/* * linux/drivers/mmc/card/mmc_test.c * * Copyright 2007-2008 Pierre Ossman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. */ #include #include #include #include #include #include #include /* For nr_free_buffer_pages() */ #include #include #include #include #define RESULT_OK 0 #define RESULT_FAIL 1 #define RESULT_UNSUP_HOST 2 #define RESULT_UNSUP_CARD 3 #define BUFFER_ORDER 2 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER) /* * Limit the test area size to the maximum MMC HC erase group size. Note that * the maximum SD allocation unit size is just 4MiB. */ #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024) /** * struct mmc_test_pages - pages allocated by 'alloc_pages()'. * @page: first page in the allocation * @order: order of the number of pages allocated */ struct mmc_test_pages { struct page *page; unsigned int order; }; /** * struct mmc_test_mem - allocated memory. * @arr: array of allocations * @cnt: number of allocations */ struct mmc_test_mem { struct mmc_test_pages *arr; unsigned int cnt; }; /** * struct mmc_test_area - information for performance tests. * @max_sz: test area size (in bytes) * @dev_addr: address on card at which to do performance tests * @max_tfr: maximum transfer size allowed by driver (in bytes) * @max_segs: maximum segments allowed by driver in scatterlist @sg * @max_seg_sz: maximum segment size allowed by driver * @blocks: number of (512 byte) blocks currently mapped by @sg * @sg_len: length of currently mapped scatterlist @sg * @mem: allocated memory * @sg: scatterlist */ struct mmc_test_area { unsigned long max_sz; unsigned int dev_addr; unsigned int max_tfr; unsigned int max_segs; unsigned int max_seg_sz; unsigned int blocks; unsigned int sg_len; struct mmc_test_mem *mem; struct scatterlist *sg; }; /** * struct mmc_test_transfer_result - transfer results for performance tests. * @link: double-linked list * @count: amount of group of sectors to check * @sectors: amount of sectors to check in one group * @ts: time values of transfer * @rate: calculated transfer rate * @iops: I/O operations per second (times 100) */ struct mmc_test_transfer_result { struct list_head link; unsigned int count; unsigned int sectors; struct timespec ts; unsigned int rate; unsigned int iops; }; /** * struct mmc_test_general_result - results for tests. * @link: double-linked list * @card: card under test * @testcase: number of test case * @result: result of test run * @tr_lst: transfer measurements if any as mmc_test_transfer_result */ struct mmc_test_general_result { struct list_head link; struct mmc_card *card; int testcase; int result; struct list_head tr_lst; }; /** * struct mmc_test_dbgfs_file - debugfs related file. * @link: double-linked list * @card: card under test * @file: file created under debugfs */ struct mmc_test_dbgfs_file { struct list_head link; struct mmc_card *card; struct dentry *file; }; /** * struct mmc_test_card - test information. * @card: card under test * @scratch: transfer buffer * @buffer: transfer buffer * @highmem: buffer for highmem tests * @area: information for performance tests * @gr: pointer to results of current testcase */ struct mmc_test_card { struct mmc_card *card; u8 scratch[BUFFER_SIZE]; u8 *buffer; #ifdef CONFIG_HIGHMEM struct page *highmem; #endif struct mmc_test_area area; struct mmc_test_general_result *gr; }; enum mmc_test_prep_media { MMC_TEST_PREP_NONE = 0, MMC_TEST_PREP_WRITE_FULL = 1 << 0, MMC_TEST_PREP_ERASE = 1 << 1, }; struct mmc_test_multiple_rw { unsigned int *sg_len; unsigned int *bs; unsigned int len; unsigned int size; bool do_write; bool do_nonblock_req; enum mmc_test_prep_media prepare; }; struct mmc_test_async_req { struct mmc_async_req areq; struct mmc_test_card *test; }; /*******************************************************************/ /* General helper functions */ /*******************************************************************/ /* * Configure correct block size in card */ static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size) { return mmc_set_blocklen(test->card, size); } /* * Fill in the mmc_request structure given a set of transfer parameters. */ static void mmc_test_prepare_mrq(struct mmc_test_card *test, struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len, unsigned dev_addr, unsigned blocks, unsigned blksz, int write) { BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop); if (blocks > 1) { mrq->cmd->opcode = write ? MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK; } else { mrq->cmd->opcode = write ? MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK; } mrq->cmd->arg = dev_addr; if (!mmc_card_blockaddr(test->card)) mrq->cmd->arg <<= 9; mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; if (blocks == 1) mrq->stop = NULL; else { mrq->stop->opcode = MMC_STOP_TRANSMISSION; mrq->stop->arg = 0; mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC; } mrq->data->blksz = blksz; mrq->data->blocks = blocks; mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ; mrq->data->sg = sg; mrq->data->sg_len = sg_len; mmc_set_data_timeout(mrq->data, test->card); } static int mmc_test_busy(struct mmc_command *cmd) { return !(cmd->resp[0] & R1_READY_FOR_DATA) || (R1_CURRENT_STATE(cmd->resp[0]) == 7); } /* * Wait for the card to finish the busy state */ static int mmc_test_wait_busy(struct mmc_test_card *test) { int ret, busy; struct mmc_command cmd = {0}; busy = 0; do { memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_SEND_STATUS; cmd.arg = test->card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; ret = mmc_wait_for_cmd(test->card->host, &cmd, 0); if (ret) break; if (!busy && mmc_test_busy(&cmd)) { busy = 1; if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) printk(KERN_INFO "%s: Warning: Host did not " "wait for busy state to end.\n", mmc_hostname(test->card->host)); } } while (mmc_test_busy(&cmd)); return ret; } /* * Transfer a single sector of kernel addressable data */ static int mmc_test_buffer_transfer(struct mmc_test_card *test, u8 *buffer, unsigned addr, unsigned blksz, int write) { int ret; struct mmc_request mrq = {0}; struct mmc_command cmd = {0}; struct mmc_command stop = {0}; struct mmc_data data = {0}; struct scatterlist sg; mrq.cmd = &cmd; mrq.data = &data; mrq.stop = &stop; sg_init_one(&sg, buffer, blksz); mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write); mmc_wait_for_req(test->card->host, &mrq); if (cmd.error) return cmd.error; if (data.error) return data.error; ret = mmc_test_wait_busy(test); if (ret) return ret; return 0; } static void mmc_test_free_mem(struct mmc_test_mem *mem) { if (!mem) return; while (mem->cnt--) __free_pages(mem->arr[mem->cnt].page, mem->arr[mem->cnt].order); kfree(mem->arr); kfree(mem); } /* * Allocate a lot of memory, preferably max_sz but at least min_sz. In case * there isn't much memory do not exceed 1/16th total lowmem pages. Also do * not exceed a maximum number of segments and try not to make segments much * bigger than maximum segment size. */ static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz, unsigned long max_sz, unsigned int max_segs, unsigned int max_seg_sz) { unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE); unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE); unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE); unsigned long page_cnt = 0; unsigned long limit = nr_free_buffer_pages() >> 4; struct mmc_test_mem *mem; if (max_page_cnt > limit) max_page_cnt = limit; if (min_page_cnt > max_page_cnt) min_page_cnt = max_page_cnt; if (max_seg_page_cnt > max_page_cnt) max_seg_page_cnt = max_page_cnt; if (max_segs > max_page_cnt) max_segs = max_page_cnt; mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL); if (!mem) return NULL; mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs, GFP_KERNEL); if (!mem->arr) goto out_free; while (max_page_cnt) { struct page *page; unsigned int order; gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN | __GFP_NORETRY; order = get_order(max_seg_page_cnt << PAGE_SHIFT); while (1) { page = alloc_pages(flags, order); if (page || !order) break; order -= 1; } if (!page) { if (page_cnt < min_page_cnt) goto out_free; break; } mem->arr[mem->cnt].page = page; mem->arr[mem->cnt].order = order; mem->cnt += 1; if (max_page_cnt <= (1UL << order)) break; max_page_cnt -= 1UL << order; page_cnt += 1UL << order; if (mem->cnt >= max_segs) { if (page_cnt < min_page_cnt) goto out_free; break; } } return mem; out_free: mmc_test_free_mem(mem); return NULL; } /* * Map memory into a scatterlist. Optionally allow the same memory to be * mapped more than once. */ static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size, struct scatterlist *sglist, int repeat, unsigned int max_segs, unsigned int max_seg_sz, unsigned int *sg_len, int min_sg_len) { struct scatterlist *sg = NULL; unsigned int i; unsigned long sz = size; sg_init_table(sglist, max_segs); if (min_sg_len > max_segs) min_sg_len = max_segs; *sg_len = 0; do { for (i = 0; i < mem->cnt; i++) { unsigned long len = PAGE_SIZE << mem->arr[i].order; if (min_sg_len && (size / min_sg_len < len)) len = ALIGN(size / min_sg_len, 512); if (len > sz) len = sz; if (len > max_seg_sz) len = max_seg_sz; if (sg) sg = sg_next(sg); else sg = sglist; if (!sg) return -EINVAL; sg_set_page(sg, mem->arr[i].page, len, 0); sz -= len; *sg_len += 1; if (!sz) break; } } while (sz && repeat); if (sz) return -EINVAL; if (sg) sg_mark_end(sg); return 0; } /* * Map memory into a scatterlist so that no pages are contiguous. Allow the * same memory to be mapped more than once. */ static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem, unsigned long sz, struct scatterlist *sglist, unsigned int max_segs, unsigned int max_seg_sz, unsigned int *sg_len) { struct scatterlist *sg = NULL; unsigned int i = mem->cnt, cnt; unsigned long len; void *base, *addr, *last_addr = NULL; sg_init_table(sglist, max_segs); *sg_len = 0; while (sz) { base = page_address(mem->arr[--i].page); cnt = 1 << mem->arr[i].order; while (sz && cnt) { addr = base + PAGE_SIZE * --cnt; if (last_addr && last_addr + PAGE_SIZE == addr) continue; last_addr = addr; len = PAGE_SIZE; if (len > max_seg_sz) len = max_seg_sz; if (len > sz) len = sz; if (sg) sg = sg_next(sg); else sg = sglist; if (!sg) return -EINVAL; sg_set_page(sg, virt_to_page(addr), len, 0); sz -= len; *sg_len += 1; } if (i == 0) i = mem->cnt; } if (sg) sg_mark_end(sg); return 0; } /* * Calculate transfer rate in bytes per second. */ static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts) { uint64_t ns; ns = ts->tv_sec; ns *= 1000000000; ns += ts->tv_nsec; bytes *= 1000000000; while (ns > UINT_MAX) { bytes >>= 1; ns >>= 1; } if (!ns) return 0; do_div(bytes, (uint32_t)ns); return bytes; } /* * Save transfer results for future usage */ static void mmc_test_save_transfer_result(struct mmc_test_card *test, unsigned int count, unsigned int sectors, struct timespec ts, unsigned int rate, unsigned int iops) { struct mmc_test_transfer_result *tr; if (!test->gr) return; tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL); if (!tr) return; tr->count = count; tr->sectors = sectors; tr->ts = ts; tr->rate = rate; tr->iops = iops; list_add_tail(&tr->link, &test->gr->tr_lst); } /* * Print the transfer rate. */ static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes, struct timespec *ts1, struct timespec *ts2) { unsigned int rate, iops, sectors = bytes >> 9; struct timespec ts; ts = timespec_sub(*ts2, *ts1); rate = mmc_test_rate(bytes, &ts); iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */ printk(KERN_INFO "%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu " "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n", mmc_hostname(test->card->host), sectors, sectors >> 1, (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024, iops / 100, iops % 100); mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops); } /* * Print the average transfer rate. */ static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes, unsigned int count, struct timespec *ts1, struct timespec *ts2) { unsigned int rate, iops, sectors = bytes >> 9; uint64_t tot = bytes * count; struct timespec ts; ts = timespec_sub(*ts2, *ts1); rate = mmc_test_rate(tot, &ts); iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */ printk(KERN_INFO "%s: Transfer of %u x %u sectors (%u x %u%s KiB) took " "%lu.%09lu seconds (%u kB/s, %u KiB/s, " "%u.%02u IOPS, sg_len %d)\n", mmc_hostname(test->card->host), count, sectors, count, sectors >> 1, (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024, iops / 100, iops % 100, test->area.sg_len); mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops); } /* * Return the card size in sectors. */ static unsigned int mmc_test_capacity(struct mmc_card *card) { if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) return card->ext_csd.sectors; else return card->csd.capacity << (card->csd.read_blkbits - 9); } /*******************************************************************/ /* Test preparation and cleanup */ /*******************************************************************/ /* * Fill the first couple of sectors of the card with known data * so that bad reads/writes can be detected */ static int __mmc_test_prepare(struct mmc_test_card *test, int write) { int ret, i; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; if (write) memset(test->buffer, 0xDF, 512); else { for (i = 0;i < 512;i++) test->buffer[i] = i; } for (i = 0;i < BUFFER_SIZE / 512;i++) { ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1); if (ret) return ret; } return 0; } static int mmc_test_prepare_write(struct mmc_test_card *test) { return __mmc_test_prepare(test, 1); } static int mmc_test_prepare_read(struct mmc_test_card *test) { return __mmc_test_prepare(test, 0); } static int mmc_test_cleanup(struct mmc_test_card *test) { int ret, i; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; memset(test->buffer, 0, 512); for (i = 0;i < BUFFER_SIZE / 512;i++) { ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1); if (ret) return ret; } return 0; } /*******************************************************************/ /* Test execution helpers */ /*******************************************************************/ /* * Modifies the mmc_request to perform the "short transfer" tests */ static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test, struct mmc_request *mrq, int write) { BUG_ON(!mrq || !mrq->cmd || !mrq->data); if (mrq->data->blocks > 1) { mrq->cmd->opcode = write ? MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK; mrq->stop = NULL; } else { mrq->cmd->opcode = MMC_SEND_STATUS; mrq->cmd->arg = test->card->rca << 16; } } /* * Checks that a normal transfer didn't have any errors */ static int mmc_test_check_result(struct mmc_test_card *test, struct mmc_request *mrq) { int ret; BUG_ON(!mrq || !mrq->cmd || !mrq->data); ret = 0; if (!ret && mrq->cmd->error) ret = mrq->cmd->error; if (!ret && mrq->data->error) ret = mrq->data->error; if (!ret && mrq->stop && mrq->stop->error) ret = mrq->stop->error; if (!ret && mrq->data->bytes_xfered != mrq->data->blocks * mrq->data->blksz) ret = RESULT_FAIL; if (ret == -EINVAL) ret = RESULT_UNSUP_HOST; return ret; } static int mmc_test_check_result_async(struct mmc_card *card, struct mmc_async_req *areq) { struct mmc_test_async_req *test_async = container_of(areq, struct mmc_test_async_req, areq); mmc_test_wait_busy(test_async->test); return mmc_test_check_result(test_async->test, areq->mrq); } /* * Checks that a "short transfer" behaved as expected */ static int mmc_test_check_broken_result(struct mmc_test_card *test, struct mmc_request *mrq) { int ret; BUG_ON(!mrq || !mrq->cmd || !mrq->data); ret = 0; if (!ret && mrq->cmd->error) ret = mrq->cmd->error; if (!ret && mrq->data->error == 0) ret = RESULT_FAIL; if (!ret && mrq->data->error != -ETIMEDOUT) ret = mrq->data->error; if (!ret && mrq->stop && mrq->stop->error) ret = mrq->stop->error; if (mrq->data->blocks > 1) { if (!ret && mrq->data->bytes_xfered > mrq->data->blksz) ret = RESULT_FAIL; } else { if (!ret && mrq->data->bytes_xfered > 0) ret = RESULT_FAIL; } if (ret == -EINVAL) ret = RESULT_UNSUP_HOST; return ret; } /* * Tests nonblock transfer with certain parameters */ static void mmc_test_nonblock_reset(struct mmc_request *mrq, struct mmc_command *cmd, struct mmc_command *stop, struct mmc_data *data) { memset(mrq, 0, sizeof(struct mmc_request)); memset(cmd, 0, sizeof(struct mmc_command)); memset(data, 0, sizeof(struct mmc_data)); memset(stop, 0, sizeof(struct mmc_command)); mrq->cmd = cmd; mrq->data = data; mrq->stop = stop; } static int mmc_test_nonblock_transfer(struct mmc_test_card *test, struct scatterlist *sg, unsigned sg_len, unsigned dev_addr, unsigned blocks, unsigned blksz, int write, int count) { struct mmc_request mrq1; struct mmc_command cmd1; struct mmc_command stop1; struct mmc_data data1; struct mmc_request mrq2; struct mmc_command cmd2; struct mmc_command stop2; struct mmc_data data2; struct mmc_test_async_req test_areq[2]; struct mmc_async_req *done_areq; struct mmc_async_req *cur_areq = &test_areq[0].areq; struct mmc_async_req *other_areq = &test_areq[1].areq; int i; int ret; test_areq[0].test = test; test_areq[1].test = test; mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1); mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2); cur_areq->mrq = &mrq1; cur_areq->err_check = mmc_test_check_result_async; other_areq->mrq = &mrq2; other_areq->err_check = mmc_test_check_result_async; for (i = 0; i < count; i++) { mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr, blocks, blksz, write); done_areq = mmc_start_req(test->card->host, cur_areq, &ret); if (ret || (!done_areq && i > 0)) goto err; if (done_areq) { if (done_areq->mrq == &mrq2) mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2); else mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1); } done_areq = cur_areq; cur_areq = other_areq; other_areq = done_areq; dev_addr += blocks; } done_areq = mmc_start_req(test->card->host, NULL, &ret); return ret; err: return ret; } /* * Tests a basic transfer with certain parameters */ static int mmc_test_simple_transfer(struct mmc_test_card *test, struct scatterlist *sg, unsigned sg_len, unsigned dev_addr, unsigned blocks, unsigned blksz, int write) { struct mmc_request mrq = {0}; struct mmc_command cmd = {0}; struct mmc_command stop = {0}; struct mmc_data data = {0}; mrq.cmd = &cmd; mrq.data = &data; mrq.stop = &stop; mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr, blocks, blksz, write); mmc_wait_for_req(test->card->host, &mrq); mmc_test_wait_busy(test); return mmc_test_check_result(test, &mrq); } /* * Tests a transfer where the card will fail completely or partly */ static int mmc_test_broken_transfer(struct mmc_test_card *test, unsigned blocks, unsigned blksz, int write) { struct mmc_request mrq = {0}; struct mmc_command cmd = {0}; struct mmc_command stop = {0}; struct mmc_data data = {0}; struct scatterlist sg; mrq.cmd = &cmd; mrq.data = &data; mrq.stop = &stop; sg_init_one(&sg, test->buffer, blocks * blksz); mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write); mmc_test_prepare_broken_mrq(test, &mrq, write); mmc_wait_for_req(test->card->host, &mrq); mmc_test_wait_busy(test); return mmc_test_check_broken_result(test, &mrq); } /* * Does a complete transfer test where data is also validated * * Note: mmc_test_prepare() must have been done before this call */ static int mmc_test_transfer(struct mmc_test_card *test, struct scatterlist *sg, unsigned sg_len, unsigned dev_addr, unsigned blocks, unsigned blksz, int write) { int ret, i; unsigned long flags; if (write) { for (i = 0;i < blocks * blksz;i++) test->scratch[i] = i; } else { memset(test->scratch, 0, BUFFER_SIZE); } local_irq_save(flags); sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE); local_irq_restore(flags); ret = mmc_test_set_blksize(test, blksz); if (ret) return ret; ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr, blocks, blksz, write); if (ret) return ret; if (write) { int sectors; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; sectors = (blocks * blksz + 511) / 512; if ((sectors * 512) == (blocks * blksz)) sectors++; if ((sectors * 512) > BUFFER_SIZE) return -EINVAL; memset(test->buffer, 0, sectors * 512); for (i = 0;i < sectors;i++) { ret = mmc_test_buffer_transfer(test, test->buffer + i * 512, dev_addr + i, 512, 0); if (ret) return ret; } for (i = 0;i < blocks * blksz;i++) { if (test->buffer[i] != (u8)i) return RESULT_FAIL; } for (;i < sectors * 512;i++) { if (test->buffer[i] != 0xDF) return RESULT_FAIL; } } else { local_irq_save(flags); sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE); local_irq_restore(flags); for (i = 0;i < blocks * blksz;i++) { if (test->scratch[i] != (u8)i) return RESULT_FAIL; } } return 0; } /*******************************************************************/ /* Tests */ /*******************************************************************/ struct mmc_test_case { const char *name; int (*prepare)(struct mmc_test_card *); int (*run)(struct mmc_test_card *); int (*cleanup)(struct mmc_test_card *); }; static int mmc_test_basic_write(struct mmc_test_card *test) { int ret; struct scatterlist sg; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; sg_init_one(&sg, test->buffer, 512); ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1); if (ret) return ret; return 0; } static int mmc_test_basic_read(struct mmc_test_card *test) { int ret; struct scatterlist sg; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; sg_init_one(&sg, test->buffer, 512); ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0); if (ret) return ret; return 0; } static int mmc_test_verify_write(struct mmc_test_card *test) { int ret; struct scatterlist sg; sg_init_one(&sg, test->buffer, 512); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1); if (ret) return ret; return 0; } static int mmc_test_verify_read(struct mmc_test_card *test) { int ret; struct scatterlist sg; sg_init_one(&sg, test->buffer, 512); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0); if (ret) return ret; return 0; } static int mmc_test_multi_write(struct mmc_test_card *test) { int ret; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; sg_init_one(&sg, test->buffer, size); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1); if (ret) return ret; return 0; } static int mmc_test_multi_read(struct mmc_test_card *test) { int ret; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; sg_init_one(&sg, test->buffer, size); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0); if (ret) return ret; return 0; } static int mmc_test_pow2_write(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; if (!test->card->csd.write_partial) return RESULT_UNSUP_CARD; for (i = 1; i < 512;i <<= 1) { sg_init_one(&sg, test->buffer, i); ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1); if (ret) return ret; } return 0; } static