/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2010-2011 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include "net_driver.h" #include "efx.h" #include "nic.h" #include "io.h" #include "mcdi.h" #include "filter.h" #include "mcdi_pcol.h" #include "regs.h" #include "vfdi.h" /* Number of longs required to track all the VIs in a VF */ #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX) /** * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour * @VF_TX_FILTER_OFF: Disabled * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only * 2 TX queues allowed per VF. * @VF_TX_FILTER_ON: Enabled */ enum efx_vf_tx_filter_mode { VF_TX_FILTER_OFF, VF_TX_FILTER_AUTO, VF_TX_FILTER_ON, }; /** * struct efx_vf - Back-end resource and protocol state for a PCI VF * @efx: The Efx NIC owning this VF * @pci_rid: The PCI requester ID for this VF * @pci_name: The PCI name (formatted address) of this VF * @index: Index of VF within its port and PF. * @req: VFDI incoming request work item. Incoming USR_EV events are received * by the NAPI handler, but must be handled by executing MCDI requests * inside a work item. * @req_addr: VFDI incoming request DMA address (in VF's PCI address space). * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member. * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member. * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by * @status_lock * @busy: VFDI request queued to be processed or being processed. Receiving * a VFDI request when @busy is set is an error condition. * @buf: Incoming VFDI requests are DMA from the VF into this buffer. * @buftbl_base: Buffer table entries for this VF start at this index. * @rx_filtering: Receive filtering has been requested by the VF driver. * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request. * @rx_filter_qid: VF relative qid for RX filter requested by VF. * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported. * @tx_filter_mode: Transmit MAC filtering mode. * @tx_filter_id: Transmit MAC filter ID. * @addr: The MAC address and outer vlan tag of the VF. * @status_addr: VF DMA address of page for &struct vfdi_status updates. * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr, * @peer_page_addrs and @peer_page_count from simultaneous * updates by the VM and consumption by * efx_sriov_update_vf_addr() * @peer_page_addrs: Pointer to an array of guest pages for local addresses. * @peer_page_count: Number of entries in @peer_page_count. * @evq0_addrs: Array of guest pages backing evq0. * @evq0_count: Number of entries in @evq0_addrs. * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler * to wait for flush completions. * @txq_lock: Mutex for TX queue allocation. * @txq_mask: Mask of initialized transmit queues. * @txq_count: Number of initialized transmit queues. * @rxq_mask: Mask of initialized receive queues. * @rxq_count: Number of initialized receive queues. * @rxq_retry_mask: Mask or receive queues that need to be flushed again * due to flush failure. * @rxq_retry_count: Number of receive queues in @rxq_retry_mask. * @reset_work: Work item to schedule a VF reset. */ struct efx_vf { struct efx_nic *efx; unsigned int pci_rid; char pci_name[13]; /* dddd:bb:dd.f */ unsigned int index; struct work_struct req; u64 req_addr; int req_type; unsigned req_seqno; unsigned msg_seqno; bool busy; struct efx_buffer buf; unsigned buftbl_base; bool rx_filtering; enum efx_filter_flags rx_filter_flags; unsigned rx_filter_qid; int rx_filter_id; enum efx_vf_tx_filter_mode tx_filter_mode; int tx_filter_id; struct vfdi_endpoint addr; u64 status_addr; struct mutex status_lock; u64 *peer_page_addrs; unsigned peer_page_count; u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE]; unsigned evq0_count; wait_queue_head_t flush_waitq; struct mutex txq_lock; unsigned long txq_mask[VI_MASK_LENGTH]; unsigned txq_count; unsigned long rxq_mask[VI_MASK_LENGTH]; unsigned rxq_count; unsigned long rxq_retry_mask[VI_MASK_LENGTH]; atomic_t rxq_retry_count; struct work_struct reset_work; }; struct efx_memcpy_req { unsigned int from_rid; void *from_buf; u64 from_addr; unsigned int to_rid; u64 to_addr; unsigned length; }; /** * struct efx_local_addr - A MAC address on the vswitch without a VF. * * Siena does not have a switch, so VFs can't transmit data to