/******************************************************************************* * * Intel Ethernet Controller XL710 Family Linux Driver * Copyright(c) 2013 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * ******************************************************************************/ #include "i40e_prototype.h" /** * i40e_init_nvm_ops - Initialize NVM function pointers. * @hw: pointer to the HW structure. * * Setups the function pointers and the NVM info structure. Should be called * once per NVM initialization, e.g. inside the i40e_init_shared_code(). * Please notice that the NVM term is used here (& in all methods covered * in this file) as an equivalent of the FLASH part mapped into the SR. * We are accessing FLASH always thru the Shadow RAM. **/ i40e_status i40e_init_nvm(struct i40e_hw *hw) { struct i40e_nvm_info *nvm = &hw->nvm; i40e_status ret_code = 0; u32 fla, gens; u8 sr_size; /* The SR size is stored regardless of the nvm programming mode * as the blank mode may be used in the factory line. */ gens = rd32(hw, I40E_GLNVM_GENS); sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> I40E_GLNVM_GENS_SR_SIZE_SHIFT); /* Switching to words (sr_size contains power of 2KB). */ nvm->sr_size = (1 << sr_size) * I40E_SR_WORDS_IN_1KB; /* Check if we are in the normal or blank NVM programming mode. */ fla = rd32(hw, I40E_GLNVM_FLA); if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode. */ /* Max NVM timeout. */ nvm->timeout = I40E_MAX_NVM_TIMEOUT; nvm->blank_nvm_mode = false; } else { /* Blank programming mode. */ nvm->blank_nvm_mode = true; ret_code = I40E_ERR_NVM_BLANK_MODE; hw_dbg(hw, "NVM init error: unsupported blank mode.\n"); } return ret_code; } /** * i40e_acquire_nvm - Generic request for acquiring the NVM ownership. * @hw: pointer to the HW structure. * @access: NVM access type (read or write). * * This function will request NVM ownership for reading * via the proper Admin Command. **/ i40e_status i40e_acquire_nvm(struct i40e_hw *hw, enum i40e_aq_resource_access_type access) { i40e_status ret_code = 0; u64 gtime, timeout; u64 time = 0; if (hw->nvm.blank_nvm_mode) goto i40e_i40e_acquire_nvm_exit; ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 0, &time, NULL); /* Reading the Global Device Timer. */ gtime = rd32(hw, I40E_GLVFGEN_TIMER); /* Store the timeout. */ hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time) + gtime; if (ret_code) { /* Set the polling timeout. */ if (time > I40E_MAX_NVM_TIMEOUT) timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; else timeout = hw->nvm.hw_semaphore_timeout; /* Poll until the current NVM owner timeouts. */ while (gtime < timeout) { usleep_range(10000, 20000); ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 0, &time, NULL); if (!ret_code) { hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time) + gtime; break; } gtime = rd32(hw, I40E_GLVFGEN_TIMER); } if (ret_code) { hw->nvm.hw_semaphore_timeout = 0; hw->nvm.hw_semaphore_wait = I40E_MS_TO_GTIME(time) + gtime; hw_dbg(hw, "NVM acquire timed out, wait %llu ms before trying again.\n", time); } } i40e_i40e_acquire_nvm_exit: return ret_code; } /** * i40e_release_nvm - Generic request for releasing the NVM ownership. * @hw: pointer to the HW structure. * * This function will release NVM resource via the proper Admin Command. **/ void i40e_release_nvm(struct i40e_hw *hw) { if (!hw->nvm.blank_nvm_mode) i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); } /** * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit. * @hw: pointer to the HW structure. * * Polls the SRCTL Shadow RAM register done bit. **/ static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) { i40e_status ret_code = I40E_ERR_TIMEOUT; u32 srctl, wait_cnt; /* Poll the I40E_GLNVM_SRCTL until the done bit is set. */ for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { srctl = rd32(hw, I40E_GLNVM_SRCTL); if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { ret_code = 0; break; } udelay(5); } if (ret_code == I40E_ERR_TIMEOUT) hw_dbg(hw, "Done bit in GLNVM_SRCTL not set"); return ret_code; } /** * i40e_read_nvm_word - Reads Shadow RAM * @hw: pointer to the HW structure. * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @data: word read from the Shadow RAM. * * Reads 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. **/ i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, u16 *data) { i40e_status ret_code = I40E_ERR_TIMEOUT; u32 sr_reg; if (offset >= hw->nvm.sr_size) { hw_dbg(hw, "NVM read error: Offset beyond Shadow RAM limit.