				new_io->base_io = io;
			else {
				new_io->base_io = io->base_io;
				crypt_inc_pending(io->base_io);
				crypt_dec_pending(io);
			}

			io = new_io;
		}
	}

	crypt_dec_pending(io);
}

static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
{
	if (unlikely(error < 0))
		io->error = -EIO;

	crypt_dec_pending(io);
}

static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
{
	struct crypt_config *cc = io->target->private;
	int r = 0;

	crypt_inc_pending(io);

	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
			   io->sector);

	r = crypt_convert(cc, &io->ctx);

	if (atomic_dec_and_test(&io->ctx.pending))
		kcryptd_crypt_read_done(io, r);

	crypt_dec_pending(io);
}

static void kcryptd_async_done(struct crypto_async_request *async_req,
			       int error)
{
	struct dm_crypt_request *dmreq = async_req->data;
	struct convert_context *ctx = dmreq->ctx;
	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
	struct crypt_config *cc = io->target->private;

	if (error == -EINPROGRESS) {
		complete(&ctx->restart);
		return;
	}

	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);

	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);

	if (!atomic_dec_and_test(&ctx->pending))
		return;

	if (bio_data_dir(io->base_bio) == READ)
		kcryptd_crypt_read_done(io, error);
	else
		kcryptd_crypt_write_io_submit(io, error, 1);
}

static void kcryptd_crypt(struct work_struct *work)
{
	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);

	if (bio_data_dir(io->base_bio) == READ)
		kcryptd_crypt_read_convert(io);
	else
		kcryptd_crypt_write_convert(io);
}

static void kcryptd_queue_crypt(struct dm_crypt_io *io)
{
	struct crypt_config *cc = io->target->private;

	INIT_WORK(&io->work, kcryptd_crypt);
	queue_work(cc->crypt_queue, &io->work);
}

/*
 * Decode key from its hex representation
 */
static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
{
	char buffer[3];
	char *endp;
	unsigned int i;

	buffer[2] = '\0';

	for (i = 0; i < size; i++) {
		buffer[0] = *hex++;
		buffer[1] = *hex++;

		key[i] = (u8)simple_strtoul(buffer, &endp, 16);

		if (endp != &buffer[2])
			return -EINVAL;
	}

	if (*hex != '\0')
		return -EINVAL;

	return 0;
}

/*
 * Encode key into its hex representation
 */
static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
{
	unsigned int i;

	for (i = 0; i < size; i++) {
		sprintf(hex, "%02x", *key);
		hex += 2;
		key++;
	}
}

static void crypt_free_tfms(struct crypt_config *cc, int cpu)
{
	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
	unsigned i;

	for (i = 0; i < cc->tfms_count; i++)
		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
			crypto_free_ablkcipher(cpu_cc->tfms[i]);
			cpu_cc->tfms[i] = NULL;
		}
}

static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
{
	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
	unsigned i;
	int err;

	for (i = 0; i < cc->tfms_count; i++) {
		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
		if (IS_ERR(cpu_cc->tfms[i])) {
			err = PTR_ERR(cpu_cc->tfms[i]);
			crypt_free_tfms(cc, cpu);
			return err;
		}
	}

	return 0;
}

static int crypt_setkey_allcpus(struct crypt_config *cc)
{
	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
	int cpu, err = 0, i, r;

	for_each_possible_cpu(cpu) {
		for (i = 0; i < cc->tfms_count; i++) {
			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
						     cc->key + (i * subkey_size), subkey_size);
			if (r)
				err = r;
		}
	}

	return err;
}

static int crypt_set_key(struct crypt_config *cc, char *key)
{
	int r = -EINVAL;
	int key_string_len = strlen(key);

	/* The key size may not be changed. */
	if (cc->key_size != (key_string_len >> 1))
		goto out;

	/* Hyphen (which gives a key_size of zero) means there is no key. */
	if (!cc->key_size && strcmp(key, "-"))
		goto out;

	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
		goto out;

