/* * Amiga Linux/68k 8390 based PCMCIA Ethernet Driver for the Amiga 1200 * * (C) Copyright 1997 Alain Malek * (Alain.Malek@cryogen.com) * * ---------------------------------------------------------------------------- * * This program is based on * * ne.c: A general non-shared-memory NS8390 ethernet driver for linux * Written 1992-94 by Donald Becker. * * 8390.c: A general NS8390 ethernet driver core for linux. * Written 1992-94 by Donald Becker. * * cnetdevice: A Sana-II ethernet driver for AmigaOS * Written by Bruce Abbott (bhabbott@inhb.co.nz) * * ---------------------------------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. * * ---------------------------------------------------------------------------- * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/jiffies.h> #include <asm/system.h> #include <asm/io.h> #include <asm/setup.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include <asm/amigayle.h> #include <asm/amipcmcia.h> #include "8390.h" /* ---- No user-serviceable parts below ---- */ #define DRV_NAME "apne" #define NE_BASE (dev->base_addr) #define NE_CMD 0x00 #define NE_DATAPORT 0x10 /* NatSemi-defined port window offset. */ #define NE_RESET 0x1f /* Issue a read to reset, a write to clear. */ #define NE_IO_EXTENT 0x20 #define NE_EN0_ISR 0x07 #define NE_EN0_DCFG 0x0e #define NE_EN0_RSARLO 0x08 #define NE_EN0_RSARHI 0x09 #define NE_EN0_RCNTLO 0x0a #define NE_EN0_RXCR 0x0c #define NE_EN0_TXCR 0x0d #define NE_EN0_RCNTHI 0x0b #define NE_EN0_IMR 0x0f #define NE1SM_START_PG 0x20 /* First page of TX buffer */ #define NE1SM_STOP_PG 0x40 /* Last page +1 of RX ring */ #define NESM_START_PG 0x40 /* First page of TX buffer */ #define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */ struct net_device * __init apne_probe(int unit); static int apne_probe1(struct net_device *dev, int ioaddr); static int apne_open(struct net_device *dev); static int apne_close(struct net_device *dev); static void apne_reset_8390(struct net_device *dev); static void apne_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page); static void apne_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset); static void apne_block_output(struct net_device *dev, const int count, const unsigned char *buf, const int start_page); static irqreturn_t apne_interrupt(int irq, void *dev_id); static int init_pcmcia(void); /* IO base address used for nic */ #define IOBASE 0x300 /* use MANUAL_CONFIG and MANUAL_OFFSET for enabling IO by hand you can find the values to use by looking at the cnet.device config file example (the default values are for the CNET40BC card) */ /* #define MANUAL_CONFIG 0x20 #define MANUAL_OFFSET 0x3f8 #define MANUAL_HWADDR0 0x00 #define MANUAL_HWADDR1 0x12 #define MANUAL_HWADDR2 0x34 #define MANUAL_HWADDR3 0x56 #define MANUAL_HWADDR4 0x78 #define MANUAL_HWADDR5 0x9a */ static const char version[] = "apne.c:v1.1 7/10/98 Alain Malek (Alain.Malek@cryogen.ch)\n"; static int apne_owned; /* signal if card already owned */ struct net_device * __init apne_probe(int unit) { struct net_device *dev; #ifndef MANUAL_CONFIG char tuple[8]; #endif int err; if (!MACH_IS_AMIGA) return ERR_PTR(-ENODEV); if (apne_owned) return ERR_PTR(-ENODEV); if ( !(AMIGAHW_PRESENT(PCMCIA)) ) return ERR_PTR(-ENODEV); printk("Looking for PCMCIA ethernet card : "); /* check if a card is inserted */ if (!(PCMCIA_INSERTED)) { printk("NO PCMCIA card inserted\n"); return ERR_PTR(-ENODEV); } dev = alloc_ei_netdev(); if (!dev) return ERR_PTR(-ENOMEM); if (unit >= 0) { sprintf(dev->name, "eth%d", unit); netdev_boot_setup_check(dev); } /* disable pcmcia irq for readtuple */ pcmcia_disable_irq(); #ifndef MANUAL_CONFIG if ((pcmcia_copy_tuple(CISTPL_FUNCID, tuple, 8) < 3) || (tuple[2] != CISTPL_FUNCID_NETWORK)) { printk("not an ethernet card\n"); /* XXX: shouldn't we re-enable irq here? */ free_netdev(dev); return ERR_PTR(-ENODEV); } #endif printk("ethernet PCMCIA card inserted\n"); if (!init_pcmcia()) { /* XXX: shouldn't we re-enable irq here? */ free_netdev(dev); return ERR_PTR(-ENODEV); } if (!request_region(IOBASE, 0x20, DRV_NAME)) { free_netdev(dev); return ERR_PTR(-EBUSY); } err = apne_probe1(dev, IOBASE); if (err) { release_region(IOBASE, 0x20); free_netdev(dev); return ERR_PTR(err); } err = register_netdev(dev); if (!err) return dev; pcmcia_disable_irq(); free_irq(IRQ_AMIGA_PORTS, dev); pcmcia_reset(); release_region(IOBASE, 0x20); free_netdev(dev); return ERR_PTR(err); } static int __init apne_probe1(struct net_device *dev, int ioaddr) { int i; unsigned char SA_prom[32]; int wordlength = 2; const char *name = NULL; int start_page, stop_page; #ifndef MANUAL_HWADDR0 int neX000, ctron; #endif static unsigned version_printed; DECLARE_MAC_BUF(mac); if (ei_debug && version_printed++ == 0) printk(version); printk("PCMCIA NE*000 ethercard probe"); /* Reset card. Who knows what dain-bramaged state it was left in. */ { unsigned long reset_start_time = jiffies; outb(inb(ioaddr + NE_RESET), ioaddr + NE_RESET); while ((inb(ioaddr + NE_EN0_ISR) & ENISR_RESET) == 0) if (time_after(jiffies, reset_start_time + 2*HZ/100)) { printk(" not found (no reset ack).\n"); return -ENODEV; } outb(0xff, ioaddr + NE_EN0_ISR); /* Ack all intr. */ } #ifndef MANUAL_HWADDR0 /* Read the 16 bytes of station address PROM. We must first initialize registers, similar to NS8390_init(eifdev, 0). We can't reliably read the SAPROM address without this. (I learned the hard way!). */ { struct {unsigned long value, offset; } program_seq[] = { {E8390_NODMA+E8390_PAGE0+E8390_STOP, NE_CMD}, /* Select page 0*/ {0x48, NE_EN0_DCFG}, /* Set byte-wide (0x48) access. */ {0x00, NE_EN0_RCNTLO}, /* Clear the count regs. */ {0x00, NE_EN0_RCNTHI}, {0x00, NE_EN0_IMR}, /* Mask completion irq. */ {0xFF, NE_EN0_ISR}, {E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */ {E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode. */ {32, NE_EN0_RCNTLO}, {0x00, NE_EN0_RCNTHI}, {0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000. */ {0x00, NE_EN0_RSARHI}, {E8390_RREAD+E8390_START, NE_CMD}, }; for (i = 0; i < ARRAY_SIZE(program_seq); i++) { outb(program_seq[i].value, ioaddr + program_seq[i].offset); } } for(i = 0; i < 32 /*sizeof(SA_prom)*/; i+=2) { SA_prom[i] = inb(ioaddr + NE_DATAPORT); SA_prom[i+1] = inb(ioaddr + NE_DATAPORT); if (SA_prom[i] != SA_prom[i+1]) wordlength = 1; } /* At this point, wordlength *only* tells us if the SA_prom is doubled up or not because some broken PCI cards don't respect the byte-wide request in program_seq above, and hence don't have doubled up values. These broken cards would otherwise be detected as an ne1000. */ if (wordlength == 2) for (i = 0; i < 16; i++) SA_prom[i] = SA_prom[i+i]; if (wordlength == 2) { /* We must set the 8390 for word mode. */ outb(0x49, ioaddr + NE_EN0_DCFG); start_page = NESM_START_PG; stop_page = NESM_STOP_PG; } else { start_page = NE1SM_START_PG; stop_page = NE1SM_STOP_PG; } neX000 = (SA_prom[14] == 0x57 && SA_prom[15] == 0x57); ctron = (SA_prom[0] == 0x00 && SA_prom[1] == 0x00 && SA_prom[2] == 0x1d); /* Set up the rest of the parameters. */ if (neX000) { name = (wordlength == 2) ? "NE2000" : "NE1000"; } else if (ctron) { name = (wordlength == 2) ? "Ctron-8" : "Ctron-16"; start_page = 0x01; stop_page = (wordlength == 2) ? 0x40 : 0x20; } else { printk(" not found.\n"); return -ENXIO; } #else wordlength = 2; /* We must set the 8390 for word mode. */ outb(0x49, ioaddr + NE_EN0_DCFG); start_page = NESM_START_PG; stop_page = NESM_STOP_PG; SA_prom[0] = MANUAL_HWADDR0; SA_prom[1] = MANUAL_HWADDR1; SA_prom[2] = MANUAL_HWADDR2; SA_prom[3] = MANUAL_HWADDR3; SA_prom[4] = MANUAL_HWADDR4; SA_prom[5] = MANUAL_HWADDR5; name = "NE2000"; #endif dev->base_addr = ioaddr; dev->irq = IRQ_AMIGA_PORTS; /* Install the Interrupt handler */ i = request_irq(dev->irq, apne_interrupt, IRQF_SHARED, DRV_NAME, dev); if (i) return i; for(i = 0; i < ETHER_ADDR_LEN; i++) dev->dev_addr[i] = SA_prom[i]; printk(" %s\n", print_mac(mac, dev->dev_addr)); printk("%s: %s found.