int mmc_test_pow2_read(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; if (!test->card->csd.read_partial) return RESULT_UNSUP_CARD; for (i = 1; i < 512;i <<= 1) { sg_init_one(&sg, test->buffer, i); ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0); if (ret) return ret; } return 0; } static int mmc_test_weird_write(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; if (!test->card->csd.write_partial) return RESULT_UNSUP_CARD; for (i = 3; i < 512;i += 7) { sg_init_one(&sg, test->buffer, i); ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1); if (ret) return ret; } return 0; } static int mmc_test_weird_read(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; if (!test->card->csd.read_partial) return RESULT_UNSUP_CARD; for (i = 3; i < 512;i += 7) { sg_init_one(&sg, test->buffer, i); ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0); if (ret) return ret; } return 0; } static int mmc_test_align_write(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; for (i = 1;i < 4;i++) { sg_init_one(&sg, test->buffer + i, 512); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1); if (ret) return ret; } return 0; } static int mmc_test_align_read(struct mmc_test_card *test) { int ret, i; struct scatterlist sg; for (i = 1;i < 4;i++) { sg_init_one(&sg, test->buffer + i, 512); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0); if (ret) return ret; } return 0; } static int mmc_test_align_multi_write(struct mmc_test_card *test) { int ret, i; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; for (i = 1;i < 4;i++) { sg_init_one(&sg, test->buffer + i, size); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1); if (ret) return ret; } return 0; } static int mmc_test_align_multi_read(struct mmc_test_card *test) { int ret, i; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; for (i = 1;i < 4;i++) { sg_init_one(&sg, test->buffer + i, size); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0); if (ret) return ret; } return 0; } static int mmc_test_xfersize_write(struct mmc_test_card *test) { int ret; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; ret = mmc_test_broken_transfer(test, 1, 512, 1); if (ret) return ret; return 0; } static int mmc_test_xfersize_read(struct mmc_test_card *test) { int ret; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; ret = mmc_test_broken_transfer(test, 1, 512, 0); if (ret) return ret; return 0; } static int mmc_test_multi_xfersize_write(struct mmc_test_card *test) { int ret; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; ret = mmc_test_broken_transfer(test, 2, 512, 1); if (ret) return ret; return 0; } static int mmc_test_multi_xfersize_read(struct mmc_test_card *test) { int ret; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; ret = mmc_test_broken_transfer(test, 2, 512, 0); if (ret) return ret; return 0; } #ifdef CONFIG_HIGHMEM static int mmc_test_write_high(struct mmc_test_card *test) { int ret; struct scatterlist sg; sg_init_table(&sg, 1); sg_set_page(&sg, test->highmem, 512, 0); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1); if (ret) return ret; return 0; } static int mmc_test_read_high(struct mmc_test_card *test) { int ret; struct scatterlist sg; sg_init_table(&sg, 1); sg_set_page(&sg, test->highmem, 512, 0); ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0); if (ret) return ret; return 0; } static int mmc_test_multi_write_high(struct mmc_test_card *test) { int ret; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; sg_init_table(&sg, 1); sg_set_page(&sg, test->highmem, size, 0); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1); if (ret) return ret; return 0; } static int mmc_test_multi_read_high(struct mmc_test_card *test) { int ret; unsigned int size; struct scatterlist sg; if (test->card->host->max_blk_count == 1) return RESULT_UNSUP_HOST; size = PAGE_SIZE * 2; size = min(size, test->card->host->max_req_size); size = min(size, test->card->host->max_seg_size); size = min(size, test->card->host->max_blk_count * 512); if (size < 1024) return RESULT_UNSUP_HOST; sg_init_table(&sg, 1); sg_set_page(&sg, test->highmem, size, 0); ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0); if (ret) return ret; return 0; } #else static int mmc_test_no_highmem(struct mmc_test_card *test) { printk(KERN_INFO "%s: Highmem not configured - test skipped\n", mmc_hostname(test->card->host)); return 0; } #endif /* CONFIG_HIGHMEM */ /* * Map sz bytes so that it can be transferred. */ static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz, int max_scatter, int min_sg_len) { struct mmc_test_area *t = &test->area; int err; t->blocks = sz >> 9; if (max_scatter) { err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg, t->max_segs, t->max_seg_sz, &t->sg_len); } else { err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs, t->max_seg_sz, &t->sg_len, min_sg_len); } if (err) printk(KERN_INFO "%s: Failed to map sg list\n", mmc_hostname(test->card->host)); return err; } /* * Transfer bytes mapped by mmc_test_area_map(). */ static int mmc_test_area_transfer(struct mmc_test_card *test, unsigned int dev_addr, int write) { struct mmc_test_area *t = &test->area; return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr, t->blocks, 512, write); } /* * Map and transfer bytes for multiple transfers. */ static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz, unsigned int dev_addr, int write, int max_scatter, int timed, int count, bool nonblock, int min_sg_len) { struct timespec ts1, ts2; int ret = 0; int i; struct mmc_test_area *t = &test->area; /* * In the case of a maximally scattered transfer, the maximum transfer * size is further limited by using PAGE_SIZE segments. */ if (max_scatter) { struct mmc_test_area *t = &test->area; unsigned long max_tfr; if (t->max_seg_sz >= PAGE_SIZE) max_tfr = t->max_segs * PAGE_SIZE; else max_tfr = t->max_segs * t->max_seg_sz; if (sz > max_tfr) sz = max_tfr; } ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len); if (ret) return ret; if (timed) getnstimeofday(&ts1); if (nonblock) ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len, dev_addr, t->blocks, 512, write, count); else for (i = 0; i < count && ret == 0; i++) { ret = mmc_test_area_transfer(test, dev_addr, write); dev_addr += sz >> 9; } if (ret) return ret; if (timed) getnstimeofday(&ts2); if (timed) mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2); return 0; } static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz, unsigned int dev_addr, int write, int max_scatter, int timed) { return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter, timed, 1, false, 0); } /* * Write the test area entirely. */ static int mmc_test_area_fill(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0); } /* * Erase the test area entirely. */ static int mmc_test_area_erase(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; if (!mmc_can_erase(test->card)) return 0; return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9, MMC_ERASE_ARG); } /* * Cleanup struct mmc_test_area. */ static int mmc_test_area_cleanup(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; kfree(t->sg); mmc_test_free_mem(t->mem); return 0; } /* * Initialize an area for testing large transfers. The test area is set to the * middle of the card because cards may have different charateristics at the * front (for FAT file system optimization). Optionally, the area is erased * (if the card supports it) which may improve write performance. Optionally, * the area is filled with data for subsequent read tests. */ static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill) { struct mmc_test_area *t = &test->area; unsigned long