	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);

	r = crypt_setkey_allcpus(cc);

out:
	/* Hex key string not needed after here, so wipe it. */
	memset(key, '0', key_string_len);

	return r;
}

static int crypt_wipe_key(struct crypt_config *cc)
{
	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
	memset(&cc->key, 0, cc->key_size * sizeof(u8));

	return crypt_setkey_allcpus(cc);
}

static void crypt_dtr(struct dm_target *ti)
{
	struct crypt_config *cc = ti->private;
	struct crypt_cpu *cpu_cc;
	int cpu;

	ti->private = NULL;

	if (!cc)
		return;

	if (cc->io_queue)
		destroy_workqueue(cc->io_queue);
	if (cc->crypt_queue)
		destroy_workqueue(cc->crypt_queue);

	if (cc->cpu)
		for_each_possible_cpu(cpu) {
			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
			if (cpu_cc->req)
				mempool_free(cpu_cc->req, cc->req_pool);
			crypt_free_tfms(cc, cpu);
		}

	if (cc->bs)
		bioset_free(cc->bs);

	if (cc->page_pool)
		mempool_destroy(cc->page_pool);
	if (cc->req_pool)
		mempool_destroy(cc->req_pool);
	if (cc->io_pool)
		mempool_destroy(cc->io_pool);

	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
		cc->iv_gen_ops->dtr(cc);

	if (cc->dev)
		dm_put_device(ti, cc->dev);

	if (cc->cpu)
		free_percpu(cc->cpu);

	kzfree(cc->cipher);
	kzfree(cc->cipher_string);

	/* Must zero key material before freeing */
	kzfree(cc);
}

static int crypt_ctr_cipher(struct dm_target *ti,
			    char *cipher_in, char *key)
{
	struct crypt_config *cc = ti->private;
	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
	char *cipher_api = NULL;
	int cpu, ret = -EINVAL;

	/* Convert to crypto api definition? */
	if (strchr(cipher_in, '(')) {
		ti->error = "Bad cipher specification";
		return -EINVAL;
	}

	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
	if (!cc->cipher_string)
		goto bad_mem;

	/*
	 * Legacy dm-crypt cipher specification
	 * cipher[:keycount]-mode-iv:ivopts
	 */
	tmp = cipher_in;
	keycount = strsep(&tmp, "-");
	cipher = strsep(&keycount, ":");

	if (!keycount)
		cc->tfms_count = 1;
	else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
		 !is_power_of_2(cc->tfms_count)) {
		ti->error = "Bad cipher key count specification";
		return -EINVAL;
	}
	cc->key_parts = cc->tfms_count;

	cc->cipher = kstrdup(cipher, GFP_KERNEL);
	if (!cc->cipher)
		goto bad_mem;

	chainmode = strsep(&tmp, "-");
	ivopts = strsep(&tmp, "-");
	ivmode = strsep(&ivopts, ":");

	if (tmp)
		DMWARN("Ignoring unexpected additional cipher options");

	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
				 __alignof__(struct crypt_cpu));
	if (!cc->cpu) {
		ti->error = "Cannot allocate per cpu state";
		goto bad_mem;
	}

	/*
	 * For compatibility with the original dm-crypt mapping format, if
	 * only the cipher name is supplied, use cbc-plain.
	 */
	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
		chainmode = "cbc";
		ivmode = "plain";
	}

	if (strcmp(chainmode, "ecb") && !ivmode) {
		ti->error = "IV mechanism required";
		return -EINVAL;
	}

	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
	if (!cipher_api)
		goto bad_mem;

	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
		       "%s(%s)", chainmode, cipher);
	if (ret < 0) {
		kfree(cipher_api);
		goto bad_mem;
	}

	/* Allocate cipher */
	for_each_possible_cpu(cpu) {
		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
		if (ret < 0) {
			ti->error = "Error allocating crypto tfm";
			goto bad;
		}
	}

	/* Initialize and set key */
	ret = crypt_set_key(cc, key);
	if (ret < 0) {
		ti->error = "Error decoding and setting key";
		goto bad;
	}

	/* Initialize IV */
	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
	if (cc->iv_size)
		/* at least a 64 bit sector number should fit in our buffer */
		cc->iv_size = max(cc->iv_size,
				  (unsigned int)(sizeof(u64) / sizeof(u8)));
	else if (ivmode) {
		DMWARN("Selected cipher does not support IVs");
		ivmode = NULL;
	}