\n", dev->name, name); ei_status.name = name; ei_status.tx_start_page = start_page; ei_status.stop_page = stop_page; ei_status.word16 = (wordlength == 2); ei_status.rx_start_page = start_page + TX_PAGES; ei_status.reset_8390 = &apne_reset_8390; ei_status.block_input = &apne_block_input; ei_status.block_output = &apne_block_output; ei_status.get_8390_hdr = &apne_get_8390_hdr; dev->open = &apne_open; dev->stop = &apne_close; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = ei_poll; #endif NS8390_init(dev, 0); pcmcia_ack_int(pcmcia_get_intreq()); /* ack PCMCIA int req */ pcmcia_enable_irq(); apne_owned = 1; return 0; } static int apne_open(struct net_device *dev) { ei_open(dev); return 0; } static int apne_close(struct net_device *dev) { if (ei_debug > 1) printk("%s: Shutting down ethercard.\n", dev->name); ei_close(dev); return 0; } /* Hard reset the card. This used to pause for the same period that a 8390 reset command required, but that shouldn't be necessary. */ static void apne_reset_8390(struct net_device *dev) { unsigned long reset_start_time = jiffies; init_pcmcia(); if (ei_debug > 1) printk("resetting the 8390 t=%ld...", jiffies); outb(inb(NE_BASE + NE_RESET), NE_BASE + NE_RESET); ei_status.txing = 0; ei_status.dmaing = 0; /* This check _should_not_ be necessary, omit eventually. */ while ((inb(NE_BASE+NE_EN0_ISR) & ENISR_RESET) == 0) if (time_after(jiffies, reset_start_time + 2*HZ/100)) { printk("%s: ne_reset_8390() did not complete.\n", dev->name); break; } outb(ENISR_RESET, NE_BASE + NE_EN0_ISR); /* Ack intr. */ } /* Grab the 8390 specific header. Similar to the block_input routine, but we don't need to be concerned with ring wrap as the header will be at the start of a page, so we optimize accordingly. */ static void apne_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page) { int nic_base = dev->base_addr; int cnt; char *ptrc; short *ptrs; /* This *shouldn't* happen. If it does, it's the last thing you'll see */ if (ei_status.dmaing) { printk("%s: DMAing conflict in ne_get_8390_hdr " "[DMAstat:%d][irqlock:%d][intr:%d].\n", dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq); return; } ei_status.dmaing |= 0x01; outb(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base+ NE_CMD); outb(ENISR_RDC, nic_base + NE_EN0_ISR); outb(sizeof(struct e8390_pkt_hdr), nic_base + NE_EN0_RCNTLO); outb(0, nic_base + NE_EN0_RCNTHI); outb(0, nic_base + NE_EN0_RSARLO); /* On page boundary */ outb(ring_page, nic_base + NE_EN0_RSARHI); outb(E8390_RREAD+E8390_START, nic_base + NE_CMD); if (ei_status.word16) { ptrs = (short*)hdr; for(cnt = 0; cnt < (sizeof(struct e8390_pkt_hdr)>>1); cnt++) *ptrs++ = inw(NE_BASE + NE_DATAPORT); } else { ptrc = (char*)hdr; for(cnt = 0; cnt < sizeof(struct e8390_pkt_hdr); cnt++) *ptrc++ = inb(NE_BASE + NE_DATAPORT); } outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */ ei_status.dmaing &= ~0x01; le16_to_cpus(&hdr->count); } /* Block input and output, similar to the Crynwr packet driver. If you are porting to a new ethercard, look at the packet driver source for hints. The NEx000 doesn't share the on-board packet memory -- you have to put the packet out through the "remote DMA" dataport using outb. */ static void apne_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset) { int nic_base = dev->base_addr; char *buf = skb->data; char *ptrc; short *ptrs; int cnt; /* This *shouldn't* happen. If it does, it's the last thing you'll see */ if (ei_status.dmaing) { printk("%s: DMAing conflict in ne_block_input " "[DMAstat:%d][irqlock:%d][intr:%d].