\n"); ret_code = I40E_ERR_PARAM; goto read_nvm_exit; } /* Poll the done bit first. */ ret_code = i40e_poll_sr_srctl_done_bit(hw); if (!ret_code) { /* Write the address and start reading. */ sr_reg = (u32)(offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | (1 << I40E_GLNVM_SRCTL_START_SHIFT); wr32(hw, I40E_GLNVM_SRCTL, sr_reg); /* Poll I40E_GLNVM_SRCTL until the done bit is set. */ ret_code = i40e_poll_sr_srctl_done_bit(hw); if (!ret_code) { sr_reg = rd32(hw, I40E_GLNVM_SRDATA); *data = (u16)((sr_reg & I40E_GLNVM_SRDATA_RDDATA_MASK) >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); } } if (ret_code) hw_dbg(hw, "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", offset); read_nvm_exit: return ret_code; } /** * i40e_read_nvm_buffer - Reads Shadow RAM buffer. * @hw: pointer to the HW structure. * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @words: number of words to read (in) & * number of words read before the NVM ownership timeout (out). * @data: words read from the Shadow RAM. * * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() * method. The buffer read is preceded by the NVM ownership take * and followed by the release. **/ i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, u16 *words, u16 *data) { i40e_status ret_code = 0; u16 index, word; /* Loop thru the selected region. */ for (word = 0; word < *words; word++) { index = offset + word; ret_code = i40e_read_nvm_word(hw, index, &data[word]); if (ret_code) break; } /* Update the number of words read from the Shadow RAM. */ *words = word; return ret_code; } /** * i40e_calc_nvm_checksum - Calculates and returns the checksum * @hw: pointer to hardware structure * * This function calculate SW Checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD * is customer specific and unknown. Therefore, this function skips all maximum * possible size of VPD (1kB). **/ static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, u16 *checksum) { i40e_status ret_code = 0; u16 pcie_alt_module = 0; u16 checksum_local = 0; u16 vpd_module = 0; u16 word = 0; u32 i = 0; /* read pointer to VPD area */ ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } /* read pointer to PCIe Alt Auto-load module */ ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, &pcie_alt_module); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } /* Calculate SW checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules */ for (i = 0; i < hw->nvm.sr_size; i++) { /* Skip Checksum word */ if (i == I40E_SR_SW_CHECKSUM_WORD) i++; /* Skip VPD module (convert byte size to word count) */ if (i == (u32)vpd_module) { i += (I40E_SR_VPD_MODULE_MAX_SIZE / 2); if (i >= hw->nvm.sr_size) break; } /* Skip PCIe ALT module (convert byte size to word count) */ if (i == (u32)pcie_alt_module) { i += (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2); if (i >= hw->nvm.sr_size) break; } ret_code = i40e_read_nvm_word(hw, (u16)i, &word); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } checksum_local += word; } *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; i40e_calc_nvm_checksum_exit: return ret_code; } /** * i40e_validate_nvm_checksum - Validate EEPROM checksum * @hw: pointer to hardware structure * @checksum: calculated checksum * * Performs checksum calculation and validates the NVM SW checksum. If the * caller does not need checksum, the value can be NULL. **/ i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, u16 *checksum) { i40e_status ret_code = 0; u16 checksum_sr = 0; u16 checksum_local; ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (ret_code) goto i40e_validate_nvm_checksum_exit; ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); if (ret_code) goto i40e_validate_nvm_checksum_free; /* Do not use i40e_read_nvm_word() because we do not want to take * the synchronization semaphores twice here. */ i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); /* Verify read checksum from EEPROM is the same as * calculated checksum */ if (checksum_local != checksum_sr) ret_code = I40E_ERR_NVM_CHECKSUM; /* If the user cares, return the calculated checksum */ if (checksum) *checksum = checksum_local; i40e_validate_nvm_checksum_free: i40e_release_nvm(hw); i40e_validate_nvm_checksum_exit: return ret_code; }