each * other. Instead the VFs must be made aware of the local addresses * on the vswitch, so that they can arrange for an alternative * software datapath to be used. * * @link: List head for insertion into efx->local_addr_list. * @addr: Ethernet address */ struct efx_local_addr { struct list_head link; u8 addr[ETH_ALEN]; }; /** * struct efx_endpoint_page - Page of vfdi_endpoint structures * * @link: List head for insertion into efx->local_page_list. * @ptr: Pointer to page. * @addr: DMA address of page. */ struct efx_endpoint_page { struct list_head link; void *ptr; dma_addr_t addr; }; /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */ #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \ ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid)) #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \ (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \ (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \ (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \ (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) #define EFX_FIELD_MASK(_field) \ ((1 << _field ## _WIDTH) - 1) /* VFs can only use this many transmit channels */ static unsigned int vf_max_tx_channels = 2; module_param(vf_max_tx_channels, uint, 0444); MODULE_PARM_DESC(vf_max_tx_channels, "Limit the number of TX channels VFs can use"); static int max_vfs = -1; module_param(max_vfs, int, 0444); MODULE_PARM_DESC(max_vfs, "Reduce the number of VFs initialized by the driver"); /* Workqueue used by VFDI communication. We can't use the global * workqueue because it may be running the VF driver's probe() * routine, which will be blocked there waiting for a VFDI response. */ static struct workqueue_struct *vfdi_workqueue; static unsigned abs_index(struct efx_vf *vf, unsigned index) { return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index; } static int efx_sriov_cmd(struct efx_nic *efx, bool enable, unsigned *vi_scale_out, unsigned *vf_total_out) { u8 inbuf[MC_CMD_SRIOV_IN_LEN]; u8 outbuf[MC_CMD_SRIOV_OUT_LEN]; unsigned vi_scale, vf_total; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0); MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE); MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count); rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN, outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen); if (rc) return rc; if (outlen < MC_CMD_SRIOV_OUT_LEN) return -EIO; vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL); vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE); if (vi_scale > EFX_VI_SCALE_MAX) return -EOPNOTSUPP; if (vi_scale_out) *vi_scale_out = vi_scale; if (vf_total_out) *vf_total_out = vf_total; return 0; } static void efx_sriov_usrev(struct efx_nic *efx, bool enabled) { efx_oword_t reg; EFX_POPULATE_OWORD_2(reg, FRF_CZ_USREV_DIS, enabled ? 0 : 1, FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel); efx_writeo(efx, ®, FR_CZ_USR_EV_CFG); } static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req, unsigned int count) { u8 *inbuf, *record; unsigned int used; u32 from_rid, from_hi, from_lo; int rc; mb(); /* Finish writing source/reading dest before DMA starts */ used = MC_CMD_MEMCPY_IN_LEN(count); if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX)) return -ENOBUFS; /* Allocate room for the largest request */ inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL); if (inbuf == NULL) return -ENOMEM; record = inbuf; MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count); while (count-- > 0) { MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID, req->to_rid); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO, (u32)req->to_addr); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI, (u32)(req->to_addr >> 32)); if (req->from_buf == NULL) { from_rid = req->from_rid; from_lo = (u32)req->from_addr; from_hi = (u32)(req->from_addr >> 32); } else { if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) { rc = -ENOBUFS; goto out; } from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE; from_lo = used; from_hi = 0; memcpy(inbuf + used, req->from_buf, req->length); used += req->length; } MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO, from_lo); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI, from_hi); MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH, req->length); ++req; record += MC_CMD_MEMCPY_IN_RECORD_LEN; } rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL); out: kfree(inbuf); mb(); /* Don't write source/read dest before DMA is complete */ return rc; } /* The TX filter is entirely controlled by this driver, and is modified * underneath the feet of the VF */ static void efx_sriov_reset_tx_filter(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct efx_filter_spec filter; u16 vlan; int rc; if (vf->tx_filter_id != -1) { efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, vf->tx_filter_id); netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n", vf->pci_name, vf->tx_filter_id); vf->tx_filter_id = -1; } if (is_zero_ether_addr(vf->addr.mac_addr)) return; /* Turn on TX filtering automatically if not explicitly * enabled or disabled. */ if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2) vf->tx_filter_mode = VF_TX_FILTER_ON; vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; efx_filter_init_tx(&filter, abs_index(vf, 0)); rc = efx_filter_set_eth_local(&filter, vlan ? vlan : EFX_FILTER_VID_UNSPEC, vf->addr.mac_addr); BUG_ON(rc); rc = efx_filter_insert_filter(efx, &filter, true); if (rc < 0) { netif_warn(efx, hw, efx->net_dev, "Unable to migrate tx filter for vf %s\n", vf->pci_name); } else { netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n", vf->pci_name, rc); vf->tx_filter_id = rc; } } /* The RX filter is managed here on behalf of the VF driver */ static void efx_sriov_reset_rx_filter(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct efx_filter_spec filter; u16 vlan; int rc; if (vf->rx_filter_id != -1) { efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, vf->rx_filter_id); netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n", vf->pci_name, vf->rx_filter_id); vf->rx_filter_id = -1; } if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr)) return; vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED, vf->rx_filter_flags, abs_index(vf, vf->rx_filter_qid)); rc = efx_filter_set_eth_local(&filter, vlan ? vlan : EFX_FILTER_VID_UNSPEC, vf->addr.mac_addr); BUG_ON(rc); rc = efx_filter_insert_filter(efx, &filter, true); if (rc < 0) { netif_warn(efx, hw, efx->net_dev, "Unable to insert rx filter for vf %s\n", vf->pci_name); } else { netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n", vf->pci_name, rc); vf->rx_filter_id = rc; } } static void __efx_sriov_update_vf_addr(struct efx_vf *vf) { efx_sriov_reset_tx_filter(vf); efx_sriov_reset_rx_filter(vf); queue_work(vfdi_workqueue, &vf->efx->peer_work); } /* Push the peer list to this VF. The caller must hold status_lock to interlock * with VFDI requests, and they must be serialised against manipulation of * local_page_list, either by acquiring local_lock or by running from * efx_sriov_peer_work() */ static void __efx_sriov_push_vf_status(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_status *status = efx->vfdi_status.addr; struct efx_memcpy_req copy[4]; struct efx_endpoint_page *epp; unsigned int pos, count; unsigned data_offset; efx_qword_t event; WARN_ON(!mutex_is_locked(&vf->status_lock)); WARN_ON(!vf->status_addr); status->local = vf->addr; status->generation_end = ++status->generation_start; memset(copy, '\0', sizeof(copy)); /* Write generation_start */ copy[0].from_buf = &status->generation_start; copy[0].to_rid = vf->pci_rid; copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status, generation_start); copy[0].length = sizeof(status->generation_start); /* DMA the rest of the structure (excluding the generations). This * assumes that the non-generation portion of vfdi_status is in * one chunk starting at the version member. */ data_offset = offsetof(struct vfdi_status, version); copy[1].from_rid = efx->pci_dev->devfn; copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset; copy[1].to_rid = vf->pci_rid; copy[1].to_addr = vf->status_addr + data_offset; copy[1].length = status->length - data_offset; /* Copy the peer pages */ pos = 2; count = 0; list_for_each_entry(epp, &efx->local_page_list, link) { if (count == vf->peer_page_count) { /* The VF driver will know they need to provide more * pages because peer_addr_count is too large. */ break; } copy[pos].from_buf = NULL; copy[pos].from_rid = efx->pci_dev->devfn; copy[pos].from_addr = epp->addr; copy[pos].to_rid = vf->pci_rid; copy[pos].to_addr = vf->peer_page_addrs[count]; copy[pos].length = EFX_PAGE_SIZE; if (++pos == ARRAY_SIZE(copy)) { efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); pos = 0; } ++count; } /* Write generation_end */ copy[pos].from_buf = &status->generation_end; copy[pos].to_rid = vf->pci_rid; copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status, generation_end); copy[pos].length = sizeof(status->generation_end); efx_sriov_memcpy(efx, copy, pos + 1); /* Notify the guest */ EFX_POPULATE_QWORD_3(event, FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, VFDI_EV_SEQ, (vf->msg_seqno & 0xff), VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS); ++vf->msg_seqno; efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx), &event); } static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset, u64 *addr, unsigned count) { efx_qword_t buf; unsigned pos; for (pos = 0; pos < count; ++pos) { EFX_POPULATE_QWORD_3(buf, FRF_AZ_BUF_ADR_REGION, 0, FRF_AZ_BUF_ADR_FBUF, addr ? addr[pos] >> 12 : 0, FRF_AZ_BUF_OWNER_ID_FBUF, 0); efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL, &buf, offset + pos); } } static bool bad_vf_index(struct efx_nic *efx, unsigned index) { return index >= efx_vf_size(efx); } static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count) { unsigned max_buf_count = max_entry_count * sizeof(efx_qword_t) / EFX_BUF_SIZE; return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count); } /* Check that VI specified by per-port index belongs to a VF. * Optionally set VF index and VI index within the VF. */ static bool map_vi_index(struct efx_nic *efx, unsigned abs_index, struct efx_vf **vf_out, unsigned *rel_index_out) { unsigned vf_i; if (abs_index < EFX_VI_BASE) return true; vf_i = (abs_index - EFX_VI_BASE) * efx_vf_size(efx); if (vf_i >= efx->vf_init_count) return true; if (vf_out) *vf_out = efx->vf + vf_i; if (rel_index_out) *rel_index_out = abs_index % efx_vf_size(efx); return false; } static int efx_vfdi_init_evq(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; unsigned vf_evq = req->u.init_evq.index; unsigned buf_count = req->u.init_evq.buf_count; unsigned abs_evq = abs_index(vf, vf_evq); unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq); efx_oword_t reg; if (bad_vf_index(efx, vf_evq) || bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n", vf->pci_name, vf_evq, buf_count); return VFDI_RC_EINVAL; } efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count); EFX_POPULATE_OWORD_3(reg, FRF_CZ_TIMER_Q_EN, 1, FRF_CZ_HOST_NOTIFY_MODE, 0, FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); EFX_POPULATE_OWORD_3(reg, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, __ffs(buf_count), FRF_AZ_EVQ_BUF_BASE_ID, buftbl); efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); if (vf_evq == 0) { memcpy(vf->evq0_addrs, req->u.init_evq.addr, buf_count * sizeof(u64)); vf->evq0_count = buf_count; } return VFDI_RC_SUCCESS; } static int efx_vfdi_init_rxq(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; unsigned vf_rxq = req->u.init_rxq.index; unsigned vf_evq = req->u.init_rxq.evq; unsigned buf_count = req->u.init_rxq.buf_count; unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq); unsigned label; efx_oword_t reg; if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) || bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d " "buf_count %d\n", vf->pci_name, vf_rxq, vf_evq, buf_count); return VFDI_RC_EINVAL; } if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask)) ++vf->rxq_count; efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count); label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL); EFX_POPULATE_OWORD_6(reg, FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl, FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), FRF_AZ_RX_DESCQ_LABEL, label, FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count), FRF_AZ_RX_DESCQ_JUMBO, !!