/* * For the Realtek RTL chip RTL2831U * Realtek Release Date: 2008-03-14, ver 080314 * Realtek version RTL2831 Linux driver version 080314 * ver 080314 * * for linux kernel version 2.6.21.4 - 2.6.22-14 * support MXL5005s and MT2060 tuners (support tuner auto-detecting) * support two IR types -- RC5 and NEC * * Known boards with Realtek RTL chip RTL2821U * Freecom USB stick 14aa:0160 (version 4) * Conceptronic CTVDIGRCU * * Copyright (c) 2008 Realtek * Copyright (c) 2008 Jan Hoogenraad, Barnaby Shearer, Andy Hasper * This code is placed under the terms of the GNU General Public License * * Released by Realtek under GPLv2. * Thanks to Realtek for a lot of support we received ! * * Revision: 080314 - original version */ #include "mxl5005s.h" static int debug = 2; #define dprintk(level, arg...) do { \ if (level <= debug) \ printk(arg); \ } while (0) #define TUNER_REGS_NUM 104 #define INITCTRL_NUM 40 #ifdef _MXL_PRODUCTION #define CHCTRL_NUM 39 #else #define CHCTRL_NUM 36 #endif #define MXLCTRL_NUM 189 #define MASTER_CONTROL_ADDR 9 /* Enumeration of Master Control Register State */ typedef enum { MC_LOAD_START = 1, MC_POWER_DOWN, MC_SYNTH_RESET, MC_SEQ_OFF } Master_Control_State; /* Enumeration of MXL5005 Tuner Modulation Type */ typedef enum { MXL_DEFAULT_MODULATION = 0, MXL_DVBT, MXL_ATSC, MXL_QAM, MXL_ANALOG_CABLE, MXL_ANALOG_OTA } Tuner_Modu_Type; /* MXL5005 Tuner Register Struct */ typedef struct _TunerReg_struct { u16 Reg_Num; /* Tuner Register Address */ u16 Reg_Val; /* Current sofware programmed value waiting to be writen */ } TunerReg_struct; typedef enum { /* Initialization Control Names */ DN_IQTN_AMP_CUT = 1, /* 1 */ BB_MODE, /* 2 */ BB_BUF, /* 3 */ BB_BUF_OA, /* 4 */ BB_ALPF_BANDSELECT, /* 5 */ BB_IQSWAP, /* 6 */ BB_DLPF_BANDSEL, /* 7 */ RFSYN_CHP_GAIN, /* 8 */ RFSYN_EN_CHP_HIGAIN, /* 9 */ AGC_IF, /* 10 */ AGC_RF, /* 11 */ IF_DIVVAL, /* 12 */ IF_VCO_BIAS, /* 13 */ CHCAL_INT_MOD_IF, /* 14 */ CHCAL_FRAC_MOD_IF, /* 15 */ DRV_RES_SEL, /* 16 */ I_DRIVER, /* 17 */ EN_AAF, /* 18 */ EN_3P, /* 19 */ EN_AUX_3P, /* 20 */ SEL_AAF_BAND, /* 21 */ SEQ_ENCLK16_CLK_OUT, /* 22 */ SEQ_SEL4_16B, /* 23 */ XTAL_CAPSELECT, /* 24 */ IF_SEL_DBL, /* 25 */ RFSYN_R_DIV, /* 26 */ SEQ_EXTSYNTHCALIF, /* 27 */ SEQ_EXTDCCAL, /* 28 */ AGC_EN_RSSI, /* 29 */ RFA_ENCLKRFAGC, /* 30 */ RFA_RSSI_REFH, /* 31 */ RFA_RSSI_REF, /* 32 */ RFA_RSSI_REFL, /* 33 */ RFA_FLR, /* 34 */ RFA_CEIL, /* 35 */ SEQ_EXTIQFSMPULSE, /* 36 */ OVERRIDE_1, /* 37 */ BB_INITSTATE_DLPF_TUNE, /* 38 */ TG_R_DIV, /* 39 */ EN_CHP_LIN_B, /* 40 */ /* Channel Change Control Names */ DN_POLY = 51, /* 51 */ DN_RFGAIN, /* 52 */ DN_CAP_RFLPF, /* 53 */ DN_EN_VHFUHFBAR, /* 54 */ DN_GAIN_ADJUST, /* 55 */ DN_IQTNBUF_AMP, /* 56 */ DN_IQTNGNBFBIAS_BST, /* 57 */ RFSYN_EN_OUTMUX, /* 58 */ RFSYN_SEL_VCO_OUT, /* 59 */ RFSYN_SEL_VCO_HI, /* 60 */ RFSYN_SEL_DIVM, /* 61 */ RFSYN_RF_DIV_BIAS, /* 62 */ DN_SEL_FREQ, /* 63 */ RFSYN_VCO_BIAS, /* 64 */ CHCAL_INT_MOD_RF, /* 65 */ CHCAL_FRAC_MOD_RF, /* 66 */ RFSYN_LPF_R, /* 67 */ CHCAL_EN_INT_RF, /* 68 */ TG_LO_DIVVAL, /* 69 */ TG_LO_SELVAL, /* 70 */ TG_DIV_VAL, /* 71 */ TG_VCO_BIAS, /* 72 */ SEQ_EXTPOWERUP, /* 73 */ OVERRIDE_2, /* 74 */ OVERRIDE_3, /* 75 */ OVERRIDE_4, /* 76 */ SEQ_FSM_PULSE, /* 77 */ GPIO_4B, /* 78 */ GPIO_3B, /* 79 */ GPIO_4, /* 80 */ GPIO_3, /* 81 */ GPIO_1B, /* 82 */ DAC_A_ENABLE, /* 83 */ DAC_B_ENABLE, /* 84 */ DAC_DIN_A, /* 85 */ DAC_DIN_B, /* 86 */ #ifdef _MXL_PRODUCTION RFSYN_EN_DIV, /* 87 */ RFSYN_DIVM, /* 88 */ DN_BYPASS_AGC_I2C /* 89 */ #endif } MXL5005_ControlName; /* * The following context is source code provided by MaxLinear. * MaxLinear source code - Common_MXL.h (?) */ /* Constants */ #define MXL5005S_REG_WRITING_TABLE_LEN_MAX 104 #define MXL5005S_LATCH_BYTE 0xfe /* Register address, MSB, and LSB */ #define MXL5005S_BB_IQSWAP_ADDR 59 #define MXL5005S_BB_IQSWAP_MSB 0 #define MXL5005S_BB_IQSWAP_LSB 0 #define MXL5005S_BB_DLPF_BANDSEL_ADDR 53 #define MXL5005S_BB_DLPF_BANDSEL_MSB 4 #define MXL5005S_BB_DLPF_BANDSEL_LSB 3 /* Standard modes */ enum { MXL5005S_STANDARD_DVBT, MXL5005S_STANDARD_ATSC, }; #define MXL5005S_STANDARD_MODE_NUM 2 /* Bandwidth modes */ enum { MXL5005S_BANDWIDTH_6MHZ = 6000000, MXL5005S_BANDWIDTH_7MHZ = 7000000, MXL5005S_BANDWIDTH_8MHZ = 8000000, }; #define MXL5005S_BANDWIDTH_MODE_NUM 3 /* MXL5005 Tuner Control Struct */ typedef struct _TunerControl_struct { u16 Ctrl_Num; /* Control Number */ u16 size; /* Number of bits to represent Value */ u16 addr[25]; /* Array of Tuner Register Address for each bit position */ u16 bit[25]; /* Array of bit position in Register Address for each bit position */ u16 val[25]; /* Binary representation of Value */ } TunerControl_struct; /* MXL5005 Tuner Struct */ struct mxl5005s_state { u8 Mode; /* 0: Analog Mode ; 1: Digital Mode */ u8 IF_Mode; /* for Analog Mode, 0: zero IF; 1: low IF */ u32 Chan_Bandwidth; /* filter channel bandwidth (6, 7, 8) */ u32 IF_OUT; /* Desired IF Out Frequency */ u16 IF_OUT_LOAD; /* IF Out Load Resistor (200/300 Ohms) */ u32 RF_IN; /* RF Input Frequency */ u32 Fxtal; /* XTAL Frequency */ u8 AGC_Mode; /* AGC Mode 0: Dual AGC; 1: Single AGC */ u16 TOP; /* Value: take over point */ u8 CLOCK_OUT; /* 0: turn off clock out; 1: turn on clock out */ u8 DIV_OUT; /* 4MHz or 16MHz */ u8 CAPSELECT; /* 0: disable On-Chip pulling cap; 1: enable */ u8 EN_RSSI; /* 0: disable RSSI; 1: enable RSSI */ u8 Mod_Type; /* Modulation Type; */ /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */ u8 TF_Type; /* Tracking Filter Type */ /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */ /* Calculated Settings */ u32 RF_LO; /* Synth RF LO Frequency */ u32 IF_LO; /* Synth IF LO Frequency */ u32 TG_LO; /* Synth TG_LO Frequency */ /* Pointers to ControlName Arrays */ u16 Init_Ctrl_Num; /* Number of INIT Control Names */ TunerControl_struct Init_Ctrl[INITCTRL_NUM]; /* INIT Control Names Array Pointer */ u16 CH_Ctrl_Num; /* Number of CH Control Names */ TunerControl_struct CH_Ctrl[CHCTRL_NUM]; /* CH Control Name Array Pointer */ u16 MXL_Ctrl_Num; /* Number of MXL Control Names */ TunerControl_struct MXL_Ctrl[MXLCTRL_NUM]; /* MXL Control Name Array Pointer */ /* Pointer to Tuner Register Array */ u16 TunerRegs_Num; /* Number of Tuner Registers */ TunerReg_struct TunerRegs[TUNER_REGS_NUM]; /* Tuner Register Array Pointer */ /* Linux driver framework specific */ struct mxl5005s_config *config; struct dvb_frontend *frontend; struct i2c_adapter *i2c; }; // funcs u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value); u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value); u16 MXL_GetMasterControl(u8 *MasterReg, int state); void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal); u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count); u32 MXL_Ceiling(u32 value, u32 resolution); u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal); u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal); u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup); u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val); u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count); u32 MXL_GetXtalInt(u32 Xtal_Freq); u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq); void MXL_SynthIFLO_Calc(struct dvb_frontend *fe); void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe); u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count); int mxl5005s_SetRegsWithTable(struct dvb_frontend *fe, u8 *pAddrTable, u8 *pByteTable, int TableLen); u16 MXL_IFSynthInit(struct dvb_frontend *fe); int mxl5005s_AssignTunerMode(struct dvb_frontend *fe); int mxl5005s_SetRfFreqHz(struct dvb_frontend *fe, unsigned long RfFreqHz) { struct mxl5005s_state *state = fe->tuner_priv; unsigned char AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX]; unsigned char ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX]; int TableLen; u32 IfDivval; unsigned char MasterControlByte; dprintk(1, "%s() freq=%ld\n", __func__, RfFreqHz); // Set MxL5005S tuner RF frequency according to MxL5005S tuner example code. // Tuner RF frequency setting stage 0 MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET) ; AddrTable[0] = MASTER_CONTROL_ADDR; ByteTable[0] |= state->config->AgcMasterByte; mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, 1); // Tuner RF frequency setting stage 1 MXL_TuneRF(fe, RfFreqHz); MXL_ControlRead(fe, IF_DIVVAL, &IfDivval); MXL_ControlWrite(fe, SEQ_FSM_PULSE, 0); MXL_ControlWrite(fe, SEQ_EXTPOWERUP, 1); MXL_ControlWrite(fe, IF_DIVVAL, 8); MXL_GetCHRegister(fe, AddrTable, ByteTable, &TableLen) ; MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ; AddrTable[TableLen] = MASTER_CONTROL_ADDR ; ByteTable[TableLen] = MasterControlByte | state->config->AgcMasterByte; TableLen += 1; mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen); // Wait 30 ms. msleep(150); // Tuner RF frequency setting stage 2 MXL_ControlWrite(fe, SEQ_FSM_PULSE, 1) ; MXL_ControlWrite(fe, IF_DIVVAL, IfDivval) ; MXL_GetCHRegister_ZeroIF(fe, AddrTable, ByteTable, &TableLen) ; MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ; AddrTable[TableLen] = MASTER_CONTROL_ADDR ; ByteTable[TableLen] = MasterControlByte | state->config->AgcMasterByte ; TableLen += 1; mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen); msleep(100); return 0; } static int mxl5005s_reset(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; int ret = 0; u8 buf[2] = { 0xff, 0x00 }; struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2 }; dprintk(2, "%s()\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mxl5005s I2C reset failed\n"); ret = -EREMOTEIO; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return ret; } /* Write a single byte to a single reg */ static int mxl5005s_writereg(struct dvb_frontend *fe, u8 reg, u8 val, int latch) { struct mxl5005s_state *state = fe->tuner_priv; u8 buf[3] = { reg, val, MXL5005S_LATCH_BYTE }; struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 3 }; if(latch == 0) msg.len = 2; dprintk(2, "%s(reg = 0x%x val = 0x%x addr = 0x%x)\n", __func__, reg, val, msg.addr); if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mxl5005s I2C write failed\n"); return -EREMOTEIO; } return 0; } int mxl5005s_SetRegsWithTable(struct dvb_frontend *fe, u8 *pAddrTable, u8 *pByteTable, int TableLen) { int i, ret = 0; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); for( i = 0 ; i < TableLen - 1 ; i++) { ret = mxl5005s_writereg(fe, pAddrTable[i], pByteTable[i], 0); if (ret < 0) break; } ret = mxl5005s_writereg(fe, pAddrTable[i], pByteTable[i], 1); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return ret; } int mxl5005s_SetRegMaskBits(struct dvb_frontend *fe, unsigned char RegAddr, unsigned char Msb, unsigned char Lsb, const unsigned char WritingValue ) { int i; unsigned char Mask; unsigned char Shift; unsigned char RegByte; /* Generate mask and shift according to MSB and LSB. */ Mask = 0; for(i = Lsb; i < (unsigned char)(Msb + 1); i++) Mask |= 0x1 << i; Shift = Lsb; /* Get tuner register byte according to register adddress. */ MXL_RegRead(fe, RegAddr, &RegByte); /* Reserve register byte unmask bit with mask and inlay writing value into it. */ RegByte &= ~Mask; RegByte |= (WritingValue << Shift) & Mask; /* Update tuner register byte table. */ MXL_RegWrite(fe, RegAddr, RegByte); /* Write tuner register byte with writing byte. */ return mxl5005s_SetRegsWithTable(fe, &RegAddr, &RegByte, 1); } // The following context is source code provided by MaxLinear. // MaxLinear source code - MXL5005_Initialize.cpp // DONE u16 MXL5005_RegisterInit(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; state->TunerRegs_Num = TUNER_REGS_NUM ; // state->TunerRegs = (TunerReg_struct *) calloc( TUNER_REGS_NUM, sizeof(TunerReg_struct) ) ; state->TunerRegs[0].Reg_Num = 9 ; state->TunerRegs[0].Reg_Val = 0x40 ; state->TunerRegs[1].Reg_Num = 11 ; state->TunerRegs[1].Reg_Val = 0x19 ; state->TunerRegs[2].Reg_Num = 12 ; state->TunerRegs[2].Reg_Val = 0x60 ; state->TunerRegs[3].Reg_Num = 13 ; state->TunerRegs[3].Reg_Val = 0x00 ; state->TunerRegs[4].Reg_Num = 14 ; state->TunerRegs[4].Reg_Val = 0x00 ; state->TunerRegs[5].Reg_Num = 15 ; state->TunerRegs[5].Reg_Val = 0xC0 ; state->TunerRegs[6].Reg_Num = 16 ; state->TunerRegs[6].Reg_Val = 0x00 ; state->TunerRegs[7].Reg_Num = 17 ; state->TunerRegs[7].Reg_Val = 0x00 ; state->TunerRegs[8].Reg_Num = 18 ; state->TunerRegs[8].Reg_Val = 0x00 ; state->TunerRegs[9].Reg_Num = 19 ; state->TunerRegs[9].Reg_Val = 0x34 ; state->TunerRegs[10].Reg_Num = 21 ; state->TunerRegs[10].Reg_Val = 0x00 ; state->TunerRegs[11].Reg_Num = 22 ; state->TunerRegs[11].Reg_Val = 0x6B ; state->TunerRegs[12].Reg_Num = 23 ; state->TunerRegs[12].Reg_Val = 0x35 ; state->TunerRegs[13].Reg_Num = 24 ; state->TunerRegs[13].Reg_Val = 0x70 ; state->TunerRegs[14].Reg_Num = 25 ; state->TunerRegs[14].Reg_Val = 0x3E ; state->TunerRegs[15].Reg_Num = 26 ; state->TunerRegs[15].Reg_Val = 0x82 ; state->TunerRegs[16].Reg_Num = 31 ; state->TunerRegs[16].Reg_Val = 0x00 ; state->TunerRegs[17].Reg_Num = 32 ; state->TunerRegs[17].Reg_Val = 0x40 ; state->TunerRegs[18].Reg_Num = 33 ; state->TunerRegs[18].Reg_Val = 0x53 ; state->TunerRegs[19].Reg_Num = 34 ; state->TunerRegs[19].Reg_Val = 0x81 ; state->TunerRegs[20].Reg_Num = 35 ; state->TunerRegs[20].Reg_Val = 0xC9 ; state->TunerRegs[21].Reg_Num = 36 ; state->TunerRegs[21].Reg_Val = 0x01 ; state->TunerRegs[22].Reg_Num = 37 ; state->TunerRegs[22].Reg_Val = 0x00 ; state->TunerRegs[23].Reg_Num = 41 ; state->TunerRegs[23].Reg_Val = 0x00 ; state->TunerRegs[24].Reg_Num = 42 ; state->TunerRegs[24].Reg_Val = 0xF8 ; state->TunerRegs[25].Reg_Num = 43 ; state->TunerRegs[25].Reg_Val = 0x43 ; state->TunerRegs[26].Reg_Num = 44 ; state->TunerRegs[26].Reg_Val = 0x20 ; state->TunerRegs[27].Reg_Num = 45 ; state->TunerRegs[27].Reg_Val = 0x80 ; state->TunerRegs[28].Reg_Num = 46 ; state->TunerRegs[28].Reg_Val = 0x88 ; state->TunerRegs[29].Reg_Num = 47 ; state->TunerRegs[29].Reg_Val = 0x86 ; state->TunerRegs[30].Reg_Num = 48 ; state->TunerRegs[30].Reg_Val = 0x00 ; state->TunerRegs[31].Reg_Num = 49 ; state->TunerRegs[31].Reg_Val = 0x00 ; state->TunerRegs[32].Reg_Num = 53 ; state->TunerRegs[32].Reg_Val = 0x94 ; state->TunerRegs[33].Reg_Num = 54 ; state->TunerRegs[33].Reg_Val = 0xFA ; state->TunerRegs[34].Reg_Num = 55 ; state->TunerRegs[34].Reg_Val = 0x92 ; state->TunerRegs[35].Reg_Num = 56 ; state->TunerRegs[35].Reg_Val = 0x80 ; state->TunerRegs[36].Reg_Num = 57 ; state->TunerRegs[36].Reg_Val = 0x41 ; state->TunerRegs[37].Reg_Num = 58 ; state->TunerRegs[37].Reg_Val = 0xDB ; state->TunerRegs[38].Reg_Num = 59 ; state->TunerRegs[38].Reg_Val = 0x00 ; state->TunerRegs[39].Reg_Num = 60 ; state->TunerRegs[39].Reg_Val = 0x00 ; state->TunerRegs[40].Reg_Num = 61 ; state->TunerRegs[40].Reg_Val = 0x00 ; state->TunerRegs[41].Reg_Num = 62 ; state->TunerRegs[41].Reg_Val = 0x00 ; state->TunerRegs[42].Reg_Num = 65 ; state->TunerRegs[42].Reg_Val = 0xF8 ; state->TunerRegs[43].Reg_Num = 66 ; state->TunerRegs[43].Reg_Val = 0xE4 ; state->TunerRegs[44].Reg_Num = 67 ; state->TunerRegs[44].Reg_Val = 0x90 ; state->TunerRegs[45].Reg_Num = 68 ; state->TunerRegs[45].Reg_Val = 0xC0 ; state->TunerRegs[46].Reg_Num = 69 ; state->TunerRegs[46].Reg_Val = 0x01 ; state->TunerRegs[47].Reg_Num = 70 ; state->TunerRegs[47].Reg_Val = 0x50 ; state->TunerRegs[48].Reg_Num = 71 ; state->TunerRegs[48].Reg_Val = 0x06 ; state->TunerRegs[49].Reg_Num = 72 ; state->TunerRegs[49].Reg_Val = 0x00 ; state->TunerRegs[50].Reg_Num = 73 ; state->TunerRegs[50].Reg_Val = 0x20 ; state->TunerRegs[51].Reg_Num = 76 ; state->TunerRegs[51].Reg_Val = 0xBB ; state->TunerRegs[52].Reg_Num = 77 ; state->TunerRegs[52].Reg_Val = 0x13 ; state->TunerRegs[53].Reg_Num = 81 ; state->TunerRegs[53].Reg_Val = 0x04 ; state->TunerRegs[54].Reg_Num = 82 ; state->TunerRegs[54].Reg_Val = 0x75 ; state->TunerRegs[55].Reg_Num = 83 ; state->TunerRegs[55].Reg_Val = 0x00 ; state->TunerRegs[56].Reg_Num = 84 ; state->TunerRegs[56].Reg_Val = 0x00 ; state->TunerRegs[57].Reg_Num = 85 ; state->TunerRegs[57].Reg_Val = 0x00 ; state->TunerRegs[58].Reg_Num = 91 ; state->TunerRegs[58].Reg_Val = 0x70 ; state->TunerRegs[59].Reg_Num = 92 ; state->TunerRegs[59].Reg_Val = 0x00 ; state->TunerRegs[60].Reg_Num = 93 ; state->TunerRegs[60].Reg_Val = 0x00 ; state->TunerRegs[61].Reg_Num = 94 ; state->TunerRegs[61].Reg_Val = 0x00 ; state->TunerRegs[62].Reg_Num = 95 ; state->TunerRegs[62].Reg_Val = 0x0C ; state->TunerRegs[63].Reg_Num = 96 ; state->TunerRegs[63].Reg_Val = 0x00 ; state->TunerRegs[64].Reg_Num = 97 ; state->TunerRegs[64].Reg_Val = 0x00 ; state->TunerRegs[65].Reg_Num = 98 ; state->TunerRegs[65].Reg_Val = 0xE2 ; state->TunerRegs[66].Reg_Num = 99 ; state->TunerRegs[66].Reg_Val = 0x00 ; state->TunerRegs[67].Reg_Num = 100 ; state->TunerRegs[67].Reg_Val = 0x00 ; state->TunerRegs[68].Reg_Num = 101 ; state->TunerRegs[68].Reg_Val = 0x12 ; state->TunerRegs[69].Reg_Num = 102 ; state->TunerRegs[69].Reg_Val = 0x80 ; state->TunerRegs[70].Reg_Num = 103 ; state->TunerRegs[70].Reg_Val = 0x32 ; state->TunerRegs[71].Reg_Num = 104 ; state->TunerRegs[71].Reg_Val = 0xB4 ; state->TunerRegs[72].Reg_Num = 105 ; state->TunerRegs[72].Reg_Val = 0x60 ; state->TunerRegs[73].Reg_Num = 106 ; state->TunerRegs[73].Reg_Val = 0x83 ; state->TunerRegs[74].Reg_Num = 107 ; state->TunerRegs[74].Reg_Val = 0x84 ; state->TunerRegs[75].Reg_Num = 108 ; state->TunerRegs[75].Reg_Val = 0x9C ; state->TunerRegs[76].Reg_Num = 109 ; state->TunerRegs[76].Reg_Val = 0x02 ; state->TunerRegs[77].Reg_Num = 110 ; state->TunerRegs[77].Reg_Val = 0x81 ; state->TunerRegs[78].Reg_Num = 111 ; state->TunerRegs[78].Reg_Val = 0xC0 ; state->TunerRegs[79].Reg_Num = 112 ; state->TunerRegs[79].Reg_Val = 0x10 ; state->TunerRegs[80].Reg_Num = 131 ; state->TunerRegs[80].Reg_Val = 0x8A ; state->TunerRegs[81].Reg_Num = 132 ; state->TunerRegs[81].Reg_Val = 0x10 ; state->TunerRegs[82].Reg_Num = 133 ; state->TunerRegs[82].Reg_Val = 0x24 ; state->TunerRegs[83].Reg_Num = 134 ; state->TunerRegs[83].Reg_Val = 0x00 ; state->TunerRegs[84].Reg_Num = 135 ; state->TunerRegs[84].Reg_Val = 0x00 ; state->TunerRegs[85].Reg_Num = 136 ; state->TunerRegs[85].Reg_Val = 0x7E ; state->TunerRegs[86].Reg_Num = 137 ; state->TunerRegs[86].Reg_Val = 0x40 ; state->TunerRegs[87].Reg_Num = 138 ; state->TunerRegs[87].Reg_Val = 0x38 ; state->TunerRegs[88].Reg_Num = 146 ; state->TunerRegs[88].Reg_Val = 0xF6 ; state->TunerRegs[89].Reg_Num = 147 ; state->TunerRegs[89].Reg_Val = 0x1A ; state->TunerRegs[90].Reg_Num = 148 ; state->TunerRegs[90].Reg_Val = 0x62 ; state->TunerRegs[91].Reg_Num = 149 ; state->TunerRegs[91].Reg_Val = 0x33 ; state->TunerRegs[92].Reg_Num = 150 ; state->TunerRegs[92].Reg_Val = 0x80 ; state->TunerRegs[93].Reg_Num = 156 ; state->TunerRegs[93].Reg_Val = 0x56 ; state->TunerRegs[94].Reg_Num = 157 ; state->TunerRegs[94].Reg_Val = 0x17 ; state->TunerRegs[95].Reg_Num = 158 ; state->TunerRegs[95].Reg_Val = 0xA9 ; state->TunerRegs[96].Reg_Num = 159 ; state->TunerRegs[96].Reg_Val = 0x00 ; state->TunerRegs[97].Reg_Num = 160 ; state->TunerRegs[97].Reg_Val = 0x00 ; state->TunerRegs[98].Reg_Num = 161 ; state->TunerRegs[98].Reg_Val = 0x00 ; state->TunerRegs[99].Reg_Num = 162 ; state->TunerRegs[99].Reg_Val = 0x40 ; state->TunerRegs[100].Reg_Num = 166 ; state->TunerRegs[100].Reg_Val = 0xAE ; state->TunerRegs[101].Reg_Num = 167 ; state->TunerRegs[101].Reg_Val = 0x1B ; state->TunerRegs[102].Reg_Num = 168 ; state->TunerRegs[102].Reg_Val = 0xF2 ; state->TunerRegs[103].Reg_Num = 195 ; state->TunerRegs[103].Reg_Val = 0x00 ; return 0 ; } // DONE u16 MXL5005_ControlInit(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; state->Init_Ctrl_Num = INITCTRL_NUM; state->Init_Ctrl[0].Ctrl_Num = DN_IQTN_AMP_CUT ; state->Init_Ctrl[0].size = 1 ; state->Init_Ctrl[0].addr[0] = 73; state->Init_Ctrl[0].bit[0] = 7; state->Init_Ctrl[0].val[0] = 0; state->Init_Ctrl[1].Ctrl_Num = BB_MODE ; state->Init_Ctrl[1].size = 1 ; state->Init_Ctrl[1].addr[0] = 53; state->Init_Ctrl[1].bit[0] = 2; state->Init_Ctrl[1].val[0] = 1; state->Init_Ctrl[2].Ctrl_Num = BB_BUF ; state->Init_Ctrl[2].size = 2 ; state->Init_Ctrl[2].addr[0] = 53; state->Init_Ctrl[2].bit[0] = 1; state->Init_Ctrl[2].val[0] = 0; state->Init_Ctrl[2].addr[1] = 57; state->Init_Ctrl[2].bit[1] = 0; state->Init_Ctrl[2].val[1] = 1; state->Init_Ctrl[3].Ctrl_Num = BB_BUF_OA ; state->Init_Ctrl[3].size = 1 ; state->Init_Ctrl[3].addr[0] = 53; state->Init_Ctrl[3].bit[0] = 0; state->Init_Ctrl[3].val[0] = 0; state->Init_Ctrl[4].Ctrl_Num = BB_ALPF_BANDSELECT ; state->Init_Ctrl[4].size = 3 ; state->Init_Ctrl[4].addr[0] = 53; state->Init_Ctrl[4].bit[0] = 5; state->Init_Ctrl[4].val[0] = 0; state->Init_Ctrl[4].addr[1] = 53; state->Init_Ctrl[4].bit[1] = 6; state->Init_Ctrl[4].val[1] = 0; state->Init_Ctrl[4].addr[2] = 53; state->Init_Ctrl[4].bit[2] = 7; state->Init_Ctrl[4].val[2] = 1; state->Init_Ctrl[5].Ctrl_Num = BB_IQSWAP ; state->Init_Ctrl[5].size = 1 ; state->Init_Ctrl[5].addr[0] = 59; state->Init_Ctrl[5].bit[0] = 0; state->Init_Ctrl[5].val[0] = 0; state->Init_Ctrl[6].Ctrl_Num = BB_DLPF_BANDSEL ; state->Init_Ctrl[6].size = 2 ; state->Init_Ctrl[6].addr[0] = 53; state->Init_Ctrl[6].bit[0] = 3; state->Init_Ctrl[6].val[0] = 0; state->Init_Ctrl[6].addr[1] = 53; state->Init_Ctrl[6].bit[1] = 4; state->Init_Ctrl[6].val[1] = 1; state->Init_Ctrl[7].Ctrl_Num = RFSYN_CHP_GAIN ; state->Init_Ctrl[7].size = 4 ; state->Init_Ctrl[7].addr[0] = 22; state->Init_Ctrl[7].bit[0] = 4; state->Init_Ctrl[7].val[0] = 0; state->Init_Ctrl[7].addr[1] = 22; state->Init_Ctrl[7].bit[1] = 5; state->Init_Ctrl[7].val[1] = 1; state->Init_Ctrl[7].addr[2] = 22; state->Init_Ctrl[7].bit[2] = 6; state->Init_Ctrl[7].val[2] = 1; state->Init_Ctrl[7].addr[3] = 22; state->Init_Ctrl[7].bit[3] = 7; state->Init_Ctrl[7].val[3] = 0; state->Init_Ctrl[8].Ctrl_Num = RFSYN_EN_CHP_HIGAIN ; state->Init_Ctrl[8].size = 1 ; state->Init_Ctrl[8].addr[0] = 22; state->Init_Ctrl[8].bit[0] = 2; state->Init_Ctrl[8].val[0] = 0; state->Init_Ctrl[9].Ctrl_Num = AGC_IF ; state->Init_Ctrl[9].size = 4 ; state->Init_Ctrl[9].addr[0] = 76; state->Init_Ctrl[9].bit[0] = 0; state->Init_Ctrl[9].val[0] = 1; state->Init_Ctrl[9].addr[1] = 76; state->Init_Ctrl[9].bit[1] = 1; state->Init_Ctrl[9].val[1] = 1; state->Init_Ctrl[9].addr[2] = 76; state->Init_Ctrl[9].bit[2] = 2; state->Init_Ctrl[9].val[2] = 0; state->Init_Ctrl[9].addr[3] = 76; state->Init_Ctrl[9].bit[3] = 3; state->Init_Ctrl[9].val[3] = 1; state->Init_Ctrl[10].Ctrl_Num = AGC_RF ; state->Init_Ctrl[10].size = 4 ; state->Init_Ctrl[10].addr[0] = 76; state->Init_Ctrl[10].bit[0] = 4; state->Init_Ctrl[10].val[0] = 1; state->Init_Ctrl[10].addr[1] = 76; state->Init_Ctrl[10].bit[1] = 5; state->Init_Ctrl[10].val[1] = 1; state->Init_Ctrl[10].addr[2] = 76; state->Init_Ctrl[10].bit[2] = 6; state->Init_Ctrl[10].val[2] = 0; state->Init_Ctrl[10].addr[3] = 76; state->Init_Ctrl[10].bit[3] = 7; state->Init_Ctrl[10].val[3] = 1; state->Init_Ctrl[11].Ctrl_Num = IF_DIVVAL ; state->Init_Ctrl[11].size = 5 ; state->Init_Ctrl[11].addr[0] = 43; state->Init_Ctrl[11].bit[0] = 3; state->Init_Ctrl[11].val[0] = 0; state->Init_Ctrl[11].addr[1] = 43; state->Init_Ctrl[11].bit[1] = 4; state->Init_Ctrl[11].val[1] = 0; state->Init_Ctrl[11].addr[2] = 43; state->Init_Ctrl[11].bit[2] = 5; state->Init_Ctrl[11].val[2] = 0; state->Init_Ctrl[11].addr[3] = 43; state->Init_Ctrl[11].bit[3] = 6; state->Init_Ctrl[11].val[3] = 1; state->Init_Ctrl[11].addr[4] = 43; state->Init_Ctrl[11].bit[4] = 7; state->Init_Ctrl[11].val[4] = 0; state->Init_Ctrl[12].Ctrl_Num = IF_VCO_BIAS ; state->Init_Ctrl[12].size = 6 ; state->Init_Ctrl[12].addr[0] = 44; state->Init_Ctrl[12].bit[0] = 2; state->Init_Ctrl[12].val[0] = 0; state->Init_Ctrl[12].addr[1] = 44; state->Init_Ctrl[12].bit[1] = 3; state->Init_Ctrl[12].val[1] = 0; state->Init_Ctrl[12].addr[2] = 44; state->Init_Ctrl[12].bit[2] = 4; state->Init_Ctrl[12].val[2] = 0; state->Init_Ctrl[12].addr[3] = 44; state->Init_Ctrl[12].bit[3] = 5; state->Init_Ctrl[12].val[3] = 1; state->Init_Ctrl[12].addr[4] = 44; state->Init_Ctrl[12].bit[4] = 6; state->Init_Ctrl[12].val[4] = 0; state->Init_Ctrl[12].addr[5] = 44; state->Init_Ctrl[12].bit[5] = 7; state->Init_Ctrl[12].val[5] = 0; state->Init_Ctrl[13].Ctrl_Num = CHCAL_INT_MOD_IF ; state->Init_Ctrl[13].size = 7 ; state->Init_Ctrl[13].addr[0] = 11; state->Init_Ctrl[13].bit[0] = 0; state->Init_Ctrl[13].val[0] = 1; state->Init_Ctrl[13].addr[1] = 11; state->Init_Ctrl[13].bit[1] = 1; state->Init_Ctrl[13].val[1] = 0; state->Init_Ctrl[13].addr[2] = 11; state->Init_Ctrl[13].bit[2] = 2; state->Init_Ctrl[13].val[2] = 0; state->Init_Ctrl[13].addr[3] = 11; state->Init_Ctrl[13].bit[3] = 3; state->Init_Ctrl[13].val[3] = 1; state->Init_Ctrl[13].addr[4] = 11; state->Init_Ctrl[13].bit[4] = 4; state->Init_Ctrl[13].val[4] = 1; state->Init_Ctrl[13].addr[5] = 11; state->Init_Ctrl[13].bit[5] = 5; state->Init_Ctrl[13].val[5] = 0; state->Init_Ctrl[13].addr[6] = 11; state->Init_Ctrl[13].bit[6] = 6; state->Init_Ctrl[13].val[6] = 0; state->Init_Ctrl[14].Ctrl_Num = CHCAL_FRAC_MOD_IF ; state->Init_Ctrl[14].size = 16 ; state->Init_Ctrl[14].addr[0] = 13; state->Init_Ctrl[14].bit[0] = 0; state->Init_Ctrl[14].val[0] = 0; state->Init_Ctrl[14].addr[1] = 13; state->Init_Ctrl[14].bit[1] = 1; state->Init_Ctrl[14].val[1] = 0; state->Init_Ctrl[14].addr[2] = 13; state->Init_Ctrl[14].bit[2] = 2; state->Init_Ctrl[14].val[2] = 0; state->Init_Ctrl[14].addr[3] = 13; state->Init_Ctrl[14].bit[3] = 3; state->Init_Ctrl[14].val[3] = 0; state->Init_Ctrl[14].addr[4] = 13; state->Init_Ctrl[14].bit[4] = 4; state->Init_Ctrl[14].val[4] = 0; state->Init_Ctrl[14].addr[5] = 13; state->Init_Ctrl[14].bit[5] = 5; state->Init_Ctrl[14].val[5] = 0; state->Init_Ctrl[14].addr[6] = 13; state->Init_Ctrl[14].bit[6] = 6; state->Init_Ctrl[14].val[6] = 0; state->Init_Ctrl[14].addr[7] = 13; state->Init_Ctrl[14].bit[7] = 7; state->Init_Ctrl[14].val[7] = 0; state->Init_Ctrl[14].addr[8] = 12; state->Init_Ctrl[14].bit[8] = 0; state->Init_Ctrl[14].val[8] = 0; state->Init_Ctrl[14].addr[9] = 12; state->Init_Ctrl[14].bit[9] = 1; state->Init_Ctrl[14].val[9] = 0; state->Init_Ctrl[14].addr[10] = 12; state->Init_Ctrl[14].bit[10] = 2; state->Init_Ctrl[14].val[10] = 0; state->Init_Ctrl[14].addr[11] = 12; state->Init_Ctrl[14].bit[11] = 3; state->Init_Ctrl[14].val[11] = 