/* rc-core.c - handle IR scancode->keycode tables * * Copyright (C) 2009-2010 by Mauro Carvalho Chehab * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "rc-core-priv.h" /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ #define IR_TAB_MIN_SIZE 256 #define IR_TAB_MAX_SIZE 8192 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ #define IR_KEYPRESS_TIMEOUT 250 /* Used to keep track of known keymaps */ static LIST_HEAD(rc_map_list); static DEFINE_SPINLOCK(rc_map_lock); static struct rc_keymap *seek_rc_map(const char *name) { struct rc_keymap *map = NULL; spin_lock(&rc_map_lock); list_for_each_entry(map, &rc_map_list, list) { if (!strcmp(name, map->map.name)) { spin_unlock(&rc_map_lock); return map; } } spin_unlock(&rc_map_lock); return NULL; } struct ir_scancode_table *get_rc_map(const char *name) { struct rc_keymap *map; map = seek_rc_map(name); #ifdef MODULE if (!map) { int rc = request_module(name); if (rc < 0) { printk(KERN_ERR "Couldn't load IR keymap %s\n", name); return NULL; } msleep(20); /* Give some time for IR to register */ map = seek_rc_map(name); } #endif if (!map) { printk(KERN_ERR "IR keymap %s not found\n", name); return NULL; } printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); return &map->map; } EXPORT_SYMBOL_GPL(get_rc_map); int ir_register_map(struct rc_keymap *map) { spin_lock(&rc_map_lock); list_add_tail(&map->list, &rc_map_list); spin_unlock(&rc_map_lock); return 0; } EXPORT_SYMBOL_GPL(ir_register_map); void ir_unregister_map(struct rc_keymap *map) { spin_lock(&rc_map_lock); list_del(&map->list); spin_unlock(&rc_map_lock); } EXPORT_SYMBOL_GPL(ir_unregister_map); static struct ir_scancode empty[] = { { 0x2a, KEY_COFFEE }, }; static struct rc_keymap empty_map = { .map = { .scan = empty, .size = ARRAY_SIZE(empty), .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ .name = RC_MAP_EMPTY, } }; /** * ir_create_table() - initializes a scancode table * @rc_tab: the ir_scancode_table to initialize * @name: name to assign to the table * @rc_type: ir type to assign to the new table * @size: initial size of the table * @return: zero on success or a negative error code * * This routine will initialize the ir_scancode_table and will allocate * memory to hold at least the specified number of elements. */ static int ir_create_table(struct ir_scancode_table *rc_tab, const char *name, u64 rc_type, size_t size) { rc_tab->name = name; rc_tab->rc_type = rc_type; rc_tab->alloc = roundup_pow_of_two(size * sizeof(struct ir_scancode)); rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode); rc_tab->scan = kmalloc(rc_tab->alloc, GFP_KERNEL); if (!rc_tab->scan) return -ENOMEM; IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", rc_tab->size, rc_tab->alloc); return 0; } /** * ir_free_table() - frees memory allocated by a scancode table * @rc_tab: the table whose mappings need to be freed * * This routine will free memory alloctaed for key mappings used by given * scancode table. */ static void ir_free_table(struct ir_scancode_table *rc_tab) { rc_tab->size = 0; kfree(rc_tab->scan); rc_tab->scan = NULL; } /** * ir_resize_table() - resizes a scancode table if necessary * @rc_tab: the ir_scancode_table to resize * @gfp_flags: gfp flags to use when allocating memory * @return: zero on success or a negative error code * * This routine will shrink the ir_scancode_table if it has lots of * unused entries and grow it if it is full. */ static int ir_resize_table(struct ir_scancode_table *rc_tab, gfp_t gfp_flags) { unsigned int oldalloc = rc_tab->alloc; unsigned int newalloc = oldalloc; struct ir_scancode *oldscan = rc_tab->scan; struct ir_scancode *newscan; if (rc_tab->size == rc_tab->len) { /* All entries in use -> grow keytable */ if (rc_tab->alloc >= IR_TAB_MAX_SIZE) return -ENOMEM; newalloc *= 2; IR_dprintk(1, "Growing table to %u bytes\n", newalloc); } if ((rc_tab->len * 3 < rc_tab->size) && (oldalloc > IR_TAB_MIN_SIZE)) { /* Less than 1/3 of entries in use -> shrink keytable */ newalloc /= 2; IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); } if (newalloc == oldalloc) return 0; newscan = kmalloc(newalloc, gfp_flags); if (!newscan) { IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); return -ENOMEM; } memcpy(newscan, rc_tab->scan, rc_tab->len * sizeof(struct ir_scancode)); rc_tab->scan = newscan; rc_tab->alloc = newalloc; rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode); kfree(oldscan); return 0; } /** * ir_update_mapping() - set a keycode in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @rc_tab: scancode table to be adjusted * @index: index of the mapping that needs to be updated * @keycode: the desired keycode * @return: previous keycode assigned to the mapping * * This routine is used to update scancode->keycode mapping at given * position. */ static unsigned int ir_update_mapping(struct rc_dev *dev, struct ir_scancode_table *rc_tab, unsigned int index, unsigned int new_keycode) { int old_keycode = rc_tab->scan[index].keycode; int i; /* Did the user wish to remove the mapping? */ if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", index, rc_tab->scan[index].scancode); rc_tab->len--; memmove(&rc_tab->scan[index], &rc_tab->scan[index+ 1], (rc_tab->len - index) * sizeof(struct ir_scancode)); } else { IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", index, old_keycode == KEY_RESERVED ? "New" : "Replacing", rc_tab->scan[index].scancode, new_keycode); rc_tab->scan[index].keycode = new_keycode; __set_bit(new_keycode, dev->input_dev->keybit); } if (old_keycode != KEY_RESERVED) { /* A previous mapping was updated... */ __clear_bit(old_keycode, dev->input_dev->keybit); /* ... but another scancode might use the same keycode */ for (i = 0; i < rc_tab->len; i++) { if (rc_tab->scan[i].keycode == old_keycode) { __set_bit(old_keycode, dev->input_dev->keybit); break; } } /* Possibly shrink the keytable, failure is not a problem */ ir_resize_table(rc_tab, GFP_ATOMIC); } return old_keycode; } /** * ir_establish_scancode() - set a keycode in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @rc_tab: scancode table to be searched * @scancode: the desired scancode * @resize: controls whether we allowed to resize the table to * accomodate not yet present scancodes * @return: index of the mapping containing scancode in question * or -1U in case of failure. * * This routine is used to locate given scancode in ir_scancode_table. * If scancode is not yet present the routine will allocate a new slot * for it. */ static unsigned int ir_establish_scancode(struct rc_dev *dev, struct ir_scancode_table *rc_tab, unsigned int scancode, bool resize) { unsigned int i; /* * Unfortunately, some hardware-based IR decoders don't provide * all bits for the complete IR code. In general, they provide only * the command part of the IR code. Yet, as it is possible to replace * the provided IR with another one, it is needed to allow loading * IR tables from other remotes. So, we support specifying a mask to * indicate the valid bits of the scancodes. */ if (dev->scanmask) scancode &= dev->scanmask; /* First check if we already have a mapping for this ir command */ for (i = 0; i < rc_tab->len; i++) { if (rc_tab->scan[i].scancode == scancode) return i; /* Keytable is sorted from lowest to highest scancode */ if (rc_tab->scan[i].scancode >= scancode) break; } /* No previous mapping found, we might need to grow the table */ if (rc_tab->size == rc_tab->len) { if (!resize || ir_resize_table(rc_tab, GFP_ATOMIC)) return -1U; } /* i is the proper index to insert our new keycode */ if (i < rc_tab->len) memmove(&rc_tab->scan[i + 1], &rc_tab->scan[i], (rc_tab->len - i) * sizeof(struct ir_scancode)); rc_tab->scan[i].scancode = scancode; rc_tab->scan[i].keycode = KEY_RESERVED; rc_tab->len++; return i; } /** * ir_setkeycode() - set a