	/* Choose ivmode, see comments at iv code. */
	if (ivmode == NULL)
		cc->iv_gen_ops = NULL;
	else if (strcmp(ivmode, "plain") == 0)
		cc->iv_gen_ops = &crypt_iv_plain_ops;
	else if (strcmp(ivmode, "plain64") == 0)
		cc->iv_gen_ops = &crypt_iv_plain64_ops;
	else if (strcmp(ivmode, "essiv") == 0)
		cc->iv_gen_ops = &crypt_iv_essiv_ops;
	else if (strcmp(ivmode, "benbi") == 0)
		cc->iv_gen_ops = &crypt_iv_benbi_ops;
	else if (strcmp(ivmode, "null") == 0)
		cc->iv_gen_ops = &crypt_iv_null_ops;
	else if (strcmp(ivmode, "lmk") == 0) {
		cc->iv_gen_ops = &crypt_iv_lmk_ops;
		/* Version 2 and 3 is recognised according
		 * to length of provided multi-key string.
		 * If present (version 3), last key is used as IV seed.
		 */
		if (cc->key_size % cc->key_parts)
			cc->key_parts++;
	} else {
		ret = -EINVAL;
		ti->error = "Invalid IV mode";
		goto bad;
	}

	/* Allocate IV */
	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
		if (ret < 0) {
			ti->error = "Error creating IV";
			goto bad;
		}
	}

	/* Initialize IV (set keys for ESSIV etc) */
	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
		ret = cc->iv_gen_ops->init(cc);
		if (ret < 0) {
			ti->error = "Error initialising IV";
			goto bad;
		}
	}

	ret = 0;
bad:
	kfree(cipher_api);
	return ret;

bad_mem:
	ti->error = "Cannot allocate cipher strings";
	return -ENOMEM;
}

/*
 * Construct an encryption mapping:
 * <cipher> <key> <iv_offset> <dev_path> <start>
 */
static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
	struct crypt_config *cc;
	unsigned int key_size, opt_params;
	unsigned long long tmpll;
	int ret;
	struct dm_arg_set as;
	const char *opt_string;

	static struct dm_arg _args[] = {
		{0, 1, "Invalid number of feature args"},
	};

	if (argc < 5) {
		ti->error = "Not enough arguments";
		return -EINVAL;
	}

	key_size = strlen(argv[1]) >> 1;

	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
	if (!cc) {
		ti->error = "Cannot allocate encryption context";
		return -ENOMEM;
	}
	cc->key_size = key_size;

	ti->private = cc;
	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
	if (ret < 0)
		goto bad;

	ret = -ENOMEM;
	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
	if (!cc->io_pool) {
		ti->error = "Cannot allocate crypt io mempool";
		goto bad;
	}

	cc->dmreq_start = sizeof(struct ablkcipher_request);
	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
			   ~(crypto_tfm_ctx_alignment() - 1);

	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
			sizeof(struct dm_crypt_request) + cc->iv_size);
	if (!cc->req_pool) {
		ti->error = "Cannot allocate crypt request mempool";
		goto bad;
	}

	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
	if (!cc->page_pool) {
		ti->error = "Cannot allocate page mempool";
		goto bad;
	}

	cc->bs = bioset_create(MIN_IOS, 0);
	if (!cc->bs) {
		ti->error = "Cannot allocate crypt bioset";
		goto bad;
	}

	ret = -EINVAL;
	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
		ti->error = "Invalid iv_offset sector";
		goto bad;
	}
	cc->iv_offset = tmpll;

	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
		ti->error = "Device lookup failed";
		goto bad;
	}

	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
		ti->error = "Invalid device sector";
		goto bad;
	}
	cc->start = tmpll;

	argv += 5;
	argc -= 5;

	/* Optional parameters */
	if (argc) {
		as.argc = argc;
		as.argv = argv;

		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
		if (ret)
			goto bad;

		opt_string = dm_shift_arg(&as);

		if (opt_params == 1 && opt_string &&
		    !strcasecmp(opt_string, "allow_discards"))
			ti->num_discard_requests = 1;
		else if (opt_params) {
			ret = -EINVAL;
			ti->error = "Invalid feature arguments";
			goto bad;
		}
	}

	ret = -ENOMEM;
	cc->io_queue = alloc_workqueue("kcryptd_io",
				       WQ_NON_REENTRANT|
				       WQ_MEM_RECLAIM,
				       1);
	if (!cc->io_queue) {
		ti->error = "Couldn't create kcryptd io queue";
		goto bad;
	}

	cc->crypt_queue = alloc_workqueue("kcryptd",
					  WQ_NON_REENTRANT|
					  WQ_CPU_INTENSIVE|
					  WQ_MEM_RECLAIM,
					  1);
	if (!cc->crypt_queue) {
		ti->error = "Couldn't create kcryptd queue";
		goto bad;
	}

	ti->num_flush_requests = 1;
	return 0;

bad:
	crypt_dtr(ti);
	return ret;
}

static int crypt_map(struct dm_target *ti, struct bio *bio,
		     union map_info *map_context)
{
	struct dm_crypt_io *io;
	struct crypt_config *cc;