0; state->Init_Ctrl[14].addr[12] = 12; state->Init_Ctrl[14].bit[12] = 4; state->Init_Ctrl[14].val[12] = 0; state->Init_Ctrl[14].addr[13] = 12; state->Init_Ctrl[14].bit[13] = 5; state->Init_Ctrl[14].val[13] = 1; state->Init_Ctrl[14].addr[14] = 12; state->Init_Ctrl[14].bit[14] = 6; state->Init_Ctrl[14].val[14] = 1; state->Init_Ctrl[14].addr[15] = 12; state->Init_Ctrl[14].bit[15] = 7; state->Init_Ctrl[14].val[15] = 0; state->Init_Ctrl[15].Ctrl_Num = DRV_RES_SEL ; state->Init_Ctrl[15].size = 3 ; state->Init_Ctrl[15].addr[0] = 147; state->Init_Ctrl[15].bit[0] = 2; state->Init_Ctrl[15].val[0] = 0; state->Init_Ctrl[15].addr[1] = 147; state->Init_Ctrl[15].bit[1] = 3; state->Init_Ctrl[15].val[1] = 1; state->Init_Ctrl[15].addr[2] = 147; state->Init_Ctrl[15].bit[2] = 4; state->Init_Ctrl[15].val[2] = 1; state->Init_Ctrl[16].Ctrl_Num = I_DRIVER ; state->Init_Ctrl[16].size = 2 ; state->Init_Ctrl[16].addr[0] = 147; state->Init_Ctrl[16].bit[0] = 0; state->Init_Ctrl[16].val[0] = 0; state->Init_Ctrl[16].addr[1] = 147; state->Init_Ctrl[16].bit[1] = 1; state->Init_Ctrl[16].val[1] = 1; state->Init_Ctrl[17].Ctrl_Num = EN_AAF ; state->Init_Ctrl[17].size = 1 ; state->Init_Ctrl[17].addr[0] = 147; state->Init_Ctrl[17].bit[0] = 7; state->Init_Ctrl[17].val[0] = 0; state->Init_Ctrl[18].Ctrl_Num = EN_3P ; state->Init_Ctrl[18].size = 1 ; state->Init_Ctrl[18].addr[0] = 147; state->Init_Ctrl[18].bit[0] = 6; state->Init_Ctrl[18].val[0] = 0; state->Init_Ctrl[19].Ctrl_Num = EN_AUX_3P ; state->Init_Ctrl[19].size = 1 ; state->Init_Ctrl[19].addr[0] = 156; state->Init_Ctrl[19].bit[0] = 0; state->Init_Ctrl[19].val[0] = 0; state->Init_Ctrl[20].Ctrl_Num = SEL_AAF_BAND ; state->Init_Ctrl[20].size = 1 ; state->Init_Ctrl[20].addr[0] = 147; state->Init_Ctrl[20].bit[0] = 5; state->Init_Ctrl[20].val[0] = 0; state->Init_Ctrl[21].Ctrl_Num = SEQ_ENCLK16_CLK_OUT ; state->Init_Ctrl[21].size = 1 ; state->Init_Ctrl[21].addr[0] = 137; state->Init_Ctrl[21].bit[0] = 4; state->Init_Ctrl[21].val[0] = 0; state->Init_Ctrl[22].Ctrl_Num = SEQ_SEL4_16B ; state->Init_Ctrl[22].size = 1 ; state->Init_Ctrl[22].addr[0] = 137; state->Init_Ctrl[22].bit[0] = 7; state->Init_Ctrl[22].val[0] = 0; state->Init_Ctrl[23].Ctrl_Num = XTAL_CAPSELECT ; state->Init_Ctrl[23].size = 1 ; state->Init_Ctrl[23].addr[0] = 91; state->Init_Ctrl[23].bit[0] = 5; state->Init_Ctrl[23].val[0] = 1; state->Init_Ctrl[24].Ctrl_Num = IF_SEL_DBL ; state->Init_Ctrl[24].size = 1 ; state->Init_Ctrl[24].addr[0] = 43; state->Init_Ctrl[24].bit[0] = 0; state->Init_Ctrl[24].val[0] = 1; state->Init_Ctrl[25].Ctrl_Num = RFSYN_R_DIV ; state->Init_Ctrl[25].size = 2 ; state->Init_Ctrl[25].addr[0] = 22; state->Init_Ctrl[25].bit[0] = 0; state->Init_Ctrl[25].val[0] = 1; state->Init_Ctrl[25].addr[1] = 22; state->Init_Ctrl[25].bit[1] = 1; state->Init_Ctrl[25].val[1] = 1; state->Init_Ctrl[26].Ctrl_Num = SEQ_EXTSYNTHCALIF ; state->Init_Ctrl[26].size = 1 ; state->Init_Ctrl[26].addr[0] = 134; state->Init_Ctrl[26].bit[0] = 2; state->Init_Ctrl[26].val[0] = 0; state->Init_Ctrl[27].Ctrl_Num = SEQ_EXTDCCAL ; state->Init_Ctrl[27].size = 1 ; state->Init_Ctrl[27].addr[0] = 137; state->Init_Ctrl[27].bit[0] = 3; state->Init_Ctrl[27].val[0] = 0; state->Init_Ctrl[28].Ctrl_Num = AGC_EN_RSSI ; state->Init_Ctrl[28].size = 1 ; state->Init_Ctrl[28].addr[0] = 77; state->Init_Ctrl[28].bit[0] = 7; state->Init_Ctrl[28].val[0] = 0; state->Init_Ctrl[29].Ctrl_Num = RFA_ENCLKRFAGC ; state->Init_Ctrl[29].size = 1 ; state->Init_Ctrl[29].addr[0] = 166; state->Init_Ctrl[29].bit[0] = 7; state->Init_Ctrl[29].val[0] = 1; state->Init_Ctrl[30].Ctrl_Num = RFA_RSSI_REFH ; state->Init_Ctrl[30].size = 3 ; state->Init_Ctrl[30].addr[0] = 166; state->Init_Ctrl[30].bit[0] = 0; state->Init_Ctrl[30].val[0] = 0; state->Init_Ctrl[30].addr[1] = 166; state->Init_Ctrl[30].bit[1] = 1; state->Init_Ctrl[30].val[1] = 1; state->Init_Ctrl[30].addr[2] = 166; state->Init_Ctrl[30].bit[2] = 2; state->Init_Ctrl[30].val[2] = 1; state->Init_Ctrl[31].Ctrl_Num = RFA_RSSI_REF ; state->Init_Ctrl[31].size = 3 ; state->Init_Ctrl[31].addr[0] = 166; state->Init_Ctrl[31].bit[0] = 3; state->Init_Ctrl[31].val[0] = 1; state->Init_Ctrl[31].addr[1] = 166; state->Init_Ctrl[31].bit[1] = 4; state->Init_Ctrl[31].val[1] = 0; state->Init_Ctrl[31].addr[2] = 166; state->Init_Ctrl[31].bit[2] = 5; state->Init_Ctrl[31].val[2] = 1; state->Init_Ctrl[32].Ctrl_Num = RFA_RSSI_REFL ; state->Init_Ctrl[32].size = 3 ; state->Init_Ctrl[32].addr[0] = 167; state->Init_Ctrl[32].bit[0] = 0; state->Init_Ctrl[32].val[0] = 1; state->Init_Ctrl[32].addr[1] = 167; state->Init_Ctrl[32].bit[1] = 1; state->Init_Ctrl[32].val[1] = 1; state->Init_Ctrl[32].addr[2] = 167; state->Init_Ctrl[32].bit[2] = 2; state->Init_Ctrl[32].val[2] = 0; state->Init_Ctrl[33].Ctrl_Num = RFA_FLR ; state->Init_Ctrl[33].size = 4 ; state->Init_Ctrl[33].addr[0] = 168; state->Init_Ctrl[33].bit[0] = 0; state->Init_Ctrl[33].val[0] = 0; state->Init_Ctrl[33].addr[1] = 168; state->Init_Ctrl[33].bit[1] = 1; state->Init_Ctrl[33].val[1] = 1; state->Init_Ctrl[33].addr[2] = 168; state->Init_Ctrl[33].bit[2] = 2; state->Init_Ctrl[33].val[2] = 0; state->Init_Ctrl[33].addr[3] = 168; state->Init_Ctrl[33].bit[3] = 3; state->Init_Ctrl[33].val[3] = 0; state->Init_Ctrl[34].Ctrl_Num = RFA_CEIL ; state->Init_Ctrl[34].size = 4 ; state->Init_Ctrl[34].addr[0] = 168; state->Init_Ctrl[34].bit[0] = 4; state->Init_Ctrl[34].val[0] = 1; state->Init_Ctrl[34].addr[1] = 168; state->Init_Ctrl[34].bit[1] = 5; state->Init_Ctrl[34].val[1] = 1; state->Init_Ctrl[34].addr[2] = 168; state->Init_Ctrl[34].bit[2] = 6; state->Init_Ctrl[34].val[2] = 1; state->Init_Ctrl[34].addr[3] = 168; state->Init_Ctrl[34].bit[3] = 7; state->Init_Ctrl[34].val[3] = 1; state->Init_Ctrl[35].Ctrl_Num = SEQ_EXTIQFSMPULSE ; state->Init_Ctrl[35].size = 1 ; state->Init_Ctrl[35].addr[0] = 135; state->Init_Ctrl[35].bit[0] = 0; state->Init_Ctrl[35].val[0] = 0; state->Init_Ctrl[36].Ctrl_Num = OVERRIDE_1 ; state->Init_Ctrl[36].size = 1 ; state->Init_Ctrl[36].addr[0] = 56; state->Init_Ctrl[36].bit[0] = 3; state->Init_Ctrl[36].val[0] = 0; state->Init_Ctrl[37].Ctrl_Num = BB_INITSTATE_DLPF_TUNE ; state->Init_Ctrl[37].size = 7 ; state->Init_Ctrl[37].addr[0] = 59; state->Init_Ctrl[37].bit[0] = 1; state->Init_Ctrl[37].val[0] = 0; state->Init_Ctrl[37].addr[1] = 59; state->Init_Ctrl[37].bit[1] = 2; state->Init_Ctrl[37].val[1] = 0; state->Init_Ctrl[37].addr[2] = 59; state->Init_Ctrl[37].bit[2] = 3; state->Init_Ctrl[37].val[2] = 0; state->Init_Ctrl[37].addr[3] = 59; state->Init_Ctrl[37].bit[3] = 4; state->Init_Ctrl[37].val[3] = 0; state->Init_Ctrl[37].addr[4] = 59; state->Init_Ctrl[37].bit[4] = 5; state->Init_Ctrl[37].val[4] = 0; state->Init_Ctrl[37].addr[5] = 59; state->Init_Ctrl[37].bit[5] = 6; state->Init_Ctrl[37].val[5] = 0; state->Init_Ctrl[37].addr[6] = 59; state->Init_Ctrl[37].bit[6] = 7; state->Init_Ctrl[37].val[6] = 0; state->Init_Ctrl[38].Ctrl_Num = TG_R_DIV ; state->Init_Ctrl[38].size = 6 ; state->Init_Ctrl[38].addr[0] = 32; state->Init_Ctrl[38].bit[0] = 2; state->Init_Ctrl[38].val[0] = 0; state->Init_Ctrl[38].addr[1] = 32; state->Init_Ctrl[38].bit[1] = 3; state->Init_Ctrl[38].val[1] = 0; state->Init_Ctrl[38].addr[2] = 32; state->Init_Ctrl[38].bit[2] = 4; state->Init_Ctrl[38].val[2] = 0; state->Init_Ctrl[38].addr[3] = 32; state->Init_Ctrl[38].bit[3] = 5; state->Init_Ctrl[38].val[3] = 0; state->Init_Ctrl[38].addr[4] = 32; state->Init_Ctrl[38].bit[4] = 6; state->Init_Ctrl[38].val[4] = 1; state->Init_Ctrl[38].addr[5] = 32; state->Init_Ctrl[38].bit[5] = 7; state->Init_Ctrl[38].val[5] = 0; state->Init_Ctrl[39].Ctrl_Num = EN_CHP_LIN_B ; state->Init_Ctrl[39].size = 1 ; state->Init_Ctrl[39].addr[0] = 25; state->Init_Ctrl[39].bit[0] = 3; state->Init_Ctrl[39].val[0] = 1; state->CH_Ctrl_Num = CHCTRL_NUM ; state->CH_Ctrl[0].Ctrl_Num = DN_POLY ; state->CH_Ctrl[0].size = 2 ; state->CH_Ctrl[0].addr[0] = 68; state->CH_Ctrl[0].bit[0] = 6; state->CH_Ctrl[0].val[0] = 1; state->CH_Ctrl[0].addr[1] = 68; state->CH_Ctrl[0].bit[1] = 7; state->CH_Ctrl[0].val[1] = 1; state->CH_Ctrl[1].Ctrl_Num = DN_RFGAIN ; state->CH_Ctrl[1].size = 2 ; state->CH_Ctrl[1].addr[0] = 70; state->CH_Ctrl[1].bit[0] = 6; state->CH_Ctrl[1].val[0] = 1; state->CH_Ctrl[1].addr[1] = 70; state->CH_Ctrl[1].bit[1] = 7; state->CH_Ctrl[1].val[1] = 0; state->CH_Ctrl[2].Ctrl_Num = DN_CAP_RFLPF ; state->CH_Ctrl[2].size = 9 ; state->CH_Ctrl[2].addr[0] = 69; state->CH_Ctrl[2].bit[0] = 5; state->CH_Ctrl[2].val[0] = 0; state->CH_Ctrl[2].addr[1] = 69; state->CH_Ctrl[2].bit[1] = 6; state->CH_Ctrl[2].val[1] = 0; state->CH_Ctrl[2].addr[2] = 69; state->CH_Ctrl[2].bit[2] = 7; state->CH_Ctrl[2].val[2] = 0; state->CH_Ctrl[2].addr[3] = 68; state->CH_Ctrl[2].bit[3] = 0; state->CH_Ctrl[2].val[3] = 0; state->CH_Ctrl[2].addr[4] = 68; state->CH_Ctrl[2].bit[4] = 1; state->CH_Ctrl[2].val[4] = 0; state->CH_Ctrl[2].addr[5] = 68; state->CH_Ctrl[2].bit[5] = 2; state->CH_Ctrl[2].val[5] = 0; state->CH_Ctrl[2].addr[6] = 68; state->CH_Ctrl[2].bit[6] = 3; state->CH_Ctrl[2].val[6] = 0; state->CH_Ctrl[2].addr[7] = 68; state->CH_Ctrl[2].bit[7] = 4; state->CH_Ctrl[2].val[7] = 0; state->CH_Ctrl[2].addr[8] = 68; state->CH_Ctrl[2].bit[8] = 5; state->CH_Ctrl[2].val[8] = 0; state->CH_Ctrl[3].Ctrl_Num = DN_EN_VHFUHFBAR ; state->CH_Ctrl[3].size = 1 ; state->CH_Ctrl[3].addr[0] = 70; state->CH_Ctrl[3].bit[0] = 5; state->CH_Ctrl[3].val[0] = 0; state->CH_Ctrl[4].Ctrl_Num = DN_GAIN_ADJUST ; state->CH_Ctrl[4].size = 3 ; state->CH_Ctrl[4].addr[0] = 73; state->CH_Ctrl[4].bit[0] = 4; state->CH_Ctrl[4].val[0] = 0; state->CH_Ctrl[4].addr[1] = 73; state->CH_Ctrl[4].bit[1] = 5; state->CH_Ctrl[4].val[1] = 1; state->CH_Ctrl[4].addr[2] = 73; state->CH_Ctrl[4].bit[2] = 6; state->CH_Ctrl[4].val[2] = 0; state->CH_Ctrl[5].Ctrl_Num = DN_IQTNBUF_AMP ; state->CH_Ctrl[5].size = 4 ; state->CH_Ctrl[5].addr[0] = 70; state->CH_Ctrl[5].bit[0] = 0; state->CH_Ctrl[5].val[0] = 0; state->CH_Ctrl[5].addr[1] = 70; state->CH_Ctrl[5].bit[1] = 1; state->CH_Ctrl[5].val[1] = 0; state->CH_Ctrl[5].addr[2] = 70; state->CH_Ctrl[5].bit[2] = 2; state->CH_Ctrl[5].val[2] = 0; state->CH_Ctrl[5].addr[3] = 70; state->CH_Ctrl[5].bit[3] = 3; state->CH_Ctrl[5].val[3] = 0; state->CH_Ctrl[6].Ctrl_Num = DN_IQTNGNBFBIAS_BST ; state->CH_Ctrl[6].size = 1 ; state->CH_Ctrl[6].addr[0] = 70; state->CH_Ctrl[6].bit[0] = 4; state->CH_Ctrl[6].val[0] = 1; state->CH_Ctrl[7].Ctrl_Num = RFSYN_EN_OUTMUX ; state->CH_Ctrl[7].size = 1 ; state->CH_Ctrl[7].addr[0] = 111; state->CH_Ctrl[7].bit[0] = 4; state->CH_Ctrl[7].val[0] = 0; state->CH_Ctrl[8].Ctrl_Num = RFSYN_SEL_VCO_OUT ; state->CH_Ctrl[8].size = 1 ; state->CH_Ctrl[8].addr[0] = 111; state->CH_Ctrl[8].bit[0] = 7; state->CH_Ctrl[8].val[0] = 1; state->CH_Ctrl[9].Ctrl_Num = RFSYN_SEL_VCO_HI ; state->CH_Ctrl[9].size = 1 ; state->CH_Ctrl[9].addr[0] = 111; state->CH_Ctrl[9].bit[0] = 6; state->CH_Ctrl[9].val[0] = 1; state->CH_Ctrl[10].Ctrl_Num = RFSYN_SEL_DIVM ; state->CH_Ctrl[10].size = 1 ; state->CH_Ctrl[10].addr[0] = 111; state->CH_Ctrl[10].bit[0] = 5; state->CH_Ctrl[10].val[0] = 0; state->CH_Ctrl[11].Ctrl_Num = RFSYN_RF_DIV_BIAS ; state->CH_Ctrl[11].size = 2 ; state->CH_Ctrl[11].addr[0] = 110; state->CH_Ctrl[11].bit[0] = 0; state->CH_Ctrl[11].val[0] = 1; state->CH_Ctrl[11].addr[1] = 110; state->CH_Ctrl[11].bit[1] = 1; state->CH_Ctrl[11].val[1] = 0; state->CH_Ctrl[12].Ctrl_Num = DN_SEL_FREQ ; state->CH_Ctrl[12].size = 3 ; state->CH_Ctrl[12].addr[0] = 69; state->CH_Ctrl[12].bit[0] = 2; state->CH_Ctrl[12].val[0] = 0; state->CH_Ctrl[12].addr[1] = 69; state->CH_Ctrl[12].bit[1] = 3; state->CH_Ctrl[12].val[1] = 0; state->CH_Ctrl[12].addr[2] = 69; state->CH_Ctrl[12].bit[2] = 4; state->CH_Ctrl[12].val[2] = 0; state->CH_Ctrl[13].Ctrl_Num = RFSYN_VCO_BIAS ; state->CH_Ctrl[13].size = 6 ; state->CH_Ctrl[13].addr[0] = 110; state->CH_Ctrl[13].bit[0] = 2; state->CH_Ctrl[13].val[0] = 0; state->CH_Ctrl[13].addr[1] = 110; state->CH_Ctrl[13].bit[1] = 3; state->CH_Ctrl[13].val[1] = 0; state->CH_Ctrl[13].addr[2] = 110; state->CH_Ctrl[13].bit[2] = 4; state->CH_Ctrl[13].val[2] = 0; state->CH_Ctrl[13].addr[3] = 110; state->CH_Ctrl[13].bit[3] = 5; state->CH_Ctrl[13].val[3] = 0; state->CH_Ctrl[13].addr[4] = 110; state->CH_Ctrl[13].bit[4] = 6; state->CH_Ctrl[13].val[4] = 0; state->CH_Ctrl[13].addr[5] = 110; state->CH_Ctrl[13].bit[5] = 7; state->CH_Ctrl[13].val[5] = 1; state->CH_Ctrl[14].Ctrl_Num = CHCAL_INT_MOD_RF ; state->CH_Ctrl[14].size = 7 ; state->CH_Ctrl[14].addr[0] = 14; state->CH_Ctrl[14].bit[0] = 0; state->CH_Ctrl[14].val[0] = 0; state->CH_Ctrl[14].addr[1] = 14; state->CH_Ctrl[14].bit[1] = 1; state->CH_Ctrl[14].val[1] = 0; state->CH_Ctrl[14].addr[2] = 14; state->CH_Ctrl[14].bit[2] = 2; state->CH_Ctrl[14].val[2] = 0; state->CH_Ctrl[14].addr[3] = 14; state->CH_Ctrl[14].bit[3] = 3; state->CH_Ctrl[14].val[3] = 0; state->CH_Ctrl[14].addr[4] = 14; state->CH_Ctrl[14].bit[4] = 4; state->CH_Ctrl[14].val[4] = 0; state->CH_Ctrl[14].addr[5] = 14; state->CH_Ctrl[14].bit[5] = 5; state->CH_Ctrl[14].val[5] = 0; state->CH_Ctrl[14].addr[6] = 14; state->CH_Ctrl[14].bit[6] = 6; state->CH_Ctrl[14].val[6] = 0; state->CH_Ctrl[15].Ctrl_Num = CHCAL_FRAC_MOD_RF ; state->CH_Ctrl[15].size = 18 ; state->CH_Ctrl[15].addr[0] = 17; state->CH_Ctrl[15].bit[0] = 6; state->CH_Ctrl[15].val[0] = 0; state->CH_Ctrl[15].addr[1] = 17; state->CH_Ctrl[15].bit[1] = 7; state->CH_Ctrl[15].val[1] = 0; state->CH_Ctrl[15].addr[2] = 16; state->CH_Ctrl[15].bit[2] = 0; state->CH_Ctrl[15].val[2] = 0; state->CH_Ctrl[15].addr[3] = 16; state->CH_Ctrl[15].bit[3] = 1; state->CH_Ctrl[15].val[3] = 0; state->CH_Ctrl[15].addr[4] = 16; state->CH_Ctrl[15].bit[4] = 2; state->CH_Ctrl[15].val[4] = 0; state->CH_Ctrl[15].addr[5] = 16; state->CH_Ctrl[15].bit[5] = 3; state->CH_Ctrl[15].val[5] = 0; state->CH_Ctrl[15].addr[6] = 16; state->CH_Ctrl[15].bit[6] = 4; state->CH_Ctrl[15].val[6] = 0; state->CH_Ctrl[15].addr[7] = 16; state->CH_Ctrl[15].bit[7] = 5; state->CH_Ctrl[15].val[7] = 0; state->CH_Ctrl[15].addr[8] = 16; state->CH_Ctrl[15].bit[8] = 6; state->CH_Ctrl[15].val[8] = 0; state->CH_Ctrl[15].addr[9] = 16; state->CH_Ctrl[15].bit[9] = 7; state->CH_Ctrl[15].val[9] = 0; state->CH_Ctrl[15].addr[10] = 15; state->CH_Ctrl[15].bit[10] = 0; state->CH_Ctrl[15].val[10] = 0; state->CH_Ctrl[15].addr[11] = 15; state->CH_Ctrl[15].bit[11] = 1; state->CH_Ctrl[15].val[11] = 0; state->CH_Ctrl[15].addr[12] = 15; state->CH_Ctrl[15].bit[12] = 2; state->CH_Ctrl[15].val[12] = 0; state->CH_Ctrl[15].addr[13] = 15; state->CH_Ctrl[15].bit[13] = 3; state->CH_Ctrl[15].val[13] = 0; state->CH_Ctrl[15].addr[14] = 15; state->CH_Ctrl[15].bit[14] = 4; state->CH_Ctrl[15].val[14] = 0; state->CH_Ctrl[15].addr[15] = 15; state->CH_Ctrl[15].bit[15] = 5; state->CH_Ctrl[15].val[15] = 0; state->CH_Ctrl[15].addr[16] = 15; state->CH_Ctrl[15].bit[16] = 6; state->CH_Ctrl[15].val[16] = 1; state->CH_Ctrl[15].addr[17] = 15; state->CH_Ctrl[15].bit[17] = 7; state->CH_Ctrl[15].val[17] = 1; state->CH_Ctrl[16].Ctrl_Num = RFSYN_LPF_R ; state->CH_Ctrl[16].size = 5 ; state->CH_Ctrl[16].addr[0] = 112; state->CH_Ctrl[16].bit[0] = 0; state->CH_Ctrl[16].val[0] = 0; state->CH_Ctrl[16].addr[1] = 112; state->CH_Ctrl[16].bit[1] = 1; state->CH_Ctrl[16].val[1] = 0; state->CH_Ctrl[16].addr[2] = 112; state->CH_Ctrl[16].bit[2] = 2; state->CH_Ctrl[16].val[2] = 0; state->CH_Ctrl[16].addr[3] = 112; state->CH_Ctrl[16].bit[3] = 3; state->CH_Ctrl[16].val[3] = 0; state->CH_Ctrl[16].addr[4] = 112; state->CH_Ctrl[16].bit[4] = 4; state->CH_Ctrl[16].val[4] = 1; state->CH_Ctrl[17].Ctrl_Num = CHCAL_EN_INT_RF ; state->CH_Ctrl[17].size = 1 ; state->CH_Ctrl[17].addr[0] = 14; state->CH_Ctrl[17].bit[0] = 7; state->CH_Ctrl[17].val[0] = 0; state->CH_Ctrl[18].Ctrl_Num = TG_LO_DIVVAL ; state->CH_Ctrl[18].size = 4 ; state->CH_Ctrl[18].addr[0] = 107; state->CH_Ctrl[18].bit[0] = 3; state->CH_Ctrl[18].val[0] = 0; state->CH_Ctrl[18].addr[1] = 107; state->CH_Ctrl[18].bit[1] = 4; state->CH_Ctrl[18].val[1] = 0; state->CH_Ctrl[18].addr[2] = 107; state->CH_Ctrl[18].bit[2] = 5; state->CH_Ctrl[18].val[2] = 0; state->CH_Ctrl[18].addr[3] = 107; state->CH_Ctrl[18].bit[3] = 6; state->CH_Ctrl[18].val[3] = 0; state->CH_Ctrl[19].Ctrl_Num = TG_LO_SELVAL ; state->CH_Ctrl[19].size = 3 ; state->CH_Ctrl[19].addr[0] = 107; state->CH_Ctrl[19].bit[0] = 7; state->CH_Ctrl[19].val[0] = 1; state->CH_Ctrl[19].addr[1] = 106; state->CH_Ctrl[19].bit[1] = 0; state->CH_Ctrl[19].val[1] = 1; state->CH_Ctrl[19].addr[2] = 106; state->CH_Ctrl[19].bit[2] = 1; state->CH_Ctrl[19].val[2] = 1; state->CH_Ctrl[20].Ctrl_Num = TG_DIV_VAL ; state->CH_Ctrl[20].size = 11 ; state->CH_Ctrl[20].addr[0] = 109; state->CH_Ctrl[20].bit[0] = 2; state->CH_Ctrl[20].val[0] = 0; state->CH_Ctrl[20].addr[1] = 109; state->CH_Ctrl[20].bit[1] = 3; state->CH_Ctrl[20].val[1] = 0; state->CH_Ctrl[20].addr[2] = 109; state->CH_Ctrl[20].bit[2] = 4; state->CH_Ctrl[20].val[2] = 0; state->CH_Ctrl[20].addr[3] = 109; state->CH_Ctrl[20].bit[3] = 5; state->CH_Ctrl[20].val[3] = 0; state->CH_Ctrl[20].addr[4] = 109; state->CH_Ctrl[20].bit[4] = 6; state->CH_Ctrl[20].val[4] = 0; state->CH_Ctrl[20].addr[5] = 109; state->CH_Ctrl[20].bit[5] = 7; state->CH_Ctrl[20].val[5] = 0; state->CH_Ctrl[20].addr[6] = 108; state->CH_Ctrl[20].bit[6] = 0; state->CH_Ctrl[20].val[6] = 0; state->CH_Ctrl[20].addr[7] = 108; state->CH_Ctrl[20].bit[7] = 1; state->CH_Ctrl[20].val[7] = 0; state->CH_Ctrl[20].addr[8] = 108; state->CH_Ctrl[20].bit[8] = 2; state->CH_Ctrl[20].val[8] = 1; state->CH_Ctrl[20].addr[9] = 108; state->CH_Ctrl[20].bit[9] = 3; state->CH_Ctrl[20].val[9] = 1; state->CH_Ctrl[20].addr[10] = 108; state->CH_Ctrl[20].bit[10] = 4; state->CH_Ctrl[20].val[10] = 1; state->CH_Ctrl[21].Ctrl_Num = TG_VCO_BIAS ; state->CH_Ctrl[21].size = 6 ; state->CH_Ctrl[21].addr[0] = 106; state->CH_Ctrl[21].bit[0] = 2; state->CH_Ctrl[21].val[0] = 0; state->CH_Ctrl[21].addr[1] = 106; state->CH_Ctrl[21].bit[1] = 3; state->CH_Ctrl[21].val[1] = 0; state->CH_Ctrl[21].addr[2] = 106; state->CH_Ctrl[21].bit[2] = 4; state->CH_Ctrl[21].val[2] = 0; state->CH_Ctrl[21].addr[3] = 106; state->CH_Ctrl[21].bit[3] = 5; state->CH_Ctrl[21].val[3] = 0; state->CH_Ctrl[21].addr[4] = 106; state->CH_Ctrl[21].bit[4] = 6; state->CH_Ctrl[21].val[4] = 0; state->CH_Ctrl[21].addr[5] = 106; state->CH_Ctrl[21].bit[5] = 7; state->CH_Ctrl[21].val[5] = 1; state->CH_Ctrl[22].Ctrl_Num = SEQ_EXTPOWERUP ; state->CH_Ctrl[22].size = 1 ; state->CH_Ctrl[22].addr[0] = 138; state->CH_Ctrl[22].bit[0] = 4; state->CH_Ctrl[22].val[0] = 1; state->CH_Ctrl[23].Ctrl_Num = OVERRIDE_2 ; state->CH_Ctrl[23].size = 1 ; state->CH_Ctrl[23].addr[0] = 17; state->CH_Ctrl[23].bit[0] = 5; state->CH_Ctrl[23].val[0] = 0; state->CH_Ctrl[24].Ctrl_Num = OVERRIDE_3 ; state->CH_Ctrl[24].size = 1 ; state->CH_Ctrl[24].addr[0] = 111; state->CH_Ctrl[24].bit[0] = 3; state->CH_Ctrl[24].val[0] = 0; state->CH_Ctrl[25].Ctrl_Num = OVERRIDE_4 ; state->CH_Ctrl[25].size = 1 ; state->CH_Ctrl[25].addr[0] = 112; state->CH_Ctrl[25].bit[0] = 7; state->CH_Ctrl[25].val[0] = 0; state->CH_Ctrl[26].Ctrl_Num = SEQ_FSM_PULSE ; state->CH_Ctrl[26].size = 1 ; state->CH_Ctrl[26].addr[0] = 136; state->CH_Ctrl[26].bit[0] = 7; state->CH_Ctrl[26].val[0] = 0; state->CH_Ctrl[27].Ctrl_Num = GPIO_4B ; state->CH_Ctrl[27].size = 1 ; state->CH_Ctrl[27].addr[0] = 149; state->CH_Ctrl[27].bit[0] = 7; state->CH_Ctrl[27].val[0] = 0; state->CH_Ctrl[28].Ctrl_Num = GPIO_3B ; state->CH_Ctrl[28].size = 1 ; state->CH_Ctrl[28].addr[0] = 149; state->CH_Ctrl[28].bit[0] = 6; state->CH_Ctrl[28].val[0] = 0; state->CH_Ctrl[29].Ctrl_Num = GPIO_4 ; state->CH_Ctrl[29].size = 1 ; state->CH_Ctrl[29].addr[0] = 149; state->CH_Ctrl[29].bit[0] = 5; state->CH_Ctrl[29].val[0] = 1; state->CH_Ctrl[30].Ctrl_Num = GPIO_3 ; state->CH_Ctrl[30].size = 1 ; state->CH_Ctrl[30].addr[0] = 149; state->CH_Ctrl[30].bit[0] = 4; state->CH_Ctrl[30].val[0] = 1; state->CH_Ctrl[31].Ctrl_Num = GPIO_1B ; state->CH_Ctrl[31].size = 1 ; state->CH_Ctrl[31].addr[0] = 149; state->CH_Ctrl[31].bit[0] = 3; state->CH_Ctrl[31].val[0] = 0; state->CH_Ctrl[32].Ctrl_Num = DAC_A_ENABLE ; state->CH_Ctrl[32].size = 1 ; state->CH_Ctrl[32].addr[0] = 93; state->CH_Ctrl[32].bit[0] = 1; state->CH_Ctrl[32].val[0] = 0; state->CH_Ctrl[33].Ctrl_Num = DAC_B_ENABLE ; state->CH_Ctrl[33].size = 1 ; state->CH_Ctrl[33].addr[0] = 93; state->CH_Ctrl[33].bit[0] = 0; state->CH_Ctrl[33].val[0] = 0; state->CH_Ctrl[34].Ctrl_Num = DAC_DIN_A ; state->CH_Ctrl[34].size = 6 ; state->CH_Ctrl[34].addr[0] = 92; state->CH_Ctrl[34].bit[0] = 2; state->CH_Ctrl[34].val[0] = 0; state->CH_Ctrl[34].addr[1] = 92; state->CH_Ctrl[34].bit[1] = 3; state->CH_Ctrl[34].val[1] = 0; state->CH_Ctrl[34].addr[2] = 92; state->CH_Ctrl[34].bit[2] = 4; state->CH_Ctrl[34].val[2] = 0; state->CH_Ctrl[34].addr[3] = 92; state->CH_Ctrl[34].bit[3] = 5; state->CH_Ctrl[34].val[3] = 0; state->CH_Ctrl[34].addr[4] = 92; state->CH_Ctrl[34].bit[4] = 6; state->CH_Ctrl[34].val[4] = 0; state->CH_Ctrl[34].addr[5] = 92; state->CH_Ctrl[34].bit[5] = 7; state->CH_Ctrl[34].val[5] = 0; state->CH_Ctrl[35].Ctrl_Num = DAC_DIN_B ; state->CH_Ctrl[35].size = 6 ; state->CH_Ctrl[35].addr[0] = 93; state->CH_Ctrl[35].bit[0] = 2; state->CH_Ctrl[35].val[0] = 0; state->CH_Ctrl[35].addr[1] = 93; state->CH_Ctrl[35].bit[1] = 3; state->CH_Ctrl[35].val[1] = 0; state->CH_Ctrl[35].addr[2] = 93; state->CH_Ctrl[35].bit[2] = 4; state->CH_Ctrl[35].val[2] = 0; state->CH_Ctrl[35].addr[3] = 93; state->CH_Ctrl[35].bit[3] = 5; state->CH_Ctrl[35].val[3] = 0; state->CH_Ctrl[35].addr[4] = 93; state->CH_Ctrl[35].bit[4] = 6; state->CH_Ctrl[35].val[4] = 0; state->CH_Ctrl[35].addr[5] = 93; state->CH_Ctrl[35].bit[5] = 7; state->CH_Ctrl[35].val[5] = 0; #ifdef _MXL_PRODUCTION state->CH_Ctrl[36].Ctrl_Num = RFSYN_EN_DIV ; state->CH_Ctrl[36].size = 1 ; state->CH_Ctrl[36].addr[0] = 109; state->CH_Ctrl[36].bit[0] = 1; state->CH_Ctrl[36].val[0] = 1; state->CH_Ctrl[37].Ctrl_Num = RFSYN_DIVM ; state->CH_Ctrl[37].size = 2 ; state->CH_Ctrl[37].addr[0] = 112; state->CH_Ctrl[37].bit[0] = 5; state->CH_Ctrl[37].val[0] = 0; state->CH_Ctrl[37].addr[1] = 112; state->CH_Ctrl[37].bit[1] = 6; state->CH_Ctrl[37].val[1] = 0; state->CH_Ctrl[38].Ctrl_Num = DN_BYPASS_AGC_I2C ; state->CH_Ctrl[38].size = 1 ; state->CH_Ctrl[38].addr[0] = 65; state->CH_Ctrl[38].bit[0] = 1; state->CH_Ctrl[38].val[0] = 0; #endif return 0 ; } // MaxLinear source code - MXL5005_c.cpp // MXL5005.cpp : Defines the initialization routines for the DLL. // 2.6.12 // DONE void InitTunerControls(struct dvb_frontend *fe) { MXL5005_RegisterInit(fe); MXL5005_ControlInit(fe); #ifdef _MXL_INTERNAL MXL5005_MXLControlInit(fe); #endif } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_ConfigTuner // // // // Description: Configure MXL5005Tuner structure for desired // // Channel Bandwidth/Channel Frequency // // // // // // Functions used: // // MXL_SynthIFLO_Calc // // // // Inputs: // // Tuner_struct: structure defined at higher level // // Mode: Tuner Mode (Analog/Digital) // // IF_Mode: IF Mode ( Zero/Low ) // // Bandwidth: Filter Channel Bandwidth (in Hz) // // IF_out: Desired IF out Frequency (in Hz) // // Fxtal: Crystal Frerquency (in Hz) // // TOP: 0: Dual AGC; Value: take over point // // IF_OUT_LOAD: IF out load resistor (200/300 Ohms) // // CLOCK_OUT: 0: Turn off clock out; 1: turn on clock out // // DIV_OUT: 0: Div-1; 1: Div-4 // // CAPSELECT: 0: Disable On-chip pulling cap; 1: Enable // // EN_RSSI: 0: Disable RSSI; 1: Enable RSSI // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL5005_TunerConfig(struct dvb_frontend *fe, u8 Mode, /* 0: Analog Mode ; 1: Digital Mode */ u8 IF_mode, /* for Analog Mode, 0: zero IF; 1: low IF */ u32 Bandwidth, /* filter channel bandwidth (6, 7, 8) */ u32 IF_out, /* Desired IF Out Frequency */ u32 Fxtal, /* XTAL Frequency */ u8 AGC_Mode, /* AGC Mode - Dual AGC: 0, Single AGC: 1 */ u16 TOP, /* 0: Dual AGC; Value: take over point */ u16 IF_OUT_LOAD, /* IF Out Load Resistor (200 / 300 Ohms) */ u8 CLOCK_OUT, /* 0: turn off clock out; 1: turn on clock out */ u8 DIV_OUT, /* 0: Div-1; 1: Div-4 */ u8 CAPSELECT, /* 0: disable On-Chip pulling cap; 1: enable */ u8 EN_RSSI, /* 0: disable RSSI; 1: enable RSSI */ u8 Mod_Type, /* Modulation Type; */ /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */ u8 TF_Type /* Tracking Filter */ /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */ ) { struct mxl5005s_state *state = fe->tuner_priv; u16 status = 0; state->Mode = Mode; state->IF_Mode = IF_mode; state->Chan_Bandwidth = Bandwidth; state->IF_OUT = IF_out; state->Fxtal = Fxtal; state->AGC_Mode = AGC_Mode; state->TOP = TOP; state->IF_OUT_LOAD = IF_OUT_LOAD; state->CLOCK_OUT = CLOCK_OUT; state->DIV_OUT = DIV_OUT; state->CAPSELECT = CAPSELECT; state->EN_RSSI = EN_RSSI; state->Mod_Type = Mod_Type; state->TF_Type = TF_Type; /* Initialize all the controls and registers */ InitTunerControls(fe); /* Synthesizer LO frequency calculation */ MXL_SynthIFLO_Calc(fe); return status; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_SynthIFLO_Calc // // // // Description: Calculate Internal IF-LO Frequency // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // Tuner_struct: structure defined at higher level // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// // DONE void MXL_SynthIFLO_Calc(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; if (state->Mode == 1) /* Digital Mode */ state->IF_LO = state->IF_OUT; else /* Analog Mode */ { if(state->IF_Mode == 0) /* Analog Zero IF mode */ state->IF_LO = state->IF_OUT + 400000; else /* Analog Low IF mode */ state->IF_LO = state->IF_OUT + state->Chan_Bandwidth/2; } } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_SynthRFTGLO_Calc // // // // Description: Calculate Internal RF-LO frequency and // // internal Tone-Gen(TG)-LO frequency // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // Tuner_struct: structure defined at higher level // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// // DONE void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; if (state->Mode == 1) /* Digital Mode */ { //remove 20.48MHz setting for 2.6.10 state->RF_LO = state->RF_IN; state->TG_LO = state->RF_IN - 750000; //change for 2.6.6 } else /* Analog Mode */ { if(state->IF_Mode == 0) /* Analog Zero IF mode */ { state->RF_LO = state->RF_IN - 400000; state->TG_LO = state->RF_IN - 1750000; } else /* Analog Low IF mode */ { state->RF_LO = state->RF_IN - state->Chan_Bandwidth/2; state->TG_LO = state->RF_IN - state->Chan_Bandwidth + 500000; } } } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_OverwriteICDefault // // // // Description: Overwrite the Default Register Setting // // // // // // Functions used: // // // // Inputs: // // Tuner_struct: structure defined at higher level // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_OverwriteICDefault(struct dvb_frontend *fe) { u16 status = 0; status += MXL_ControlWrite(fe, OVERRIDE_1, 1); status += MXL_ControlWrite(fe, OVERRIDE_2, 1); status += MXL_ControlWrite(fe, OVERRIDE_3, 1); status += MXL_ControlWrite(fe, OVERRIDE_4, 1); return status; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_BlockInit // // // // Description: Tuner Initialization as a function of 'User Settings' // // * User settings in Tuner strcuture must be assigned // // first // // // // Globals: // // NONE // // // // Functions used: // // Tuner_struct: structure defined at higher level // // // // Inputs: // // Tuner : Tuner structure defined at higher level // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_BlockInit(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; u16 status = 0; status += MXL_OverwriteICDefault(fe); /* Downconverter Control Dig Ana */ status += MXL_ControlWrite(fe, DN_IQTN_AMP_CUT, state->Mode ? 