(req->u.init_rxq.flags & VFDI_RXQ_FLAG_SCATTER_EN), FRF_AZ_RX_DESCQ_EN, 1); efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, abs_index(vf, vf_rxq)); return VFDI_RC_SUCCESS; } static int efx_vfdi_init_txq(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; unsigned vf_txq = req->u.init_txq.index; unsigned vf_evq = req->u.init_txq.evq; unsigned buf_count = req->u.init_txq.buf_count; unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq); unsigned label, eth_filt_en; efx_oword_t reg; if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) || vf_txq >= vf_max_tx_channels || bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d " "buf_count %d\n", vf->pci_name, vf_txq, vf_evq, buf_count); return VFDI_RC_EINVAL; } mutex_lock(&vf->txq_lock); if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask)) ++vf->txq_count; mutex_unlock(&vf->txq_lock); efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count); eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON; label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL); EFX_POPULATE_OWORD_8(reg, FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U), FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en, FRF_AZ_TX_DESCQ_EN, 1, FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl, FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), FRF_AZ_TX_DESCQ_LABEL, label, FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count), FRF_BZ_TX_NON_IP_DROP_DIS, 1); efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, abs_index(vf, vf_txq)); return VFDI_RC_SUCCESS; } /* Returns true when efx_vfdi_fini_all_queues should wake */ static bool efx_vfdi_flush_wake(struct efx_vf *vf) { /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */ smp_mb(); return (!vf->txq_count && !vf->rxq_count) || atomic_read(&vf->rxq_retry_count); } static void efx_vfdi_flush_clear(struct efx_vf *vf) { memset(vf->txq_mask, 0, sizeof(vf->txq_mask)); vf->txq_count = 0; memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask)); vf->rxq_count = 0; memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask)); atomic_set(&vf->rxq_retry_count, 0); } static int efx_vfdi_fini_all_queues(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; efx_oword_t reg; unsigned count = efx_vf_size(efx); unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx); unsigned timeout = HZ; unsigned index, rxqs_count; __le32 *rxqs; int rc; rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL); if (rxqs == NULL) return VFDI_RC_ENOMEM; rtnl_lock(); if (efx->fc_disable++ == 0) efx_mcdi_set_mac(efx); rtnl_unlock(); /* Flush all the initialized queues */ rxqs_count = 0; for (index = 0; index < count; ++index) { if (test_bit(index, vf->txq_mask)) { EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, FRF_AZ_TX_FLUSH_DESCQ, vf_offset + index); efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ); } if (test_bit(index, vf->rxq_mask)) rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index); } atomic_set(&vf->rxq_retry_count, 0); while (timeout && (vf->rxq_count || vf->txq_count)) { rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs, rxqs_count * sizeof(*rxqs), NULL, 0, NULL); WARN_ON(rc < 0); timeout = wait_event_timeout(vf->flush_waitq, efx_vfdi_flush_wake(vf), timeout); rxqs_count = 0; for (index = 0; index < count; ++index) { if (test_and_clear_bit(index, vf->rxq_retry_mask)) { atomic_dec(&vf->rxq_retry_count); rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index); } } } rtnl_lock(); if (--efx->fc_disable == 0) efx_mcdi_set_mac(efx); rtnl_unlock(); /* Irrespective of success/failure, fini the queues */ EFX_ZERO_OWORD(reg); for (index = 0; index < count; ++index) { efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, vf_offset + index); efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, vf_offset + index); efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, vf_offset + index); efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, vf_offset + index); } efx_sriov_bufs(efx, vf->buftbl_base, NULL, EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx)); kfree(rxqs); efx_vfdi_flush_clear(vf); vf->evq0_count = 0; return timeout ? 