keycode in the scancode->keycode table * @idev: the struct input_dev device descriptor * @scancode: the desired scancode * @keycode: result * @return: -EINVAL if the keycode could not be inserted, otherwise zero. * * This routine is used to handle evdev EVIOCSKEY ioctl. */ static int ir_setkeycode(struct input_dev *idev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct rc_dev *rdev = input_get_drvdata(idev); struct ir_scancode_table *rc_tab = &rdev->rc_tab; unsigned int index; unsigned int scancode; int retval; unsigned long flags; spin_lock_irqsave(&rc_tab->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; if (index >= rc_tab->len) { retval = -EINVAL; goto out; } } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_establish_scancode(rdev, rc_tab, scancode, true); if (index >= rc_tab->len) { retval = -ENOMEM; goto out; } } *old_keycode = ir_update_mapping(rdev, rc_tab, index, ke->keycode); out: spin_unlock_irqrestore(&rc_tab->lock, flags); return retval; } /** * ir_setkeytable() - sets several entries in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @to: the struct ir_scancode_table to copy entries to * @from: the struct ir_scancode_table to copy entries from * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. * * This routine is used to handle table initialization. */ static int ir_setkeytable(struct rc_dev *dev, const struct ir_scancode_table *from) { struct ir_scancode_table *rc_tab = &dev->rc_tab; unsigned int i, index; int rc; rc = ir_create_table(rc_tab, from->name, from->rc_type, from->size); if (rc) return rc; IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", rc_tab->size, rc_tab->alloc); for (i = 0; i < from->size; i++) { index = ir_establish_scancode(dev, rc_tab, from->scan[i].scancode, false); if (index >= rc_tab->len) { rc = -ENOMEM; break; } ir_update_mapping(dev, rc_tab, index, from->scan[i].keycode); } if (rc) ir_free_table(rc_tab); return rc; } /** * ir_lookup_by_scancode() - locate mapping by scancode * @rc_tab: the struct ir_scancode_table to search * @scancode: scancode to look for in the table * @return: index in the table, -1U if not found * * This routine performs binary search in RC keykeymap table for * given scancode. */ static unsigned int ir_lookup_by_scancode(const struct ir_scancode_table *rc_tab, unsigned int scancode) { int start = 0; int end = rc_tab->len - 1; int mid; while (start <= end) { mid = (start + end) / 2; if (rc_tab->scan[mid].scancode < scancode) start = mid + 1; else if (rc_tab->scan[mid].scancode > scancode) end = mid - 1; else return mid; } return -1U; } /** * ir_getkeycode() - get a keycode from the scancode->keycode table * @idev: the struct input_dev device descriptor * @scancode: the desired scancode * @keycode: used to return the keycode, if found, or KEY_RESERVED * @return: always returns zero. * * This routine is used to handle evdev EVIOCGKEY ioctl. */ static int ir_getkeycode(struct input_dev *idev, struct input_keymap_entry *ke) { struct rc_dev *rdev = input_get_drvdata(idev); struct ir_scancode_table *rc_tab = &rdev->rc_tab; struct ir_scancode *entry; unsigned long flags; unsigned int index; unsigned int scancode; int retval; spin_lock_irqsave(&rc_tab->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_lookup_by_scancode(rc_tab, scancode); } if (index >= rc_tab->len) { if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) IR_dprintk(1, "unknown key for scancode 0x%04x\n", scancode); retval = -EINVAL; goto out; } entry = &rc_tab->scan[index]; ke->index = index; ke->keycode = entry->keycode; ke->len = sizeof(entry->scancode); memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); retval = 0; out: spin_unlock_irqrestore(&rc_tab->lock, flags); return retval; } /** * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode * @dev: the struct rc_dev descriptor of the device * @scancode: the scancode to look for * @return: the corresponding