1 : 0); /* Filter Control Dig Ana */ status += MXL_ControlWrite(fe, BB_MODE, state->Mode ? 0 : 1); status += MXL_ControlWrite(fe, BB_BUF, state->Mode ? 3 : 2); status += MXL_ControlWrite(fe, BB_BUF_OA, state->Mode ? 1 : 0); status += MXL_ControlWrite(fe, BB_IQSWAP, state->Mode ? 0 : 1); status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 0); /* Initialize Low-Pass Filter */ if (state->Mode) { /* Digital Mode */ switch (state->Chan_Bandwidth) { case 8000000: status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 0); break; case 7000000: status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 2); break; case 6000000: printk("%s() doing 6MHz digital\n", __func__); status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 3); break; } } else { /* Analog Mode */ switch (state->Chan_Bandwidth) { case 8000000: /* Low Zero */ status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 0 : 3)); break; case 7000000: status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 1 : 4)); break; case 6000000: status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 2 : 5)); break; } } /* Charge Pump Control Dig Ana */ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, state->Mode ? 5 : 8); status += MXL_ControlWrite(fe, RFSYN_EN_CHP_HIGAIN, state->Mode ? 1 : 1); status += MXL_ControlWrite(fe, EN_CHP_LIN_B, state->Mode ? 0 : 0); /* AGC TOP Control */ if (state->AGC_Mode == 0) /* Dual AGC */ { status += MXL_ControlWrite(fe, AGC_IF, 15); status += MXL_ControlWrite(fe, AGC_RF, 15); } else /* Single AGC Mode Dig Ana */ status += MXL_ControlWrite(fe, AGC_RF, state->Mode ? 15 : 12); if (state->TOP == 55) /* TOP == 5.5 */ status += MXL_ControlWrite(fe, AGC_IF, 0x0); if (state->TOP == 72) /* TOP == 7.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0x1); if (state->TOP == 92) /* TOP == 9.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0x2); if (state->TOP == 110) /* TOP == 11.0 */ status += MXL_ControlWrite(fe, AGC_IF, 0x3); if (state->TOP == 129) /* TOP == 12.9 */ status += MXL_ControlWrite(fe, AGC_IF, 0x4); if (state->TOP == 147) /* TOP == 14.7 */ status += MXL_ControlWrite(fe, AGC_IF, 0x5); if (state->TOP == 168) /* TOP == 16.8 */ status += MXL_ControlWrite(fe, AGC_IF, 0x6); if (state->TOP == 194) /* TOP == 19.4 */ status += MXL_ControlWrite(fe, AGC_IF, 0x7); if (state->TOP == 212) /* TOP == 21.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0x9); if (state->TOP == 232) /* TOP == 23.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0xA); if (state->TOP == 252) /* TOP == 25.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0xB); if (state->TOP == 271) /* TOP == 27.1 */ status += MXL_ControlWrite(fe, AGC_IF, 0xC); if (state->TOP == 292) /* TOP == 29.2 */ status += MXL_ControlWrite(fe, AGC_IF, 0xD); if (state->TOP == 317) /* TOP == 31.7 */ status += MXL_ControlWrite(fe, AGC_IF, 0xE); if (state->TOP == 349) /* TOP == 34.9 */ status += MXL_ControlWrite(fe, AGC_IF, 0xF); /* IF Synthesizer Control */ status += MXL_IFSynthInit(fe); /* IF UpConverter Control */ if (state->IF_OUT_LOAD == 200) { status += MXL_ControlWrite(fe, DRV_RES_SEL, 6); status += MXL_ControlWrite(fe, I_DRIVER, 2); } if (state->IF_OUT_LOAD == 300) { status += MXL_ControlWrite(fe, DRV_RES_SEL, 4); status += MXL_ControlWrite(fe, I_DRIVER, 1); } /* Anti-Alias Filtering Control * initialise Anti-Aliasing Filter */ if (state->Mode) { /* Digital Mode */ if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 6280000UL) { status += MXL_ControlWrite(fe, EN_AAF, 1); status += MXL_ControlWrite(fe, EN_3P, 1); status += MXL_ControlWrite(fe, EN_AUX_3P, 1); status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0); } if ((state->IF_OUT == 36125000UL) || (state->IF_OUT == 36150000UL)) { status += MXL_ControlWrite(fe, EN_AAF, 1); status += MXL_ControlWrite(fe, EN_3P, 1); status += MXL_ControlWrite(fe, EN_AUX_3P, 1); status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1); } if (state->IF_OUT > 36150000UL) { status += MXL_ControlWrite(fe, EN_AAF, 0); status += MXL_ControlWrite(fe, EN_3P, 1); status += MXL_ControlWrite(fe, EN_AUX_3P, 1); status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1); } } else { /* Analog Mode */ if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 5000000UL) { status += MXL_ControlWrite(fe, EN_AAF, 1); status += MXL_ControlWrite(fe, EN_3P, 1); status += MXL_ControlWrite(fe, EN_AUX_3P, 1); status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0); } if (state->IF_OUT > 5000000UL) { status += MXL_ControlWrite(fe, EN_AAF, 0); status += MXL_ControlWrite(fe, EN_3P, 0); status += MXL_ControlWrite(fe, EN_AUX_3P, 0); status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0); } } /* Demod Clock Out */ if (state->CLOCK_OUT) status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 1); else status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 0); if (state->DIV_OUT == 1) status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 1); if (state->DIV_OUT == 0) status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 0); /* Crystal Control */ if (state->CAPSELECT) status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 1); else status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 0); if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL) status += MXL_ControlWrite(fe, IF_SEL_DBL, 1); if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL) status += MXL_ControlWrite(fe, IF_SEL_DBL, 0); if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL) status += MXL_ControlWrite(fe, RFSYN_R_DIV, 3); if (state->Fxtal > 22000000UL && state->Fxtal <= 32000000UL) status += MXL_ControlWrite(fe, RFSYN_R_DIV, 0); /* Misc Controls */ if (state->Mode == 0 && state->IF_Mode == 1) /* Analog LowIF mode */ status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 0); else status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 1); /* status += MXL_ControlRead(fe, IF_DIVVAL, &IF_DIVVAL_Val); */ /* Set TG_R_DIV */ status += MXL_ControlWrite(fe, TG_R_DIV, MXL_Ceiling(state->Fxtal, 1000000)); /* Apply Default value to BB_INITSTATE_DLPF_TUNE */ /* RSSI Control */ if (state->EN_RSSI) { status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); /* RSSI reference point */ status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2); status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 3); status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1); /* TOP point */ status += MXL_ControlWrite(fe, RFA_FLR, 0); status += MXL_ControlWrite(fe, RFA_CEIL, 12); } /* Modulation type bit settings * Override the control values preset */ if (state->Mod_Type == MXL_DVBT) /* DVB-T Mode */ { state->AGC_Mode = 1; /* Single AGC Mode */ /* Enable RSSI */ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); /* RSSI reference point */ status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3); status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5); status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1); /* TOP point */ status += MXL_ControlWrite(fe, RFA_FLR, 2); status += MXL_ControlWrite(fe, RFA_CEIL, 13); if (state->IF_OUT <= 6280000UL) /* Low IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 0); else /* High IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 1); } if (state->Mod_Type == MXL_ATSC) /* ATSC Mode */ { state->AGC_Mode = 1; /* Single AGC Mode */ /* Enable RSSI */ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); /* RSSI reference point */ status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2); status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 4); status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1); /* TOP point */ status += MXL_ControlWrite(fe, RFA_FLR, 2); status += MXL_ControlWrite(fe, RFA_CEIL, 13); status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 1); status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5); /* Low Zero */ if (state->IF_OUT <= 6280000UL) /* Low IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 0); else /* High IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 1); } if (state->Mod_Type == MXL_QAM) /* QAM Mode */ { state->Mode = MXL_DIGITAL_MODE; /* state->AGC_Mode = 1; */ /* Single AGC Mode */ /* Disable RSSI */ /* change here for v2.6.5 */ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); /* RSSI reference point */ status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5); status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3); status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2); status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3); /* change here for v2.6.5 */ if (state->IF_OUT <= 6280000UL) /* Low IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 0); else /* High IF */ status += MXL_ControlWrite(fe, BB_IQSWAP, 1); status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2); } if (state->Mod_Type == MXL_ANALOG_CABLE) { /* Analog Cable Mode */ /* state->Mode = MXL_DIGITAL_MODE; */ state->AGC_Mode = 1; /* Single AGC Mode */ /* Disable RSSI */ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); status += MXL_ControlWrite(fe, AGC_IF, 1); /* change for 2.6.3 */ status += MXL_ControlWrite(fe, AGC_RF, 15); status += MXL_ControlWrite(fe, BB_IQSWAP, 1); } if (state->Mod_Type == MXL_ANALOG_OTA) { /* Analog OTA Terrestrial mode add for 2.6.7 */ /* state->Mode = MXL_ANALOG_MODE; */ /* Enable RSSI */ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); /* RSSI reference point */ status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5); status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3); status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2); status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3); status += MXL_ControlWrite(fe, BB_IQSWAP, 1); } /* RSSI disable */ if(state->EN_RSSI == 0) { status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1); status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1); status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0); status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1); } return status; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_IFSynthInit // // // // Description: Tuner IF Synthesizer related register initialization // // // // Globals: // // NONE // // // // Functions used: // // Tuner_struct: structure defined at higher level // // // // Inputs: // // Tuner : Tuner structure defined at higher level // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// u16 MXL_IFSynthInit(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; u16 status = 0 ; // Declare Local Variables u32 Fref = 0 ; u32 Kdbl, intModVal ; u32 fracModVal ; Kdbl = 2 ; if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL) Kdbl = 2 ; if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL) Kdbl = 1 ; // // IF Synthesizer Control // if (state->Mode == 0 && state->IF_Mode == 1) // Analog Low IF mode { if (state->IF_LO == 41000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 328000000UL ; } if (state->IF_LO == 47000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 376000000UL ; } if (state->IF_LO == 54000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 324000000UL ; } if (state->IF_LO == 60000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 39250000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 314000000UL ; } if (state->IF_LO == 39650000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 317200000UL ; } if (state->IF_LO == 40150000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 321200000UL ; } if (state->IF_LO == 40650000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 325200000UL ; } } if (state->Mode || (state->Mode == 0 && state->IF_Mode == 0)) { if (state->IF_LO == 