0 : VFDI_RC_ETIMEDOUT; } static int efx_vfdi_insert_filter(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; unsigned vf_rxq = req->u.mac_filter.rxq; unsigned flags; if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Invalid INSERT_FILTER from %s: rxq %d " "flags 0x%x\n", vf->pci_name, vf_rxq, req->u.mac_filter.flags); return VFDI_RC_EINVAL; } flags = 0; if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS) flags |= EFX_FILTER_FLAG_RX_RSS; if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER) flags |= EFX_FILTER_FLAG_RX_SCATTER; vf->rx_filter_flags = flags; vf->rx_filter_qid = vf_rxq; vf->rx_filtering = true; efx_sriov_reset_rx_filter(vf); queue_work(vfdi_workqueue, &efx->peer_work); return VFDI_RC_SUCCESS; } static int efx_vfdi_remove_all_filters(struct efx_vf *vf) { vf->rx_filtering = false; efx_sriov_reset_rx_filter(vf); queue_work(vfdi_workqueue, &vf->efx->peer_work); return VFDI_RC_SUCCESS; } static int efx_vfdi_set_status_page(struct efx_vf *vf) { struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; unsigned int page_count; page_count = req->u.set_status_page.peer_page_count; if (!req->u.set_status_page.dma_addr || EFX_PAGE_SIZE < offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[page_count])) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Invalid SET_STATUS_PAGE from %s\n", vf->pci_name); return VFDI_RC_EINVAL; } mutex_lock(&efx->local_lock); mutex_lock(&vf->status_lock); vf->status_addr = req->u.set_status_page.dma_addr; kfree(vf->peer_page_addrs); vf->peer_page_addrs = NULL; vf->peer_page_count = 0; if (page_count) { vf->peer_page_addrs = kcalloc(page_count, sizeof(u64), GFP_KERNEL); if (vf->peer_page_addrs) { memcpy(vf->peer_page_addrs, req->u.set_status_page.peer_page_addr, page_count * sizeof(u64)); vf->peer_page_count = page_count; } } __efx_sriov_push_vf_status(vf); mutex_unlock(&vf->status_lock); mutex_unlock(&efx->local_lock); return VFDI_RC_SUCCESS; } static int efx_vfdi_clear_status_page(struct efx_vf *vf) { mutex_lock(&vf->status_lock); vf->status_addr = 0; mutex_unlock(&vf->status_lock); return VFDI_RC_SUCCESS; } typedef int (*efx_vfdi_op_t)(struct efx_vf *vf); static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = { [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq, [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq, [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq, [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues, [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter, [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters, [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page, [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page, }; static void efx_sriov_vfdi(struct work_struct *work) { struct efx_vf *vf = container_of(work, struct efx_vf, req); struct efx_nic *efx = vf->efx; struct vfdi_req *req = vf->buf.addr; struct efx_memcpy_req copy[2]; int rc; /* Copy this page into the local address space */ memset(copy, '\0', sizeof(copy)); copy[0].from_rid = vf->pci_rid; copy[0].from_addr = vf->req_addr; copy[0].to_rid = efx->pci_dev->devfn; copy[0].to_addr = vf->buf.dma_addr; copy[0].length = EFX_PAGE_SIZE; rc = efx_sriov_memcpy(efx, copy, 1); if (rc) { /* If we can't get the request, we can't reply to the caller */ if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Unable to fetch VFDI request from %s rc %d\n", vf->pci_name, -rc); vf->busy = false; return; } if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) { rc = vfdi_ops[req->op](vf); if (rc == 0) { netif_dbg(efx, hw, efx->net_dev, "vfdi request %d from %s ok\n", req->op, vf->pci_name); } } else { netif_dbg(efx, hw, efx->net_dev, "ERROR: Unrecognised request %d from VF %s addr " "%llx\n", req->op, vf->pci_name, (unsigned long long)vf->req_addr); rc = VFDI_RC_EOPNOTSUPP; } /* Allow subsequent VF requests */ vf->busy = false; smp_wmb(); /* Respond to the request */ req->rc = rc; req->op = VFDI_OP_RESPONSE; memset(copy, '\0', sizeof(copy)); copy[0].from_buf = &req->rc; copy[0].to_rid = vf->pci_rid; copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc); copy[0].length = sizeof(req->rc); copy[1].from_buf = &req->op; copy[1].to_rid = vf->pci_rid; copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op); copy[1].length = sizeof(req->op); (void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); } /* After a reset the event queues inside the guests no longer exist. Fill the * event ring in guest memory with VFDI reset events, then (re-initialise) the * event queue to raise an interrupt. The guest driver will then recover. */ static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer) { struct efx_nic *efx = vf->efx; struct efx_memcpy_req copy_req[4]; efx_qword_t event; unsigned int