min_sz = 64 * 1024, sz; int ret; ret = mmc_test_set_blksize(test, 512); if (ret) return ret; /* Make the test area size about 4MiB */ sz = (unsigned long)test->card->pref_erase << 9; t->max_sz = sz; while (t->max_sz < 4 * 1024 * 1024) t->max_sz += sz; while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz) t->max_sz -= sz; t->max_segs = test->card->host->max_segs; t->max_seg_sz = test->card->host->max_seg_size; t->max_tfr = t->max_sz; if (t->max_tfr >> 9 > test->card->host->max_blk_count) t->max_tfr = test->card->host->max_blk_count << 9; if (t->max_tfr > test->card->host->max_req_size) t->max_tfr = test->card->host->max_req_size; if (t->max_tfr / t->max_seg_sz > t->max_segs) t->max_tfr = t->max_segs * t->max_seg_sz; /* * Try to allocate enough memory for a max. sized transfer. Less is OK * because the same memory can be mapped into the scatterlist more than * once. Also, take into account the limits imposed on scatterlist * segments by the host driver. */ t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs, t->max_seg_sz); if (!t->mem) return -ENOMEM; t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL); if (!t->sg) { ret = -ENOMEM; goto out_free; } t->dev_addr = mmc_test_capacity(test->card) / 2; t->dev_addr -= t->dev_addr % (t->max_sz >> 9); if (erase) { ret = mmc_test_area_erase(test); if (ret) goto out_free; } if (fill) { ret = mmc_test_area_fill(test); if (ret) goto out_free; } return 0; out_free: mmc_test_area_cleanup(test); return ret; } /* * Prepare for large transfers. Do not erase the test area. */ static int mmc_test_area_prepare(struct mmc_test_card *test) { return mmc_test_area_init(test, 0, 0); } /* * Prepare for large transfers. Do erase the test area. */ static int mmc_test_area_prepare_erase(struct mmc_test_card *test) { return mmc_test_area_init(test, 1, 0); } /* * Prepare for large transfers. Erase and fill the test area. */ static int mmc_test_area_prepare_fill(struct mmc_test_card *test) { return mmc_test_area_init(test, 1, 1); } /* * Test best-case performance. Best-case performance is expected from * a single large transfer. * * An additional option (max_scatter) allows the measurement of the same * transfer but with no contiguous pages in the scatter list. This tests * the efficiency of DMA to handle scattered pages. */ static int mmc_test_best_performance(struct mmc_test_card *test, int write, int max_scatter) { struct mmc_test_area *t = &test->area; return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write, max_scatter, 1); } /* * Best-case read performance. */ static int mmc_test_best_read_performance(struct mmc_test_card *test) { return mmc_test_best_performance(test, 0, 0); } /* * Best-case write performance. */ static int mmc_test_best_write_performance(struct mmc_test_card *test) { return mmc_test_best_performance(test, 1, 0); } /* * Best-case read performance into scattered pages. */ static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test) { return mmc_test_best_performance(test, 0, 1); } /* * Best-case write performance from scattered pages. */ static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test) { return mmc_test_best_performance(test, 1, 1); } /* * Single read performance by transfer size. */ static int mmc_test_profile_read_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; unsigned int dev_addr; int ret; for (sz = 512; sz < t->max_tfr; sz <<= 1) { dev_addr = t->dev_addr + (sz >> 9); ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1); if (ret) return ret; } sz = t->max_tfr; dev_addr = t->dev_addr; return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1); } /* * Single write performance by transfer size. */ static int mmc_test_profile_write_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; unsigned int dev_addr; int ret; ret = mmc_test_area_erase(test); if (ret) return ret; for (sz = 512; sz < t->max_tfr; sz <<= 1) { dev_addr = t->dev_addr + (sz >> 9); ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1); if (ret) return ret; } ret = mmc_test_area_erase(test); if (ret) return ret; sz = t->max_tfr; dev_addr = t->dev_addr; return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1); } /* * Single trim performance by transfer size. */ static int mmc_test_profile_trim_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; unsigned int dev_addr; struct timespec ts1, ts2; int ret; if (!mmc_can_trim(test->card)) return RESULT_UNSUP_CARD; if (!mmc_can_erase(test->card)) return RESULT_UNSUP_HOST; for (sz = 512; sz < t->max_sz; sz <<= 1) { dev_addr = t->dev_addr + (sz >> 9); getnstimeofday(&ts1); ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG); if (ret) return ret; getnstimeofday(&ts2); mmc_test_print_rate(test, sz, &ts1, &ts2); } dev_addr = t->dev_addr; getnstimeofday(&ts1); ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG); if (ret) return ret; getnstimeofday(&ts2); mmc_test_print_rate(test, sz, &ts1, &ts2); return 0; } static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz) { struct mmc_test_area *t = &test->area; unsigned int dev_addr, i, cnt; struct timespec ts1, ts2; int ret; cnt = t->max_sz / sz; dev_addr = t->dev_addr; getnstimeofday(&ts1); for (i = 0; i < cnt; i++) { ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0); if (ret) return ret; dev_addr += (sz >> 9); } getnstimeofday(&ts2); mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2); return 0; } /* * Consecutive read performance by transfer size. */ static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; int ret; for (sz = 512; sz < t->max_tfr; sz <<= 1) { ret = mmc_test_seq_read_perf(test, sz); if (ret) return ret; } sz = t->max_tfr; return mmc_test_seq_read_perf(test, sz); } static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz) { struct mmc_test_area *t = &test->area; unsigned int dev_addr, i, cnt; struct timespec ts1, ts2; int ret; ret = mmc_test_area_erase(test); if (ret) return ret; cnt = t->max_sz / sz; dev_addr = t->dev_addr; getnstimeofday(&ts1); for (i = 0; i < cnt; i++) { ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0); if (ret) return ret; dev_addr += (sz >> 9); } getnstimeofday(&ts2); mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2); return 0; } /* * Consecutive write performance by transfer size. */ static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; int ret; for (sz = 512; sz < t->max_tfr; sz <<= 1) { ret = mmc_test_seq_write_perf(test, sz); if (ret) return ret; } sz = t->max_tfr; return mmc_test_seq_write_perf(test, sz); } /* * Consecutive trim performance by transfer size. */ static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test) { struct mmc_test_area *t = &test->area; unsigned long sz; unsigned int dev_addr, i, cnt; struct timespec ts1, ts2; int ret; if (!mmc_can_trim(test->card)) return RESULT_UNSUP_CARD; if (!mmc_can_erase(test->card)) return RESULT_UNSUP_HOST; for (sz = 512; sz <= t->max_sz; sz <<= 1) { ret = mmc_test_area_erase(test); if (ret) return ret; ret = mmc_test_area_fill(test); if (ret) return ret; cnt = t->max_sz / sz; dev_addr = t->dev_addr; getnstimeofday(&ts1); for (i = 0; i < cnt; i++) { ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG); if (ret) return ret; dev_addr += (sz >> 9); } getnstimeofday(&ts2); mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2); } return 0; } static unsigned int rnd_next = 1; static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt) { uint64_t r; rnd_next = rnd_next * 1103515245 + 12345; r = (rnd_next >> 16) & 0x7fff; return (r * rnd_cnt) >> 15; } static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print, unsigned long sz) { unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea; unsigned