keycode, or KEY_RESERVED * * This routine is used by drivers which need to convert a scancode to a * keycode. Normally it should not be used since drivers should have no * interest in keycodes. */ u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) { struct ir_scancode_table *rc_tab = &dev->rc_tab; unsigned int keycode; unsigned int index; unsigned long flags; spin_lock_irqsave(&rc_tab->lock, flags); index = ir_lookup_by_scancode(rc_tab, scancode); keycode = index < rc_tab->len ? rc_tab->scan[index].keycode : KEY_RESERVED; spin_unlock_irqrestore(&rc_tab->lock, flags); if (keycode != KEY_RESERVED) IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", dev->input_name, scancode, keycode); return keycode; } EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); /** * ir_do_keyup() - internal function to signal the release of a keypress * @dev: the struct rc_dev descriptor of the device * * This function is used internally to release a keypress, it must be * called with keylock held. */ static void ir_do_keyup(struct rc_dev *dev) { if (!dev->keypressed) return; IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); input_report_key(dev->input_dev, dev->last_keycode, 0); input_sync(dev->input_dev); dev->keypressed = false; } /** * rc_keyup() - signals the release of a keypress * @dev: the struct rc_dev descriptor of the device * * This routine is used to signal that a key has been released on the * remote control. */ void rc_keyup(struct rc_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->keylock, flags); ir_do_keyup(dev); spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keyup); /** * ir_timer_keyup() - generates a keyup event after a timeout * @cookie: a pointer to the struct rc_dev for the device * * This routine will generate a keyup event some time after a keydown event * is generated when no further activity has been detected. */ static void ir_timer_keyup(unsigned long cookie) { struct rc_dev *dev = (struct rc_dev *)cookie; unsigned long flags; /* * ir->keyup_jiffies is used to prevent a race condition if a * hardware interrupt occurs at this point and the keyup timer * event is moved further into the future as a result. * * The timer will then be reactivated and this function called * again in the future. We need to exit gracefully in that case * to allow the input subsystem to do its auto-repeat magic or * a keyup event might follow immediately after the keydown. */ spin_lock_irqsave(&dev->keylock, flags); if (time_is_before_eq_jiffies(dev->keyup_jiffies)) ir_do_keyup(dev); spin_unlock_irqrestore(&dev->keylock, flags); } /** * rc_repeat() - signals that a key is still pressed * @dev: the struct rc_dev descriptor of the device * * This routine is used by IR decoders when a repeat message which does * not include the necessary bits to reproduce the scancode has been * received. */ void rc_repeat(struct rc_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->keylock, flags); input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); if (!dev->keypressed) goto out; dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); mod_timer(&dev->timer_keyup, dev->keyup_jiffies); out: spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_repeat); /** * ir_do_keydown() - internal function to process a keypress * @dev: the struct rc_dev descriptor of the device * @scancode: the scancode of the keypress * @keycode: the keycode of the keypress * @toggle: the toggle value of the keypress * * This function is used internally to register a keypress, it must be * called with keylock held. */ static void ir_do_keydown(struct rc_dev *dev, int scancode, u32 keycode, u8 toggle) { input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); /* Repeat event? */ if (dev->keypressed && dev->last_scancode == scancode && dev->last_toggle == toggle) return; /* Release old keypress */ ir_do_keyup(dev); dev->last_scancode = scancode; dev->last_toggle = toggle; dev->last_keycode = keycode; if (keycode == KEY_RESERVED) return; /* Register a keypress */ dev->keypressed = true; IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n", dev->input_name, keycode, scancode); input_report_key(dev->input_dev, dev->last_keycode, 1); input_sync(dev->input_dev); } /** * rc_keydown() - generates input event for a key press * @dev: the struct rc_dev descriptor of the device * @scancode: the scancode that we're seeking * @toggle: the toggle value (protocol dependent, if the protocol doesn't * support toggle values, this should be set to zero) * * This routine is used to signal that a key has been pressed on the * remote control. */ void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) { unsigned long flags; u32 keycode = rc_g_keycode_from_table(dev, scancode); spin_lock_irqsave(&dev->keylock, flags); ir_do_keydown(dev, scancode, keycode, toggle); if (dev->keypressed) { dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); mod_timer(&dev->timer_keyup, dev->keyup_jiffies); } spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keydown); /** * rc_keydown_notimeout() - generates input event for a key press without * an automatic keyup event at a later time * @dev: the struct rc_dev descriptor of the device * @scancode: the scancode that we're seeking * @toggle: the toggle value (protocol dependent, if the protocol doesn't * support toggle values, this should be set to zero) * * This routine is used to signal that a key has been pressed on the * remote control. The driver must manually call rc_keyup() at a later stage. */ void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) { unsigned long flags; u32 keycode = rc_g_keycode_from_table(dev, scancode); spin_lock_irqsave(&dev->keylock, flags); ir_do_keydown(dev, scancode, keycode, toggle); spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keydown_notimeout); static int ir_open(struct input_dev *idev) { struct rc_dev *rdev = input_get_drvdata(idev); return rdev->open(rdev); } static void ir_close(struct input_dev *idev) { struct rc_dev *rdev = input_get_drvdata(idev); rdev->close(rdev); } /* class for /sys/class/rc */ static char *ir_devnode(struct device *dev, mode_t *mode) { return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); } static struct class ir_input_class = { .name = "rc", .devnode = ir_devnode, }; static struct { u64 type; char *name; } proto_names[] = { { RC_TYPE_UNKNOWN, "unknown" }, { RC_TYPE_RC5, "rc-5" }, { RC_TYPE_NEC, "nec" }, { RC_TYPE_RC6, "rc-6" }, { RC_TYPE_JVC, "jvc" }, { RC_TYPE_SONY, "sony" }, { RC_TYPE_RC5_SZ, "rc-5-sz" }, { RC_TYPE_LIRC, "lirc" }, }; #define PROTO_NONE "none" /** * show_protocols() - shows the current IR protocol(s) * @device: the device descriptor * @mattr: the device attribute struct (unused) * @buf: a pointer to the output buffer * * This routine is a callback routine for input read the IR protocol type(s). * it is trigged by reading /sys/class/rc/rc?/protocols. * It returns the protocol names of supported protocols. * Enabled protocols are printed in brackets. */ static ssize_t show_protocols(struct device *device, struct device_attribute *mattr, char *buf) { struct rc_dev *dev = to_rc_dev(device); u64 allowed, enabled; char *tmp = buf; int i; /* Device is being removed */ if (!dev) return -EINVAL; if (dev->driver_type == RC_DRIVER_SCANCODE) { enabled = dev->rc_tab.rc_type; allowed = dev->allowed_protos; } else { enabled = dev->raw->enabled_protocols; allowed = ir_raw_get_allowed_protocols(); } IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", (long long)allowed, (long long)enabled); for (i = 0; i < ARRAY_SIZE(proto_names); i++) { if (allowed & enabled & proto_names[i].type) tmp += sprintf(tmp, "[%s] ", proto_names[i].name); else if (allowed & proto_names[i].type) tmp += sprintf(tmp, "%s ", proto_names[i].name); } if (tmp != buf) tmp--; *tmp = '\n'; return tmp + 1 - buf; } /** * store_protocols() - changes the current IR protocol(s) * @device: the device descriptor * @mattr: the device attribute struct (unused) * @buf: a pointer to the input buffer * @len: length of the input buffer * * This routine is for changing the IR protocol type. * It is trigged by writing to /sys/class/rc/rc?