57000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 342000000UL ; } if (state->IF_LO == 44000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 352000000UL ; } if (state->IF_LO == 43750000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 350000000UL ; } if (state->IF_LO == 36650000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 366500000UL ; } if (state->IF_LO == 36150000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 361500000UL ; } if (state->IF_LO == 36000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 35250000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 352500000UL ; } if (state->IF_LO == 34750000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 347500000UL ; } if (state->IF_LO == 6280000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 376800000UL ; } if (state->IF_LO == 5000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 4500000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 4570000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 365600000UL ; } if (state->IF_LO == 4000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 57400000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 344400000UL ; } if (state->IF_LO == 44400000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 355200000UL ; } if (state->IF_LO == 44150000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 353200000UL ; } if (state->IF_LO == 37050000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 370500000UL ; } if (state->IF_LO == 36550000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 365500000UL ; } if (state->IF_LO == 36125000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 361250000UL ; } if (state->IF_LO == 6000000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 360000000UL ; } if (state->IF_LO == 5400000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 324000000UL ; } if (state->IF_LO == 5380000UL) { printk("%s() doing 5.38\n", __func__); status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ; Fref = 322800000UL ; } if (state->IF_LO == 5200000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 374400000UL ; } if (state->IF_LO == 4900000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 352800000UL ; } if (state->IF_LO == 4400000UL) { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 352000000UL ; } if (state->IF_LO == 4063000UL) //add for 2.6.8 { status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ; status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ; Fref = 365670000UL ; } } // CHCAL_INT_MOD_IF // CHCAL_FRAC_MOD_IF intModVal = Fref / (state->Fxtal * Kdbl/2) ; status += MXL_ControlWrite(fe, CHCAL_INT_MOD_IF, intModVal ) ; fracModVal = (2<<15)*(Fref/1000 - (state->Fxtal/1000 * Kdbl/2) * intModVal); fracModVal = fracModVal / ((state->Fxtal * Kdbl/2)/1000) ; status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_IF, fracModVal) ; return status ; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_GetXtalInt // // // // Description: return the Crystal Integration Value for // // TG_VCO_BIAS calculation // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // Crystal Frequency Value in Hz // // // // Outputs: // // Calculated Crystal Frequency Integration Value // // // // Return: // // 0 : Successful // // > 0 : Failed // // // /////////////////////////////////////////////////////////////////////////////// u32 MXL_GetXtalInt(u32 Xtal_Freq) { if ((Xtal_Freq % 1000000) == 0) return (Xtal_Freq / 10000) ; else return (((Xtal_Freq / 1000000) + 1)*100) ; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL5005_TuneRF // // // // Description: Set control names to tune to requested RF_IN frequency // // // // Globals: // // None // // // // Functions used: // // MXL_SynthRFTGLO_Calc // // MXL5005_ControlWrite // // MXL_GetXtalInt // // // // Inputs: // // Tuner : Tuner structure defined at higher level // // // // Outputs: // // Tuner // // // // Return: // // 0 : Successful // // 1 : Unsuccessful // /////////////////////////////////////////////////////////////////////////////// u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq) { struct mxl5005s_state *state = fe->tuner_priv; // Declare Local Variables u16 status = 0; u32 divider_val, E3, E4, E5, E5A; u32 Fmax, Fmin, FmaxBin, FminBin; u32 Kdbl_RF = 2; u32 tg_divval; u32 tg_lo; u32 Xtal_Int; u32 Fref_TG; u32 Fvco; // u32 temp; Xtal_Int = MXL_GetXtalInt(state->Fxtal); state->RF_IN = RF_Freq; MXL_SynthRFTGLO_Calc(fe); if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL) Kdbl_RF = 2; if (state->Fxtal > 22000000 && state->Fxtal <= 32000000) Kdbl_RF = 1; // // Downconverter Controls // // Look-Up Table Implementation for: // DN_POLY // DN_RFGAIN // DN_CAP_RFLPF // DN_EN_VHFUHFBAR // DN_GAIN_ADJUST // Change the boundary reference from RF_IN to RF_LO if (state->RF_LO < 40000000UL) { return -1; } if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 2); status += MXL_ControlWrite(fe, DN_RFGAIN, 3); status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 423); status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1); status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1); } if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3); status += MXL_ControlWrite(fe, DN_RFGAIN, 3); status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 222); status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1); status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1); } if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3); status += MXL_ControlWrite(fe, DN_RFGAIN, 3); status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 147); status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1); status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2); } if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3); status += MXL_ControlWrite(fe, DN_RFGAIN, 3); status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 9); status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1); status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2); } if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3) ; status += MXL_ControlWrite(fe, DN_RFGAIN, 3) ; status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ; status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1) ; status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ; } if (state->RF_LO > 300000000UL && state->RF_LO <= 650000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3) ; status += MXL_ControlWrite(fe, DN_RFGAIN, 1) ; status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ; status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ; status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ; } if (state->RF_LO > 650000000UL && state->RF_LO <= 900000000UL) { // Look-Up Table implementation status += MXL_ControlWrite(fe, DN_POLY, 3) ; status += MXL_ControlWrite(fe, DN_RFGAIN, 2) ; status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ; status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ; status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ; } if (state->RF_LO > 900000000UL) { return -1; } // DN_IQTNBUF_AMP // DN_IQTNGNBFBIAS_BST if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 300000000UL && state->RF_LO <= 400000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 400000000UL && state->RF_LO <= 450000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 450000000UL && state->RF_LO <= 500000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 500000000UL && state->RF_LO <= 550000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 550000000UL && state->RF_LO <= 600000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 600000000UL && state->RF_LO <= 650000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 650000000UL && state->RF_LO <= 700000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 700000000UL && state->RF_LO <= 750000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 750000000UL && state->RF_LO <= 800000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0); } if (state->RF_LO > 800000000UL && state->RF_LO <= 850000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1); } if (state->RF_LO > 850000000UL && state->RF_LO <= 900000000UL) { status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10); status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1); } // // Set RF Synth and LO Path Control // // Look-Up table implementation for: // RFSYN_EN_OUTMUX // RFSYN_SEL_VCO_OUT // RFSYN_SEL_VCO_HI // RFSYN_SEL_DIVM // RFSYN_RF_DIV_BIAS // DN_SEL_FREQ // // Set divider_val, Fmax, Fmix to use in Equations FminBin = 28000000UL ; FmaxBin = 42500000UL ; if (state->RF_LO >= 40000000UL && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1); divider_val = 64 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 42500000UL ; FmaxBin = 56000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1); divider_val = 64 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 56000000UL ; FmaxBin = 85000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ; divider_val = 32 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 85000000UL ; FmaxBin = 112000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ; divider_val = 32 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 112000000UL ; FmaxBin = 170000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ; divider_val = 16 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 170000000UL ; FmaxBin = 225000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ; divider_val = 16 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 225000000UL ; FmaxBin = 300000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 4) ; divider_val = 8 ; Fmax = 340000000UL ; Fmin = FminBin ; } FminBin = 300000000UL ; FmaxBin = 340000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ; divider_val = 8 ; Fmax = FmaxBin ; Fmin = 225000000UL ; } FminBin = 340000000UL ; FmaxBin = 450000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 2) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ; divider_val = 8 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 450000000UL ; FmaxBin = 680000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ; divider_val = 4 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 680000000UL ; FmaxBin = 900000000UL ; if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) { status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ; status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ; status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ; status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ; divider_val = 4 ; Fmax = FmaxBin ; Fmin = FminBin ; } // CHCAL_INT_MOD_RF // CHCAL_FRAC_MOD_RF // RFSYN_LPF_R // CHCAL_EN_INT_RF // Equation E3 // RFSYN_VCO_BIAS E3 = (((Fmax-state->RF_LO)/1000)*32)/((Fmax-Fmin)/1000) + 8 ; status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, E3) ; // Equation E4 // CHCAL_INT_MOD_RF E4 = (state->RF_LO*divider_val/1000)/(2*state->Fxtal*Kdbl_RF/1000) ; MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, E4) ; // Equation E5 // CHCAL_FRAC_MOD_RF // CHCAL_EN_INT_RF E5 = ((2<<17)*(state->RF_LO/10000*divider_val - (E4*(2*state->Fxtal*Kdbl_RF)/10000)))/(2*state->Fxtal*Kdbl_RF/10000) ; status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ; // Equation E5A // RFSYN_LPF_R E5A = (((Fmax - state->RF_LO)/1000)*4/((Fmax-Fmin)/1000)) + 1 ; status += MXL_ControlWrite(fe, RFSYN_LPF_R, E5A) ; // Euqation E5B // CHCAL_EN_INIT_RF status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, ((E5 == 0) ? 