int ssz; struct timespec ts1, ts2, ts; int ret; ssz = sz >> 9; rnd_addr = mmc_test_capacity(test->card) / 4; range1 = rnd_addr / test->card->pref_erase; range2 = range1 / ssz; getnstimeofday(&ts1); for (cnt = 0; cnt < UINT_MAX; cnt++) { getnstimeofday(&ts2); ts = timespec_sub(ts2, ts1); if (ts.tv_sec >= 10) break; ea = mmc_test_rnd_num(range1); if (ea == last_ea) ea -= 1; last_ea = ea; dev_addr = rnd_addr + test->card->pref_erase * ea + ssz * mmc_test_rnd_num(range2); ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0); if (ret) return ret; } if (print) mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2); return 0; } static int mmc_test_random_perf(struct mmc_test_card *test, int write) { struct mmc_test_area *t = &test->area; unsigned int next; unsigned long sz; int ret; for (sz = 512; sz < t->max_tfr; sz <<= 1) { /* * When writing, try to get more consistent results by running * the test twice with exactly the same I/O but outputting the * results only for the 2nd run. */ if (write) { next = rnd_next; ret = mmc_test_rnd_perf(test, write, 0, sz); if (ret) return ret; rnd_next = next; } ret = mmc_test_rnd_perf(test, write, 1, sz); if (ret) return ret; } sz = t->max_tfr; if (write) { next = rnd_next; ret = mmc_test_rnd_perf(test, write, 0, sz); if (ret) return ret; rnd_next = next; } return mmc_test_rnd_perf(test, write, 1, sz); } /* * Random read performance by transfer size. */ static int mmc_test_random_read_perf(struct mmc_test_card *test) { return mmc_test_random_perf(test, 0); } /* * Random write performance by transfer size. */ static int mmc_test_random_write_perf(struct mmc_test_card *test) { return mmc_test_random_perf(test, 1); } static int mmc_test_seq_perf(struct mmc_test_card *test, int write, unsigned int tot_sz, int max_scatter) { struct mmc_test_area *t = &test->area; unsigned int dev_addr, i, cnt, sz, ssz; struct timespec ts1, ts2; int ret; sz = t->max_tfr; /* * In the case of a maximally scattered transfer, the maximum transfer * size is further limited by using PAGE_SIZE segments. */ if (max_scatter) { unsigned long max_tfr; if (t->max_seg_sz >= PAGE_SIZE) max_tfr = t->max_segs * PAGE_SIZE; else max_tfr = t->max_segs * t->max_seg_sz; if (sz > max_tfr) sz = max_tfr; } ssz = sz >> 9; dev_addr = mmc_test_capacity(test->card) / 4; if (tot_sz > dev_addr << 9) tot_sz = dev_addr << 9; cnt = tot_sz / sz; dev_addr &= 0xffff0000; /* Round to 64MiB boundary */ getnstimeofday(&ts1); for (i = 0; i < cnt; i++) { ret = mmc_test_area_io(test, sz, dev_addr, write, max_scatter, 0); if (ret) return ret; dev_addr += ssz; } getnstimeofday(&ts2); mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2); return 0; } static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write) { int ret, i; for (i = 0; i < 10; i++) { ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1); if (ret) return ret; } for (i = 0; i < 5; i++) { ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1); if (ret) return ret; } for (i = 0; i < 3; i++) { ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1); if (ret) return ret; } return ret; } /* * Large sequential read performance. */ static int mmc_test_large_seq_read_perf(struct mmc_test_card *test) { return mmc_test_large_seq_perf(test, 0); } /* * Large sequential write performance. */ static int mmc_test_large_seq_write_perf(struct mmc_test_card *test) { return mmc_test_large_seq_perf(test, 1); } static int mmc_test_rw_multiple(struct mmc_test_card *test, struct mmc_test_multiple_rw *tdata, unsigned int reqsize, unsigned int size, int min_sg_len) { unsigned int dev_addr; struct mmc_test_area *t = &test->area; int ret = 0; /* Set up test area */ if (size > mmc_test_capacity(test->card) / 2 * 512) size = mmc_test_capacity(test->card) / 2 * 512; if (reqsize > t->max_tfr) reqsize = t->max_tfr; dev_addr = mmc_test_capacity(test->card) / 4; if ((dev_addr & 0xffff0000)) dev_addr &= 0xffff0000; /* Round to 64MiB boundary */ else dev_addr &= 0xfffff800; /* Round to 1MiB boundary */ if (!dev_addr) goto err; if (reqsize > size) return 0; /* prepare test area */ if (mmc_can_erase(test->card) && tdata->prepare & MMC_TEST_PREP_ERASE) { ret = mmc_erase(test->card, dev_addr, size / 512, MMC_SECURE_ERASE_ARG); if (ret) ret = mmc_erase(test->card, dev_addr, size / 512, MMC_ERASE_ARG); if (ret) goto err; } /* Run test */ ret = mmc_test_area_io_seq(test, reqsize, dev_addr, tdata->do_write, 0, 1, size / reqsize, tdata->do_nonblock_req, min_sg_len); if (ret) goto err; return ret; err: printk(KERN_INFO "[%s] error\n", __func__); return ret; } static int mmc_test_rw_multiple_size(struct mmc_test_card *test, struct mmc_test_multiple_rw *rw) { int ret = 0; int i; void *pre_req = test->card->host->ops->pre_req; void *post_req = test->card->host->ops->post_req; if (rw->do_nonblock_req && ((!pre_req && post_req) || (pre_req && !post_req))) { printk(KERN_INFO "error: only one of pre/post is defined\n"); return -EINVAL; } for (i = 0 ; i < rw->len && ret == 0; i++) { ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0); if (ret) break; } return ret; } static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test, struct mmc_test_multiple_rw *rw) { int ret = 0; int i; for (i = 0 ; i < rw->len && ret == 0; i++) { ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size, rw->sg_len[i]); if (ret) break; } return ret; } /* * Multiple blocking write 4k to 4 MB chunks */ static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test) { unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22}; struct mmc_test_multiple_rw test_data = { .bs = bs, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(bs), .do_write = true, .do_nonblock_req = false, .prepare = MMC_TEST_PREP_ERASE, }; return mmc_test_rw_multiple_size(test, &test_data); }; /* * Multiple non-blocking write 4k to 4 MB chunks */ static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test) { unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22}; struct mmc_test_multiple_rw test_data = { .bs = bs, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(bs), .do_write = true, .do_nonblock_req = true, .prepare = MMC_TEST_PREP_ERASE, }; return mmc_test_rw_multiple_size(test, &test_data); } /* * Multiple blocking read 4k to 4 MB chunks */ static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test) { unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22}; struct mmc_test_multiple_rw test_data = { .bs = bs, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(bs), .do_write = false, .do_nonblock_req = false, .prepare = MMC_TEST_PREP_NONE, }; return mmc_test_rw_multiple_size(test, &test_data); } /* * Multiple non-blocking read 4k to 4 MB chunks */ static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test) { unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22}; struct mmc_test_multiple_rw test_data = { .bs = bs, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(bs), .do_write = false, .do_nonblock_req = true, .prepare = MMC_TEST_PREP_NONE, }; return mmc_test_rw_multiple_size(test, &test_data); } /* * Multiple blocking write 1 to 512 sg elements */ static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test) { unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, 1 << 8, 1 << 9}; struct mmc_test_multiple_rw test_data = { .sg_len = sg_len, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(sg_len), .do_write = true, .do_nonblock_req = false, .prepare = MMC_TEST_PREP_ERASE, }; return mmc_test_rw_multiple_sg_len(test, &test_data); }; /* * Multiple non-blocking write 1 to 512 sg elements */ static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test) { unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, 