/protocols. * Writing "+proto" will add a protocol to the list of enabled protocols. * Writing "-proto" will remove a protocol from the list of enabled protocols. * Writing "proto" will enable only "proto". * Writing "none" will disable all protocols. * Returns -EINVAL if an invalid protocol combination or unknown protocol name * is used, otherwise @len. */ static ssize_t store_protocols(struct device *device, struct device_attribute *mattr, const char *data, size_t len) { struct rc_dev *dev = to_rc_dev(device); bool enable, disable; const char *tmp; u64 type; u64 mask; int rc, i, count = 0; unsigned long flags; /* Device is being removed */ if (!dev) return -EINVAL; if (dev->driver_type == RC_DRIVER_SCANCODE) type = dev->rc_tab.rc_type; else if (dev->raw) type = dev->raw->enabled_protocols; else { IR_dprintk(1, "Protocol switching not supported\n"); return -EINVAL; } while ((tmp = strsep((char **) &data, " \n")) != NULL) { if (!*tmp) break; if (*tmp == '+') { enable = true; disable = false; tmp++; } else if (*tmp == '-') { enable = false; disable = true; tmp++; } else { enable = false; disable = false; } if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) { tmp += sizeof(PROTO_NONE); mask = 0; count++; } else { for (i = 0; i < ARRAY_SIZE(proto_names); i++) { if (!strncasecmp(tmp, proto_names[i].name, strlen(proto_names[i].name))) { tmp += strlen(proto_names[i].name); mask = proto_names[i].type; break; } } if (i == ARRAY_SIZE(proto_names)) { IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); return -EINVAL; } count++; } if (enable) type |= mask; else if (disable) type &= ~mask; else type = mask; } if (!count) { IR_dprintk(1, "Protocol not specified\n"); return -EINVAL; } if (dev->change_protocol) { rc = dev->change_protocol(dev, type); if (rc < 0) { IR_dprintk(1, "Error setting protocols to 0x%llx\n", (long long)type); return -EINVAL; } } if (dev->driver_type == RC_DRIVER_SCANCODE) { spin_lock_irqsave(&dev->rc_tab.lock, flags); dev->rc_tab.rc_type = type; spin_unlock_irqrestore(&dev->rc_tab.lock, flags); } else { dev->raw->enabled_protocols = type; } IR_dprintk(1, "Current protocol(s): 0x%llx\n", (long long)type); return len; } static void rc_dev_release(struct device *device) { struct rc_dev *dev = to_rc_dev(device); kfree(dev); module_put(THIS_MODULE); } #define ADD_HOTPLUG_VAR(fmt, val...) \ do { \ int err = add_uevent_var(env, fmt, val); \ if (err) \ return err; \ } while (0) static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) { struct rc_dev *dev = to_rc_dev(device); if (dev->rc_tab.name) ADD_HOTPLUG_VAR("NAME=%s", dev->rc_tab.name); if (dev->driver_name) ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); return 0; } /* * Static device attribute struct with the sysfs attributes for IR's */ static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR, show_protocols, store_protocols); static struct attribute *rc_dev_attrs[] = { &dev_attr_protocols.attr, NULL, }; static struct attribute_group rc_dev_attr_grp = { .attrs = rc_dev_attrs, }; static const struct attribute_group *rc_dev_attr_groups[] = { &rc_dev_attr_grp, NULL }; static struct device_type rc_dev_type = { .groups = rc_dev_attr_groups, .release = rc_dev_release, .uevent = rc_dev_uevent, }; struct rc_dev *rc_allocate_device(void) { struct rc_dev *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; dev->input_dev = input_allocate_device(); if (!dev->input_dev) { kfree(dev); return NULL; } dev->input_dev->getkeycode_new = ir_getkeycode; dev->input_dev->setkeycode_new = ir_setkeycode; input_set_drvdata(dev->input_dev, dev); spin_lock_init(&dev->rc_tab.lock); spin_lock_init(&dev->keylock); setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); dev->dev.type = &rc_dev_type; dev->dev.class = &ir_input_class; device_initialize(&dev->dev); __module_get(THIS_MODULE); return dev; } EXPORT_SYMBOL_GPL(rc_allocate_device); void rc_free_device(struct rc_dev *dev) { if (dev) { input_free_device(dev->input_dev); put_device(&dev->dev); } } EXPORT_SYMBOL_GPL(rc_free_device); int rc_register_device(struct rc_dev *dev) { static atomic_t devno = ATOMIC_INIT(0); struct ir_scancode_table *rc_tab; const char *path; int rc; if (!dev || !dev->map_name) return -EINVAL; rc_tab = get_rc_map(dev->map_name); if (!rc_tab) rc_tab = get_rc_map(RC_MAP_EMPTY); if (!rc_tab || !rc_tab->scan || rc_tab->size == 0) return -EINVAL; set_bit(EV_KEY, dev->input_dev->evbit); set_bit(EV_REP, dev->input_dev->evbit); set_bit(EV_MSC, dev->input_dev->evbit); set_bit(MSC_SCAN, dev->input_dev->mscbit); if (dev->open) dev->input_dev->open = ir_open; if (dev->close) dev->input_dev->close = ir_close; dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1); dev_set_name(&dev->dev, "rc%ld", dev->devno); dev_set_drvdata(&dev->dev, dev); rc = device_add(&dev->dev); if (rc) return rc; rc = ir_setkeytable(dev, rc_tab); if (rc) goto out_dev; dev->input_dev->dev.parent = &dev->dev; memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); dev->input_dev->phys = dev->input_phys; dev->input_dev->name = dev->input_name; rc = input_register_device(dev->input_dev); if (rc) goto out_table; /* * Default delay of 250ms is too short for some protocols, expecially * since the timeout is currently set to 250ms. Increase it to 500ms, * to avoid wrong repetition of the keycodes. Note that this must be * set after the call to input_register_device(). */ dev->input_dev->rep[REP_DELAY] = 500; path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); printk(KERN_INFO "%s: %s as %s\n", dev_name(&dev->dev), dev->input_name ? dev->input_name : "Unspecified device", path ? path : "N/A"); kfree(path); if (dev->driver_type == RC_DRIVER_IR_RAW) { rc = ir_raw_event_register(dev); if (rc < 0) goto out_input; } if (dev->change_protocol) { rc = dev->change_protocol(dev, rc_tab->rc_type); if (rc < 0) goto out_raw; } IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", dev->devno, dev->driver_name ? dev->driver_name : "unknown", rc_tab->name ? rc_tab->name : "unknown", dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); return 0; out_raw: if (dev->driver_type == RC_DRIVER_IR_RAW) ir_raw_event_unregister(dev); out_input: input_unregister_device(dev->input_dev); dev->input_dev = NULL; out_table: ir_free_table(&dev->rc_tab); out_dev: device_del(&dev->dev); return rc; } EXPORT_SYMBOL_GPL(rc_register_device); void rc_unregister_device(struct rc_dev *dev) { if (!dev) return; del_timer_sync(&dev->timer_keyup); if (dev->driver_type == RC_DRIVER_IR_RAW) ir_raw_event_unregister(dev); input_unregister_device(dev->input_dev); dev->input_dev = NULL; ir_free_table(&dev->rc_tab); IR_dprintk(1, "Freed keycode table\n"); device_unregister(&dev->dev); } EXPORT_SYMBOL_GPL(rc_unregister_device); /* * Init/exit code for the module. Basically, creates/removes /sys/class/rc */ static int __init rc_core_init(void) { int rc = class_register(&ir_input_class); if (rc) { printk(KERN_ERR "rc_core: unable to register rc class\n"); return rc; } /* Initialize/load the decoders/keymap code that will be used */ ir_raw_init(); ir_register_map(&empty_map); return 0; } static void __exit rc_core_exit(void) { class_unregister(&ir_input_class); ir_unregister_map(&empty_map); } module_init(rc_core_init); module_exit(rc_core_exit); int rc_core_debug; /* ir_debug level (0,1,2) */ EXPORT_SYMBOL_GPL(rc_core_debug); module_param_named(debug, rc_core_debug, int, 0644); MODULE_AUTHOR("Mauro Carvalho Chehab "); MODULE_LICENSE("GPL");