1 : 0)); //if (E5 == 0) // status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, 1); //else // status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ; // // Set TG Synth // // Look-Up table implementation for: // TG_LO_DIVVAL // TG_LO_SELVAL // // Set divider_val, Fmax, Fmix to use in Equations if (state->TG_LO < 33000000UL) { return -1; } FminBin = 33000000UL ; FmaxBin = 50000000UL ; if (state->TG_LO >= FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x6) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ; divider_val = 36 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 50000000UL ; FmaxBin = 67000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x1) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ; divider_val = 24 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 67000000UL ; FmaxBin = 100000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0xC) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ; divider_val = 18 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 100000000UL ; FmaxBin = 150000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ; divider_val = 12 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 150000000UL ; FmaxBin = 200000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ; divider_val = 8 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 200000000UL ; FmaxBin = 300000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ; divider_val = 6 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 300000000UL ; FmaxBin = 400000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ; divider_val = 4 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 400000000UL ; FmaxBin = 600000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ; divider_val = 3 ; Fmax = FmaxBin ; Fmin = FminBin ; } FminBin = 600000000UL ; FmaxBin = 900000000UL ; if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) { status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ; status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ; divider_val = 2 ; Fmax = FmaxBin ; Fmin = FminBin ; } // TG_DIV_VAL tg_divval = (state->TG_LO*divider_val/100000) *(MXL_Ceiling(state->Fxtal,1000000) * 100) / (state->Fxtal/1000) ; status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval) ; if (state->TG_LO > 600000000UL) status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval + 1 ) ; Fmax = 1800000000UL ; Fmin = 1200000000UL ; // to prevent overflow of 32 bit unsigned integer, use following equation. Edit for v2.6.4 Fref_TG = (state->Fxtal/1000)/ MXL_Ceiling(state->Fxtal, 1000000) ; // Fref_TF = Fref_TG*1000 Fvco = (state->TG_LO/10000) * divider_val * Fref_TG; //Fvco = Fvco/10 tg_lo = (((Fmax/10 - Fvco)/100)*32) / ((Fmax-Fmin)/1000)+8; //below equation is same as above but much harder to debug. //tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) - ((state->TG_LO/10000)*divider_val*(state->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 * Xtal_Int/100) + 8 ; status += MXL_ControlWrite(fe, TG_VCO_BIAS , tg_lo) ; //add for 2.6.5 //Special setting for QAM if(state->Mod_Type == MXL_QAM) { if(state->RF_IN < 680000000) status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ; else status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2) ; } //remove 20.48MHz setting for 2.6.10 // // Off Chip Tracking Filter Control // if (state->TF_Type == MXL_TF_OFF) // Tracking Filter Off State; turn off all the banks { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // turn off Bank 1 status += MXL_SetGPIO(fe, 1, 1) ; // turn off Bank 2 status += MXL_SetGPIO(fe, 4, 1) ; // turn off Bank 3 } if (state->TF_Type == MXL_TF_C) // Tracking Filter type C { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off } if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off } if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On } if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On } if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_ControlWrite(fe, DAC_DIN_B, 29) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On } if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On } if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_ControlWrite(fe, DAC_DIN_B, 16) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off } if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_ControlWrite(fe, DAC_DIN_B, 7) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off } if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_C_H) // Tracking Filter type C-H for Hauppauge only { printk("%s() CH filter\n", __func__); status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off } if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off } if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On } if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On } if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On } if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On } if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off } if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off } if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_D) // Tracking Filter type D { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_D_L) // Tracking Filter type D-L for Lumanate ONLY change for 2.6.3 { status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ; // if UHF and terrestrial => Turn off Tracking Filter if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0) { // Turn off all the banks status += MXL_SetGPIO(fe, 3, 1) ; status += MXL_SetGPIO(fe, 1, 1) ; status += MXL_SetGPIO(fe, 4, 1) ; status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; status += MXL_ControlWrite(fe, AGC_IF, 10) ; } else // if VHF or cable => Turn on Tracking Filter { if (state->RF_IN >= 43000000 && state->RF_IN < 140000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off } if (state->RF_IN >= 140000000 && state->RF_IN < 240000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off } if (state->RF_IN >= 240000000 && state->RF_IN < 340000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off } if (state->RF_IN >= 340000000 && state->RF_IN < 430000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On } if (state->RF_IN >= 430000000 && state->RF_IN < 470000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On } if (state->RF_IN >= 470000000 && state->RF_IN < 570000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On } if (state->RF_IN >= 570000000 && state->RF_IN < 620000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Offq } if (state->RF_IN >= 620000000 && state->RF_IN < 760000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } } if (state->TF_Type == MXL_TF_E) // Tracking Filter type E { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_F) // Tracking Filter type F { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 160000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 160000000 && state->RF_IN < 210000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 210000000 && state->RF_IN < 300000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 300000000 && state->RF_IN < 390000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 390000000 && state->RF_IN < 515000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 515000000 && state->RF_IN < 650000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 650000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_E_2) // Tracking Filter type E_2 { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_G) // Tracking Filter type G add for v2.6.8 { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; if (state->RF_IN >= 50000000 && state->RF_IN < 190000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 190000000 && state->RF_IN < 280000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 280000000 && state->RF_IN < 350000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 400000000 && state->RF_IN < 470000000) //modified for 2.6.11 { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 640000000 && state->RF_IN < 820000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 820000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } if (state->TF_Type == MXL_TF_E_NA) // Tracking Filter type E-NA for Empia ONLY change for 2.6.8 { status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ; // if UHF and terrestrial=> Turn off Tracking Filter if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0) { // Turn off all the banks status += MXL_SetGPIO(fe, 3, 1) ; status += MXL_SetGPIO(fe, 1, 1) ; status += MXL_SetGPIO(fe, 4, 1) ; status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; //2.6.12 //Turn on RSSI status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1) ; status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1) ; status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1) ; status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1) ; // RSSI reference point status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5) ; status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3) ; status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2) ; //status += MXL_ControlWrite(fe, AGC_IF, 10) ; //doesn't matter since RSSI is turn on //following parameter is from analog OTA mode, can be change to seek better performance status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ; } else //if VHF or Cable => Turn on Tracking Filter { //2.6.12 //Turn off RSSI status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0) ; //change back from above condition status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5) ; if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On } if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) { status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off } } } return status ; } // DONE u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val) { u16 status = 0; if (GPIO_Num == 1) status += MXL_ControlWrite(fe, GPIO_1B, GPIO_Val ? 0 : 1); /* GPIO2 is not available */ if (GPIO_Num == 3) { if (GPIO_Val == 1) { status += MXL_ControlWrite(fe, GPIO_3, 0); status += MXL_ControlWrite(fe, GPIO_3B, 0); } if (GPIO_Val == 0) { status += MXL_ControlWrite(fe, GPIO_3, 1); status += MXL_ControlWrite(fe, GPIO_3B, 1); } if (GPIO_Val == 3) { /* tri-state */ status += MXL_ControlWrite(fe, GPIO_3, 0); status += MXL_ControlWrite(fe, GPIO_3B, 1); } } if (GPIO_Num == 4) { if (GPIO_Val == 1) { status += MXL_ControlWrite(fe, GPIO_4, 0); status += MXL_ControlWrite(fe, GPIO_4B, 0); } if (GPIO_Val == 0) { status += MXL_ControlWrite(fe, GPIO_4, 1); status += MXL_ControlWrite(fe, GPIO_4B, 1); } if (GPIO_Val == 3) { /* tri-state */ status += MXL_ControlWrite(fe, GPIO_4, 0); status += MXL_ControlWrite(fe, GPIO_4B, 1); } } return status; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_ControlWrite // // // // Description: Update control name value // // // // Globals: // // NONE // // // // Functions used: // // MXL_ControlWrite( Tuner, controlName, value, Group ) // // // // Inputs: // // Tuner : Tuner structure // // ControlName : Control name to be updated // // value : Value to be written // // // // Outputs: // // Tuner : Tuner structure defined at higher level // // // // Return: // // 0 : Successful write // // >0 : Value exceed maximum allowed for control number // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value) { u16 status = 0; /* Will write ALL Matching Control Name */ status += MXL_ControlWrite_Group(fe, ControlNum, value, 1); /* Write Matching INIT Control */ status += MXL_ControlWrite_Group(fe, ControlNum, value, 2); /* Write Matching CH Control */ #ifdef _MXL_INTERNAL status += MXL_ControlWrite_Group(fe, ControlNum, value, 3); /* Write Matching MXL Control */ #endif return status; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_ControlWrite // // // // Description: Update control name value // // // // Globals: // // NONE // // // // Functions used: // // strcmp // // // // Inputs: // // Tuner_struct: structure defined at higher level // // ControlName : Control Name // // value : Value Assigned to Control Name // // controlGroup : Control Register Group // // // // Outputs: // // NONE // // // // Return: // // 0 : Successful write // // 1 : Value exceed maximum allowed for control name // // 2 : Control name not found // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup) { struct mxl5005s_state *state = fe->tuner_priv; u16 i, j, k; u32 highLimit; u32 ctrlVal; if (controlGroup == 1) /* Initial Control */ { for (i = 0; i < state->Init_Ctrl_Num; i++) { if (controlNum == state->Init_Ctrl[i].Ctrl_Num) { highLimit = 1 << state->Init_Ctrl[i].size; if (value < highLimit) { for (j = 0; j < state->Init_Ctrl[i].size; j++) { state->Init_Ctrl[i].val[j] = (u8)((value >> j) & 0x01); MXL_RegWriteBit(fe, (u8)(state->Init_Ctrl[i].addr[j]), (u8)(state->Init_Ctrl[i].bit[j]), (u8)((value>>j) & 0x01) ); } ctrlVal = 0; for (k = 0; k < state->Init_Ctrl[i].size; k++) ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k); } else return -1; } } } if (controlGroup == 2) /* Chan change Control */ { for (i = 0; i < state->CH_Ctrl_Num; i++) { if (controlNum == state->CH_Ctrl[i].Ctrl_Num ) { highLimit = 1 << state->CH_Ctrl[i].size; if (value < highLimit) { for (j = 0; j < state->CH_Ctrl[i].size; j++) { state->CH_Ctrl[i].val[j] = (u8)((value >> j) & 0x01); MXL_RegWriteBit(fe, (u8)(state->CH_Ctrl[i].addr[j]), (u8)(state->CH_Ctrl[i].bit[j]), (u8)((value>>j) & 0x01) ); } ctrlVal = 0; for (k = 0; k < state->CH_Ctrl[i].size; k++) ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k); } else return -1; } } } #ifdef _MXL_INTERNAL if (controlGroup == 3) /* Maxlinear Control */ { for (i = 0; i < state->MXL_Ctrl_Num; i++) { if (controlNum == state->MXL_Ctrl[i].Ctrl_Num ) { highLimit = (1 << state->MXL_Ctrl[i].size) ; if (value < highLimit) { for (j = 0; j < state->MXL_Ctrl[i].size; j++) { state->MXL_Ctrl[i].val[j] = (u8)((value >> j) & 0x01); MXL_RegWriteBit(fe, (u8)(state->MXL_Ctrl[i].addr[j]), (u8)(state->MXL_Ctrl[i].bit[j]), (u8)((value>>j) & 0x01) ); } ctrlVal = 0; for(k = 0; k < state->MXL_Ctrl[i].size; k++) ctrlVal += state->MXL_Ctrl[i].val[k] * (1 << k); } else return -1; } } } #endif return 0 ; /* successful return */ } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_RegWrite // // // // Description: Update tuner register value // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // Tuner_struct: structure defined at higher level // // RegNum : Register address to be assigned a value // // RegVal : Register value to write // // // // Outputs: // // NONE // // // // Return: // // 0 : Successful write // // -1 : Invalid Register Address // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal) { struct mxl5005s_state *state = fe->tuner_priv; int i ; for (i = 0; i < 104; i++) { if (RegNum == state->TunerRegs[i].Reg_Num) { state->TunerRegs[i].Reg_Val = RegVal; return 0; } } return 1; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_RegRead // // // // Description: Retrieve tuner register value // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // Tuner_struct: structure defined at higher level // // RegNum : Register address to be assigned a value // // // // Outputs: // // RegVal : Retrieved register value // // // // Return: // // 0 : Successful read // // -1 : Invalid Register Address // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal) { struct mxl5005s_state *state = fe->tuner_priv; int i ; for (i = 0; i < 104; i++) { if (RegNum == state->TunerRegs[i].Reg_Num ) { *RegVal = (u8)(state->TunerRegs[i].Reg_Val); return 0; } } return 1; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_ControlRead // // // // Description: Retrieve the control value based on the control name // // // // Globals: // // NONE // // // // Inputs: // // Tuner_struct : structure defined at higher level // // ControlName : Control Name // // // // Outputs: // // value : returned control value // // // // Return: // // 0 : Successful read // // -1 : Invalid control name // // // /////////////////////////////////////////////////////////////////////////////// // DONE u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value) { struct mxl5005s_state *state = fe->tuner_priv; u32 ctrlVal ; u16 i, k ; for (i = 0; i < state->Init_Ctrl_Num ; i++) { if (controlNum == state->Init_Ctrl[i].Ctrl_Num) { ctrlVal = 0; for (k = 0; k < state->Init_Ctrl[i].size; k++) ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k); *value = ctrlVal; return 0; } } for (i = 0; i < state->CH_Ctrl_Num ; i++) { if (controlNum == state->CH_Ctrl[i].Ctrl_Num) { ctrlVal = 0; for (k = 0; k < state->CH_Ctrl[i].size; k++) ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k); *value = ctrlVal; return 0; } } #ifdef _MXL_INTERNAL for (i = 0; i < state->MXL_Ctrl_Num ; i++) { if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) { ctrlVal = 0; for (k = 0; k < state->MXL_Ctrl[i].size; k++) ctrlVal += state->MXL_Ctrl[i].val[k] * (1<tuner_priv; u16 i, j, k ; u16 Count ; for (i = 0; i < state->Init_Ctrl_Num ; i++) { if ( controlNum == state->Init_Ctrl[i].Ctrl_Num ) { Count = 1; RegNum[0] = (u8)(state->Init_Ctrl[i].addr[0]); for (k = 1; k < state->Init_Ctrl[i].size; k++) { for (j = 0; j < Count; j++) { if (state->Init_Ctrl[i].addr[k] != RegNum[j]) { Count ++; RegNum[Count-1] = (u8)(state->Init_Ctrl[i].addr[k]); } } } *count = Count; return 0; } } for (i = 0; i < state->CH_Ctrl_Num ; i++) { if ( controlNum == state->CH_Ctrl[i].Ctrl_Num ) { Count = 1; RegNum[0] = (u8)(state->CH_Ctrl[i].addr[0]); for (k = 1; k < state->CH_Ctrl[i].size; k++) { for (j= 0; jCH_Ctrl[i].addr[k] != RegNum[j]) { Count ++; RegNum[Count-1] = (u8)(state->CH_Ctrl[i].addr[k]); } } } *count = Count; return 0; } } #ifdef _MXL_INTERNAL for (i = 0; i < state->MXL_Ctrl_Num ; i++) { if ( controlNum == state->MXL_Ctrl[i].Ctrl_Num ) { Count = 1; RegNum[0] = (u8)(state->MXL_Ctrl[i].addr[0]); for (k = 1; k < state->MXL_Ctrl[i].size; k++) { for (j = 0; jMXL_Ctrl[i].addr[k] != RegNum[j]) { Count ++; RegNum[Count-1] = (u8)state->MXL_Ctrl[i].addr[k]; } } } *count = Count; return 0; } } #endif *count = 0; return 1; } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_RegWriteBit // // // // Description: Write a register for specified register address, // // register bit and register bit value // // // // Globals: // // NONE // // // // Inputs: // // Tuner_struct : structure defined at higher level // // address : register address // // bit : register bit number // // bitVal : register bit value // // // // Outputs: // // NONE // // // // Return: // // NONE // // // /////////////////////////////////////////////////////////////////////////////// // DONE void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal) { struct mxl5005s_state *state = fe->tuner_priv; int i ; const u8 AND_MAP[8] = { 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF, 0x7F } ; const u8 OR_MAP[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } ; for (i = 0; i < state->TunerRegs_Num; i++) { if (state->TunerRegs[i].Reg_Num == address) { if (bitVal) state->TunerRegs[i].Reg_Val |= OR_MAP[bit]; else state->TunerRegs[i].Reg_Val &= AND_MAP[bit]; break ; } } } /////////////////////////////////////////////////////////////////////////////// // // // Function: MXL_Ceiling // // // // Description: Complete to closest increment of resolution // // // // Globals: // // NONE // // // // Functions used: // // NONE // // // // Inputs: // // value : Input number to compute // // resolution : Increment step // // // // Outputs: // // NONE // // // // Return: // // Computed value // // // /////////////////////////////////////////////////////////////////////////////// // DONE u32 MXL_Ceiling(u32 value, u32 resolution) { return (value/resolution + (value % resolution > 0 ? 1 : 0)); } // // Retrieve the Initialzation Registers // // DONE u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count) { u16 status = 0; int i ; u8 RegAddr[] = { 11, 12, 13, 22, 32, 43, 44, 53, 56, 59, 73, 76, 77, 91, 134, 135, 137, 147, 156, 166, 167, 168, 25 }; *count = sizeof(RegAddr) / sizeof(u8); status += MXL_BlockInit(fe); for (i = 0 ; i < *count; i++) { RegNum[i] = RegAddr[i]; status += MXL_RegRead(fe, RegNum[i], &RegVal[i]); } return status; } // DONE u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count) { u16 status = 0; int i ; //add 77, 166, 167, 168 register for 2.6.12 #ifdef _MXL_PRODUCTION u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 65, 68, 69, 70, 73, 92, 93, 106, 107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ; #else u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 68, 69, 70, 73, 92, 93, 106, 107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ; //u8 RegAddr[171]; //for (i=0; i<=170; i++) // RegAddr[i] = i; #endif *count = sizeof(RegAddr) / sizeof(u8); for (i = 0 ; i < *count; i++) { RegNum[i] = RegAddr[i]; status += MXL_RegRead(fe, RegNum[i], &RegVal[i]); } return status; } // DONE u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count) { u16 status = 0; int i; u8 RegAddr[] = {43, 136}; *count = sizeof(RegAddr) / sizeof(u8); for (i = 0; i < *count; i++) { RegNum[i] = RegAddr[i]; status += MXL_RegRead(fe, RegNum[i], &RegVal[i]); } return status; } // DONE u16 MXL_GetCHRegister_LowIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count) { u16 status = 0; int i; u8 RegAddr[] = { 138 }; *count = sizeof(RegAddr) / sizeof(u8); for (i = 0; i < *count; i++) { RegNum[i] = RegAddr[i]; status += MXL_RegRead(fe, RegNum[i], &RegVal[i]); } return status; } // DONE u16 MXL_GetMasterControl(u8 *MasterReg, int state) { if (state == 1) /* Load_Start */ *MasterReg = 0xF3; if (state == 2) /* Power_Down */ *MasterReg = 0x41; if (state == 3) /* Synth_Reset */ *MasterReg = 0xB1; if (state == 4) /* Seq_Off */ *MasterReg = 0xF1; return 0; } #ifdef _MXL_PRODUCTION u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range) { struct mxl5005s_state *state = fe->tuner_priv; u16 status = 0 ; if (VCO_Range == 1) { status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1); status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_DIVM, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0); if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 180224); } if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 222822); } if (state->Mode == 1) /* Digital Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 229376); } } if (VCO_Range == 2) { status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1); status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_DIVM, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41); if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438); } if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438); } if (state->Mode == 1) /* Digital Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 16384); } } if (VCO_Range == 3) { status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1); status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_DIVM, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42); if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670); } if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670); } if (state->Mode == 1) /* Digital Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 245760); } } if (VCO_Range == 4) { status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1); status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0); status += MXL_ControlWrite(fe, RFSYN_DIVM, 1); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1); status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1); status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0); status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27); if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438); } if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438); } if (state->Mode == 1) /* Digital Mode */ { status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0); status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40); status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27); status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 212992); } } return status; } // DONE u16 MXL_Hystersis_Test(struct dvb_frontend *fe, int Hystersis) { struct mxl5005s_state *state = fe->tuner_priv; u16 status = 0; if (Hystersis == 1) status += MXL_ControlWrite(fe, DN_BYPASS_AGC_I2C, 1); return status; } #endif /* Linux driver related functions */ int mxl5005s_init(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; u8 AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX]; u8 ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX]; int TableLen; dprintk(1, "%s()\n", __func__); mxl5005s_reset(fe); /* Tuner initialization stage 0 */ MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET); AddrTable[0] = MASTER_CONTROL_ADDR; ByteTable[0] |= state->config->AgcMasterByte; mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, 1); mxl5005s_AssignTunerMode(fe); // tunre_config /* Tuner initialization stage 1 */ MXL_GetInitRegister(fe, AddrTable, ByteTable, &TableLen); mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen); return 0; } int mxl5005s_AssignTunerMode(struct dvb_frontend *fe) { struct mxl5005s_state *state = fe->tuner_priv; struct mxl5005s_config *c = state->config; InitTunerControls(fe); /* Set MxL5005S parameters. */ MXL5005_TunerConfig( fe, c->mod_mode, c->if_mode, MXL5005S_BANDWIDTH_6MHZ, c->if_freq, c->xtal_freq, c->agc_mode, c->top, c->output_load, c->clock_out, c->div_out, c->cap_select, c->rssi_enable, MXL_QAM, c->tracking_filter); return 0; } static int mxl5005s_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { u32 freq; u32 bw; if (fe->ops.info.type == FE_OFDM) bw = params->u.ofdm.bandwidth; else bw = MXL5005S_BANDWIDTH_6MHZ; freq = params->frequency; /* Hz */ dprintk(1, "%s() freq=%d bw=%d\n", __func__, freq, bw); mxl5005s_SetRfFreqHz(fe, freq); msleep(350); return 0; } static int mxl5005s_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct mxl5005s_state *state = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *frequency = state->RF_IN; return 0; } static int mxl5005s_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct mxl5005s_state *state = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *bandwidth = state->Chan_Bandwidth; return 0; } static int mxl5005s_get_status(struct dvb_frontend *fe, u32 *status) { dprintk(1, "%s()\n", __func__); *status = 0; // *status = TUNER_STATUS_LOCKED; return 0; } static int mxl5005s_release(struct dvb_frontend *fe) { dprintk(1, "%s()\n", __func__); kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static const struct dvb_tuner_ops mxl5005s_tuner_ops = { .info = { .name = "MaxLinear MXL5005S", .frequency_min = 48000000, .frequency_max = 860000000, .frequency_step = 50000, }, .release = mxl5005s_release, .init = mxl5005s_init, .set_params = mxl5005s_set_params, .get_frequency = mxl5005s_get_frequency, .get_bandwidth = mxl5005s_get_bandwidth, .get_status = mxl5005s_get_status }; struct dvb_frontend *mxl5005s_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mxl5005s_config *config) { struct mxl5005s_state *state = NULL; dprintk(1, "%s()\n", __func__); state = kzalloc(sizeof(struct mxl5005s_state), GFP_KERNEL); if (state == NULL) return NULL; state->frontend = fe; state->config = config; state->i2c = i2c; printk(KERN_INFO "MXL5005S: Attached at address 0x%02x\n", config->i2c_address); memcpy(&fe->ops.tuner_ops, &mxl5005s_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = state; return fe; } EXPORT_SYMBOL(mxl5005s_attach); MODULE_DESCRIPTION("MaxLinear MXL5005S silicon tuner driver"); MODULE_AUTHOR("Jan Hoogenraad"); MODULE_AUTHOR("Barnaby Shearer"); MODULE_AUTHOR("Andy Hasper"); MODULE_AUTHOR("Steven Toth"); MODULE_LICENSE("GPL");