\n", dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq); return; } ei_status.dmaing |= 0x01; outb(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base+ NE_CMD); outb(ENISR_RDC, nic_base + NE_EN0_ISR); outb(count & 0xff, nic_base + NE_EN0_RCNTLO); outb(count >> 8, nic_base + NE_EN0_RCNTHI); outb(ring_offset & 0xff, nic_base + NE_EN0_RSARLO); outb(ring_offset >> 8, nic_base + NE_EN0_RSARHI); outb(E8390_RREAD+E8390_START, nic_base + NE_CMD); if (ei_status.word16) { ptrs = (short*)buf; for (cnt = 0; cnt < (count>>1); cnt++) *ptrs++ = inw(NE_BASE + NE_DATAPORT); if (count & 0x01) { buf[count-1] = inb(NE_BASE + NE_DATAPORT); } } else { ptrc = (char*)buf; for (cnt = 0; cnt < count; cnt++) *ptrc++ = inb(NE_BASE + NE_DATAPORT); } outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */ ei_status.dmaing &= ~0x01; } static void apne_block_output(struct net_device *dev, int count, const unsigned char *buf, const int start_page) { int nic_base = NE_BASE; unsigned long dma_start; char *ptrc; short *ptrs; int cnt; /* Round the count up for word writes. Do we need to do this? What effect will an odd byte count have on the 8390? I should check someday. */ if (ei_status.word16 && (count & 0x01)) count++; /* This *shouldn't* happen. If it does, it's the last thing you'll see */ if (ei_status.dmaing) { printk("%s: DMAing conflict in ne_block_output." "[DMAstat:%d][irqlock:%d][intr:%d]\n", dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq); return; } ei_status.dmaing |= 0x01; /* We should already be in page 0, but to be safe... */ outb(E8390_PAGE0+E8390_START+E8390_NODMA, nic_base + NE_CMD); outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Now the normal output. */ outb(count & 0xff, nic_base + NE_EN0_RCNTLO); outb(count >> 8, nic_base + NE_EN0_RCNTHI); outb(0x00, nic_base + NE_EN0_RSARLO); outb(start_page, nic_base + NE_EN0_RSARHI); outb(E8390_RWRITE+E8390_START, nic_base + NE_CMD); if (ei_status.word16) { ptrs = (short*)buf; for (cnt = 0; cnt < count>>1; cnt++) outw(*ptrs++, NE_BASE+NE_DATAPORT); } else { ptrc = (char*)buf; for (cnt = 0; cnt < count; cnt++) outb(*ptrc++, NE_BASE + NE_DATAPORT); } dma_start = jiffies; while ((inb(NE_BASE + NE_EN0_ISR) & ENISR_RDC) == 0) if (time_after(jiffies, dma_start + 2*HZ/100)) { /* 20ms */ printk("%s: timeout waiting for Tx RDC.\n", dev->name); apne_reset_8390(dev); NS8390_init(dev,1); break; } outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */ ei_status.dmaing &= ~0x01; return; } static irqreturn_t apne_interrupt(int irq, void *dev_id) { unsigned char pcmcia_intreq; if (!(gayle.inten & GAYLE_IRQ_IRQ)) return IRQ_NONE; pcmcia_intreq = pcmcia_get_intreq(); if (!(pcmcia_intreq & GAYLE_IRQ_IRQ)) { pcmcia_ack_int(pcmcia_intreq); return IRQ_NONE; } if (ei_debug > 3) printk("pcmcia intreq = %x\n", pcmcia_intreq); pcmcia_disable_irq(); /* to get rid of the sti() within ei_interrupt */ ei_interrupt(irq, dev_id); pcmcia_ack_int(pcmcia_get_intreq()); pcmcia_enable_irq(); return IRQ_HANDLED; } #ifdef MODULE static struct net_device *apne_dev; static int __init apne_module_init(void) { apne_dev = apne_probe(-1); if (IS_ERR(apne_dev)) return PTR_ERR(apne_dev); return 0; } static void __exit apne_module_exit(void) { unregister_netdev(apne_dev); pcmcia_disable_irq(); free_irq(IRQ_AMIGA_PORTS, apne_dev); pcmcia_reset(); release_region(IOBASE, 0x20); free_netdev(apne_dev); } module_init(apne_module_init); module_exit(apne_module_exit); #endif static int init_pcmcia(void) { u_char config; #ifndef MANUAL_CONFIG u_char tuple[32]; int offset_len; #endif u_long offset; pcmcia_reset(); pcmcia_program_voltage(PCMCIA_0V); pcmcia_access_speed(PCMCIA_SPEED_250NS); pcmcia_write_enable(); #ifdef MANUAL_CONFIG config = MANUAL_CONFIG; #else /* get and write config byte to enable IO port */ if (pcmcia_copy_tuple(CISTPL_CFTABLE_ENTRY, tuple, 32) < 3) return 0; config = tuple[2] & 0x3f; #endif #ifdef MANUAL_OFFSET offset = MANUAL_OFFSET; #else if (pcmcia_copy_tuple(CISTPL_CONFIG, tuple, 32) < 6) return 0; offset_len = (tuple[2] & 0x3) + 1; offset = 0; while(offset_len--) { offset = (offset << 8) | tuple[4+offset_len]; } #endif out_8(GAYLE_ATTRIBUTE+offset, config); return 1; } MODULE_LICENSE("GPL");