1 << 8, 1 << 9}; struct mmc_test_multiple_rw test_data = { .sg_len = sg_len, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(sg_len), .do_write = true, .do_nonblock_req = true, .prepare = MMC_TEST_PREP_ERASE, }; return mmc_test_rw_multiple_sg_len(test, &test_data); } /* * Multiple blocking read 1 to 512 sg elements */ static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test) { unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, 1 << 8, 1 << 9}; struct mmc_test_multiple_rw test_data = { .sg_len = sg_len, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(sg_len), .do_write = false, .do_nonblock_req = false, .prepare = MMC_TEST_PREP_NONE, }; return mmc_test_rw_multiple_sg_len(test, &test_data); } /* * Multiple non-blocking read 1 to 512 sg elements */ static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test) { unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7, 1 << 8, 1 << 9}; struct mmc_test_multiple_rw test_data = { .sg_len = sg_len, .size = TEST_AREA_MAX_SIZE, .len = ARRAY_SIZE(sg_len), .do_write = false, .do_nonblock_req = true, .prepare = MMC_TEST_PREP_NONE, }; return mmc_test_rw_multiple_sg_len(test, &test_data); } static const struct mmc_test_case mmc_test_cases[] = { { .name = "Basic write (no data verification)", .run = mmc_test_basic_write, }, { .name = "Basic read (no data verification)", .run = mmc_test_basic_read, }, { .name = "Basic write (with data verification)", .prepare = mmc_test_prepare_write, .run = mmc_test_verify_write, .cleanup = mmc_test_cleanup, }, { .name = "Basic read (with data verification)", .prepare = mmc_test_prepare_read, .run = mmc_test_verify_read, .cleanup = mmc_test_cleanup, }, { .name = "Multi-block write", .prepare = mmc_test_prepare_write, .run = mmc_test_multi_write, .cleanup = mmc_test_cleanup, }, { .name = "Multi-block read", .prepare = mmc_test_prepare_read, .run = mmc_test_multi_read, .cleanup = mmc_test_cleanup, }, { .name = "Power of two block writes", .prepare = mmc_test_prepare_write, .run = mmc_test_pow2_write, .cleanup = mmc_test_cleanup, }, { .name = "Power of two block reads", .prepare = mmc_test_prepare_read, .run = mmc_test_pow2_read, .cleanup = mmc_test_cleanup, }, { .name = "Weird sized block writes", .prepare = mmc_test_prepare_write, .run = mmc_test_weird_write, .cleanup = mmc_test_cleanup, }, { .name = "Weird sized block reads", .prepare = mmc_test_prepare_read, .run = mmc_test_weird_read, .cleanup = mmc_test_cleanup, }, { .name = "Badly aligned write", .prepare = mmc_test_prepare_write, .run = mmc_test_align_write, .cleanup = mmc_test_cleanup, }, { .name = "Badly aligned read", .prepare = mmc_test_prepare_read, .run = mmc_test_align_read, .cleanup = mmc_test_cleanup, }, { .name = "Badly aligned multi-block write", .prepare = mmc_test_prepare_write, .run = mmc_test_align_multi_write, .cleanup = mmc_test_cleanup, }, { .name = "Badly aligned multi-block read", .prepare = mmc_test_prepare_read, .run = mmc_test_align_multi_read, .cleanup = mmc_test_cleanup, }, { .name = "Correct xfer_size at write (start failure)", .run = mmc_test_xfersize_write, }, { .name = "Correct xfer_size at read (start failure)", .run = mmc_test_xfersize_read, }, { .name = "Correct xfer_size at write (midway failure)", .run = mmc_test_multi_xfersize_write, }, { .name = "Correct xfer_size at read (midway failure)", .run = mmc_test_multi_xfersize_read, }, #ifdef CONFIG_HIGHMEM { .name = "Highmem write", .prepare = mmc_test_prepare_write, .run = mmc_test_write_high, .cleanup = mmc_test_cleanup, }, { .name = "Highmem read", .prepare = mmc_test_prepare_read, .run = mmc_test_read_high, .cleanup = mmc_test_cleanup, }, { .name = "Multi-block highmem write", .prepare = mmc_test_prepare_write, .run = mmc_test_multi_write_high, .cleanup = mmc_test_cleanup, }, { .name = "Multi-block highmem read", .prepare = mmc_test_prepare_read, .run = mmc_test_multi_read_high, .cleanup = mmc_test_cleanup, }, #else { .name = "Highmem write", .run = mmc_test_no_highmem, }, { .name = "Highmem read", .run = mmc_test_no_highmem, }, { .name = "Multi-block highmem write", .run = mmc_test_no_highmem, }, { .name = "Multi-block highmem read", .run = mmc_test_no_highmem, }, #endif /* CONFIG_HIGHMEM */ { .name = "Best-case read performance", .prepare = mmc_test_area_prepare_fill, .run = mmc_test_best_read_performance, .cleanup = mmc_test_area_cleanup, }, { .name = "Best-case write performance", .prepare = mmc_test_area_prepare_erase, .run = mmc_test_best_write_performance, .cleanup = mmc_test_area_cleanup, }, { .name = "Best-case read performance into scattered pages", .prepare = mmc_test_area_prepare_fill, .run = mmc_test_best_read_perf_max_scatter, .cleanup = mmc_test_area_cleanup, }, { .name = "Best-case write performance from scattered pages", .prepare = mmc_test_area_prepare_erase, .run = mmc_test_best_write_perf_max_scatter, .cleanup = mmc_test_area_cleanup, }, { .name = "Single read performance by transfer size", .prepare = mmc_test_area_prepare_fill, .run = mmc_test_profile_read_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Single write performance by transfer size", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_write_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Single trim performance by transfer size", .prepare = mmc_test_area_prepare_fill, .run = mmc_test_profile_trim_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Consecutive read performance by transfer size", .prepare = mmc_test_area_prepare_fill, .run = mmc_test_profile_seq_read_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Consecutive write performance by transfer size", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_seq_write_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Consecutive trim performance by transfer size", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_seq_trim_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Random read performance by transfer size", .prepare = mmc_test_area_prepare, .run = mmc_test_random_read_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Random write performance by transfer size", .prepare = mmc_test_area_prepare, .run = mmc_test_random_write_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Large sequential read into scattered pages", .prepare = mmc_test_area_prepare, .run = mmc_test_large_seq_read_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Large sequential write from scattered pages", .prepare = mmc_test_area_prepare, .run = mmc_test_large_seq_write_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Write performance with blocking req 4k to 4MB", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_mult_write_blocking_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Write performance with non-blocking req 4k to 4MB", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_mult_write_nonblock_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Read performance with blocking req 4k to 4MB", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_mult_read_blocking_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Read performance with non-blocking req 4k to 4MB", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_mult_read_nonblock_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Write performance blocking req 1 to 512 sg elems", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_sglen_wr_blocking_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Write performance non-blocking req 1 to 512 sg elems", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_sglen_wr_nonblock_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Read performance blocking req 1 to 512 sg elems", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_sglen_r_blocking_perf, .cleanup = mmc_test_area_cleanup, }, { .name = "Read performance non-blocking req 1 to 512 sg elems", .prepare = mmc_test_area_prepare, .run = mmc_test_profile_sglen_r_nonblock_perf, .cleanup = mmc_test_area_cleanup, }, }; static DEFINE_MUTEX(mmc_test_lock); static LIST_HEAD(mmc_test_result); static void mmc_test_run(struct mmc_test_card *test, int testcase) { int i, ret; printk(KERN_INFO "%s: Starting tests of card %s...