	/*
	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
	 * - for REQ_DISCARD caller must use flush if IO ordering matters
	 */
	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
		cc = ti->private;
		bio->bi_bdev = cc->dev->bdev;
		if (bio_sectors(bio))
			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
		return DM_MAPIO_REMAPPED;
	}

	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));

	if (bio_data_dir(io->base_bio) == READ) {
		if (kcryptd_io_read(io, GFP_NOWAIT))
			kcryptd_queue_io(io);
	} else
		kcryptd_queue_crypt(io);

	return DM_MAPIO_SUBMITTED;
}

static int crypt_status(struct dm_target *ti, status_type_t type,
			char *result, unsigned int maxlen)
{
	struct crypt_config *cc = ti->private;
	unsigned int sz = 0;

	switch (type) {
	case STATUSTYPE_INFO:
		result[0] = '\0';
		break;

	case STATUSTYPE_TABLE:
		DMEMIT("%s ", cc->cipher_string);

		if (cc->key_size > 0) {
			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
				return -ENOMEM;

			crypt_encode_key(result + sz, cc->key, cc->key_size);
			sz += cc->key_size << 1;
		} else {
			if (sz >= maxlen)
				return -ENOMEM;
			result[sz++] = '-';
		}

		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
				cc->dev->name, (unsigned long long)cc->start);

		if (ti->num_discard_requests)
			DMEMIT(" 1 allow_discards");

		break;
	}
	return 0;
}

static void crypt_postsuspend(struct dm_target *ti)
{
	struct crypt_config *cc = ti->private;

	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
}

static int crypt_preresume(struct dm_target *ti)
{
	struct crypt_config *cc = ti->private;

	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
		DMERR("aborting resume - crypt key is not set.");
		return -EAGAIN;
	}

	return 0;
}

static void crypt_resume(struct dm_target *ti)
{
	struct crypt_config *cc = ti->private;

	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
}

/* Message interface
 *	key set <key>
 *	key wipe
 */
static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
{
	struct crypt_config *cc = ti->private;
	int ret = -EINVAL;

	if (argc < 2)
		goto error;

	if (!strcasecmp(argv[0], "key")) {
		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
			DMWARN("not suspended during key manipulation.");
			return -EINVAL;
		}
		if (argc == 3 && !strcasecmp(argv[1], "set")) {
			ret = crypt_set_key(cc, argv[2]);
			if (ret)
				return ret;
			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
				ret = cc->iv_gen_ops->init(cc);
			return ret;
		}
		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
				ret = cc->iv_gen_ops->wipe(cc);
				if (ret)
					return ret;
			}
			return crypt_wipe_key(cc);
		}
	}

error:
	DMWARN("unrecognised message received.");
	return -EINVAL;
}

static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
		       struct bio_vec *biovec, int max_size)
{
	struct crypt_config *cc = ti->private;
	struct request_queue *q = bdev_get_queue(cc->dev->bdev);

	if (!q->merge_bvec_fn)
		return max_size;

	bvm->bi_bdev = cc->dev->bdev;
	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);

	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
}

static int crypt_iterate_devices(struct dm_target *ti,
				 iterate_devices_callout_fn fn, void *data)
{
	struct crypt_config *cc = ti->private;

	return fn(ti, cc->dev, cc->start, ti->len, data);
}

static struct target_type crypt_target = {
	.name   = "crypt",
	.version = {1, 11, 0},
	.module = THIS_MODULE,
	.ctr    = crypt_ctr,
	.dtr    = crypt_dtr,
	.map    = crypt_map,
	.status = crypt_status,
	.postsuspend = crypt_postsuspend,
	.preresume = crypt_preresume,
	.resume = crypt_resume,
	.message = crypt_message,
	.merge  = crypt_merge,
	.iterate_devices = crypt_iterate_devices,
};

static int __init dm_crypt_init(void)
{
	int r;

	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
	if (!_crypt_io_pool)
		return -ENOMEM;

	r = dm_register_target(&crypt_target);
	if (r < 0) {
		DMERR("register failed %d", r);
		kmem_cache_destroy(_crypt_io_pool);
	}

	return r;
}

static void __exit dm_crypt_exit(void)
{
	dm_unregister_target(&crypt_target);
	kmem_cache_destroy(_crypt_io_pool);
}

module_init(dm_crypt_init);
module_exit(dm_crypt_exit);

MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
MODULE_LICENSE("GPL");