\n", mmc_hostname(test->card->host), mmc_card_id(test->card)); mmc_claim_host(test->card->host); for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) { struct mmc_test_general_result *gr; if (testcase && ((i + 1) != testcase)) continue; printk(KERN_INFO "%s: Test case %d. %s...\n", mmc_hostname(test->card->host), i + 1, mmc_test_cases[i].name); if (mmc_test_cases[i].prepare) { ret = mmc_test_cases[i].prepare(test); if (ret) { printk(KERN_INFO "%s: Result: Prepare " "stage failed! (%d)\n", mmc_hostname(test->card->host), ret); continue; } } gr = kzalloc(sizeof(struct mmc_test_general_result), GFP_KERNEL); if (gr) { INIT_LIST_HEAD(&gr->tr_lst); /* Assign data what we know already */ gr->card = test->card; gr->testcase = i; /* Append container to global one */ list_add_tail(&gr->link, &mmc_test_result); /* * Save the pointer to created container in our private * structure. */ test->gr = gr; } ret = mmc_test_cases[i].run(test); switch (ret) { case RESULT_OK: printk(KERN_INFO "%s: Result: OK\n", mmc_hostname(test->card->host)); break; case RESULT_FAIL: printk(KERN_INFO "%s: Result: FAILED\n", mmc_hostname(test->card->host)); break; case RESULT_UNSUP_HOST: printk(KERN_INFO "%s: Result: UNSUPPORTED " "(by host)\n", mmc_hostname(test->card->host)); break; case RESULT_UNSUP_CARD: printk(KERN_INFO "%s: Result: UNSUPPORTED " "(by card)\n", mmc_hostname(test->card->host)); break; default: printk(KERN_INFO "%s: Result: ERROR (%d)\n", mmc_hostname(test->card->host), ret); } /* Save the result */ if (gr) gr->result = ret; if (mmc_test_cases[i].cleanup) { ret = mmc_test_cases[i].cleanup(test); if (ret) { printk(KERN_INFO "%s: Warning: Cleanup " "stage failed! (%d)\n", mmc_hostname(test->card->host), ret); } } } mmc_release_host(test->card->host); printk(KERN_INFO "%s: Tests completed.\n", mmc_hostname(test->card->host)); } static void mmc_test_free_result(struct mmc_card *card) { struct mmc_test_general_result *gr, *grs; mutex_lock(&mmc_test_lock); list_for_each_entry_safe(gr, grs, &mmc_test_result, link) { struct mmc_test_transfer_result *tr, *trs; if (card && gr->card != card) continue; list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) { list_del(&tr->link); kfree(tr); } list_del(&gr->link); kfree(gr); } mutex_unlock(&mmc_test_lock); } static LIST_HEAD(mmc_test_file_test); static int mtf_test_show(struct seq_file *sf, void *data) { struct mmc_card *card = (struct mmc_card *)sf->private; struct mmc_test_general_result *gr; mutex_lock(&mmc_test_lock); list_for_each_entry(gr, &mmc_test_result, link) { struct mmc_test_transfer_result *tr; if (gr->card != card) continue; seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result); list_for_each_entry(tr, &gr->tr_lst, link) { seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n", tr->count, tr->sectors, (unsigned long)tr->ts.tv_sec, (unsigned long)tr->ts.tv_nsec, tr->rate, tr->iops / 100, tr->iops % 100); } } mutex_unlock(&mmc_test_lock); return 0; } static int mtf_test_open(struct inode *inode, struct file *file) { return single_open(file, mtf_test_show, inode->i_private); } static ssize_t mtf_test_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct seq_file *sf = (struct seq_file *)file->private_data; struct mmc_card *card = (struct mmc_card *)sf->private; struct mmc_test_card *test; char lbuf[12]; long testcase; if (count >= sizeof(lbuf)) return -EINVAL; if (copy_from_user(lbuf, buf, count)) return -EFAULT; lbuf[count] = '\0'; if (strict_strtol(lbuf, 10, &testcase)) return -EINVAL; test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL); if (!test) return -ENOMEM; /* * Remove all test cases associated with given card. Thus we have only * actual data of the last run. */ mmc_test_free_result(card); test->card = card; test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL); #ifdef CONFIG_HIGHMEM test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER); #endif #ifdef CONFIG_HIGHMEM if (test->buffer && test->highmem) { #else if (test->buffer) { #endif mutex_lock(&mmc_test_lock); mmc_test_run(test, testcase); mutex_unlock(&mmc_test_lock); } #ifdef CONFIG_HIGHMEM __free_pages(test->highmem, BUFFER_ORDER); #endif kfree(test->buffer); kfree(test); return count; } static const struct file_operations mmc_test_fops_test = { .open = mtf_test_open, .read = seq_read, .write = mtf_test_write, .llseek = seq_lseek, .release = single_release, }; static int mtf_testlist_show(struct seq_file *sf, void *data) { int i; mutex_lock(&mmc_test_lock); for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name); mutex_unlock(&mmc_test_lock); return 0; } static int mtf_testlist_open(struct inode *inode, struct file *file) { return single_open(file, mtf_testlist_show, inode->i_private); } static const struct file_operations mmc_test_fops_testlist = { .open = mtf_testlist_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void mmc_test_free_dbgfs_file(struct mmc_card *card) { struct mmc_test_dbgfs_file *df, *dfs; mutex_lock(&mmc_test_lock); list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) { if (card && df->card != card) continue; debugfs_remove(df->file); list_del(&df->link); kfree(df); } mutex_unlock(&mmc_test_lock); } static int __mmc_test_register_dbgfs_file(struct mmc_card *card, const char *name, mode_t mode, const struct file_operations *fops) { struct dentry *file = NULL; struct mmc_test_dbgfs_file *df; if (card->debugfs_root) file = debugfs_create_file(name, mode, card->debugfs_root, card, fops); if (IS_ERR_OR_NULL(file)) { dev_err(&card->dev, "Can't create %s. Perhaps debugfs is disabled.\n", name); return -ENODEV; } df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL); if (!df) { debugfs_remove(file); dev_err(&card->dev, "Can't allocate memory for internal usage.\n"); return -ENOMEM; } df->card = card; df->file = file; list_add(&df->link, &mmc_test_file_test); return 0; } static int mmc_test_register_dbgfs_file(struct mmc_card *card) { int ret; mutex_lock(&mmc_test_lock); ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO, &mmc_test_fops_test); if (ret) goto err; ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO, &mmc_test_fops_testlist); if (ret) goto err; err: mutex_unlock(&mmc_test_lock); return ret; } static int mmc_test_probe(struct mmc_card *card) { int ret; if (!mmc_card_mmc(card) && !mmc_card_sd(card)) return -ENODEV; ret = mmc_test_register_dbgfs_file(card); if (ret) return ret; dev_info(&card->dev, "Card claimed for testing.\n"); return 0; } static void mmc_test_remove(struct mmc_card *card) { mmc_test_free_result(card); mmc_test_free_dbgfs_file(card); } static struct mmc_driver mmc_driver = { .drv = { .name = "mmc_test", }, .probe = mmc_test_probe, .remove = mmc_test_remove, }; static int __init mmc_test_init(void) { return mmc_register_driver(&mmc_driver); } static void __exit mmc_test_exit(void) { /* Clear stalled data if card is still plugged */ mmc_test_free_result(NULL); mmc_test_free_dbgfs_file(NULL); mmc_unregister_driver(&mmc_driver); } module_init(mmc_test_init); module_exit(mmc_test_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver"); MODULE_AUTHOR("Pierre Ossman");