pos, count, k, buftbl, abs_evq; efx_oword_t reg; efx_dword_t ptr; int rc; BUG_ON(buffer->len != EFX_PAGE_SIZE); if (!vf->evq0_count) return; BUG_ON(vf->evq0_count & (vf->evq0_count - 1)); mutex_lock(&vf->status_lock); EFX_POPULATE_QWORD_3(event, FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, VFDI_EV_SEQ, vf->msg_seqno, VFDI_EV_TYPE, VFDI_EV_TYPE_RESET); vf->msg_seqno++; for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event)) memcpy(buffer->addr + pos, &event, sizeof(event)); for (pos = 0; pos < vf->evq0_count; pos += count) { count = min_t(unsigned, vf->evq0_count - pos, ARRAY_SIZE(copy_req)); for (k = 0; k < count; k++) { copy_req[k].from_buf = NULL; copy_req[k].from_rid = efx->pci_dev->devfn; copy_req[k].from_addr = buffer->dma_addr; copy_req[k].to_rid = vf->pci_rid; copy_req[k].to_addr = vf->evq0_addrs[pos + k]; copy_req[k].length = EFX_PAGE_SIZE; } rc = efx_sriov_memcpy(efx, copy_req, count); if (rc) { if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Unable to notify %s of reset" ": %d\n", vf->pci_name, -rc); break; } } /* Reinitialise, arm and trigger evq0 */ abs_evq = abs_index(vf, 0); buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0); efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count); EFX_POPULATE_OWORD_3(reg, FRF_CZ_TIMER_Q_EN, 1, FRF_CZ_HOST_NOTIFY_MODE, 0, FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); EFX_POPULATE_OWORD_3(reg, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count), FRF_AZ_EVQ_BUF_BASE_ID, buftbl); efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0); efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq); mutex_unlock(&vf->status_lock); } static void efx_sriov_reset_vf_work(struct work_struct *work) { struct efx_vf *vf = container_of(work, struct efx_vf, req); struct efx_nic *efx = vf->efx; struct efx_buffer buf; if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) { efx_sriov_reset_vf(vf, &buf); efx_nic_free_buffer(efx, &buf); } } static void efx_sriov_handle_no_channel(struct efx_nic *efx) { netif_err(efx, drv, efx->net_dev, "ERROR: IOV requires MSI-X and 1 additional interrupt" "vector. IOV disabled\n"); efx->vf_count = 0; } static int efx_sriov_probe_channel(struct efx_channel *channel) { channel->efx->vfdi_channel = channel; return 0; } static void efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len) { snprintf(buf, len, "%s-iov", channel->efx->name); } static const struct efx_channel_type efx_sriov_channel_type = { .handle_no_channel = efx_sriov_handle_no_channel, .pre_probe = efx_sriov_probe_channel, .get_name = efx_sriov_get_channel_name, /* no copy operation; channel must not be reallocated */ .keep_eventq = true, }; void efx_sriov_probe(struct efx_nic *efx) { unsigned count; if (!max_vfs) return; if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count)) return; if (count > 0 && count > max_vfs) count = max_vfs; /* efx_nic_dimension_resources() will reduce vf_count as appopriate */ efx->vf_count = count; efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type; } /* Copy the list of individual addresses into the vfdi_status.peers * array and auxillary pages, protected by %local_lock. Drop that lock * and then broadcast the address list to every VF. */ static void efx_sriov_peer_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, peer_work); struct vfdi_status *vfdi_status = efx->vfdi_status.addr; struct efx_vf *vf; struct efx_local_addr *local_addr; struct vfdi_endpoint *peer; struct efx_endpoint_page *epp; struct list_head pages; unsigned int peer_space; unsigned int peer_count; unsigned int pos; mutex_lock(&efx->local_lock); /* Move the existing peer pages off %local_page_list */ INIT_LIST_HEAD(&pages); list_splice_tail_init(&efx->local_page_list, &pages); /* Populate the VF addresses starting from entry 1 (entry 0 is * the PF address) */ peer = vfdi_status->peers + 1; peer_space = ARRAY_SIZE(vfdi_status->peers) - 1; peer_count = 1; for (pos = 0; pos < efx->vf_count; ++pos) { vf = efx->vf + pos; mutex_lock(&vf->status_lock); if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) { *peer++ = vf->addr; ++peer_count; --peer_space; BUG_ON(peer_space == 0); } mutex_unlock(&vf->status_lock); } /* Fill the remaining addresses */ list_for_each_entry(local_addr, &efx->local_addr_list, link) { memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN); peer->tci = 0; ++peer; ++peer_count; if (--peer_space == 0) { if (list_empty(&pages)) { epp = kmalloc(sizeof(*epp), GFP_KERNEL); if (!epp) break; epp->ptr = dma_alloc_coherent( &efx->pci_dev->dev, EFX_PAGE_SIZE, &epp->addr, GFP_KERNEL); if (!epp->ptr) { kfree(epp); break; } } else { epp = list_first_entry( &pages, struct efx_endpoint_page, link); list_del(&epp->link); } list_add_tail(&epp->link, &efx->local_page_list); peer = (struct vfdi_endpoint *)epp->ptr; peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint); } } vfdi_status->peer_count = peer_count; mutex_unlock(&efx->local_lock); /* Free any now unused endpoint pages */ while (!list_empty(&pages)) { epp = list_first_entry( &pages, struct efx_endpoint_page, link); list_del(&epp->link); dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, epp->ptr, epp->addr); kfree(epp); } /* Finally, push the pages */ for (pos = 0; pos < efx->vf_count; ++pos) { vf = efx->vf + pos; mutex_lock(&vf->status_lock); if (vf->status_addr) __efx_sriov_push_vf_status(vf); mutex_unlock(&vf->status_lock); } } static void efx_sriov_free_local(struct efx_nic *efx) { struct efx_local_addr *local_addr; struct efx_endpoint_page *epp; while (!list_empty(&efx->local_addr_list)) { local_addr = list_first_entry(&efx->local_addr_list, struct efx_local_addr, link); list_del(&local_addr->link); kfree(local_addr); } while (!list_empty(&efx->local_page_list)) { epp = list_first_entry(&efx->local_page_list, struct efx_endpoint_page, link); list_del(&epp->link); dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, epp->ptr, epp->addr); kfree(epp); } } static int efx_sriov_vf_alloc(struct efx_nic *efx) { unsigned index; struct efx_vf *vf; efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL); if (!efx->vf) return -ENOMEM; for (index = 0; index < efx->vf_count; ++index) { vf = efx->vf + index; vf->efx = efx; vf->index = index; vf->rx_filter_id = -1; vf->tx_filter_mode = VF_TX_FILTER_AUTO; vf->tx_filter_id = -1; INIT_WORK(&vf->req, efx_sriov_vfdi); INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work); init_waitqueue_head(&vf->flush_waitq); mutex_init(&vf->status_lock); mutex_init(&vf->txq_lock); } return 0; } static void efx_sriov_vfs_fini(struct efx_nic *efx) { struct efx_vf *vf; unsigned int pos; for (pos = 0; pos < efx->vf_count; ++pos) { vf = efx->vf + pos; efx_nic_free_buffer(efx, &vf->buf); kfree(vf->peer_page_addrs); vf->peer_page_addrs = NULL; vf->peer_page_count = 0; vf->evq0_count = 0; } } static int efx_sriov_vfs_init(struct efx_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; unsigned index, devfn, sriov, buftbl_base; u16 offset, stride; struct efx_vf *vf; int rc; sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV); if (!sriov) return -ENOENT; pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset); pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride); buftbl_base = efx->vf_buftbl_base; devfn = pci_dev->devfn + offset; for (index = 0; index < efx->vf_count; ++index) { vf = efx->vf + index; /* Reserve buffer entries */ vf->buftbl_base = buftbl_base; buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx); vf->pci_rid = devfn; snprintf(vf->pci_name, sizeof(vf->pci_name), "%04x:%02x:%02x.%d", pci_domain_nr(pci_dev->bus), pci_dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn)); rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE); if (rc) goto fail; devfn += stride; } return 0; fail: efx_sriov_vfs_fini(efx); return rc; } int efx_sriov_init(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; struct vfdi_status *vfdi_status; int rc; /* Ensure there's room for vf_channel */ BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE); /* Ensure that VI_BASE is aligned on VI_SCALE */ BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1)); if (efx->vf_count == 0) return 0; rc = efx_sriov_cmd(efx, true, NULL, NULL); if (rc) goto fail_cmd; rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status)); if (rc) goto fail_status; vfdi_status = efx->vfdi_status.addr; memset(vfdi_status, 0, sizeof(*vfdi_status)); vfdi_status->version = 1; vfdi_status->length = sizeof(*vfdi_status); vfdi_status->max_tx_channels = vf_max_tx_channels; vfdi_status->vi_scale = efx->vi_scale; vfdi_status->rss_rxq_count = efx->rss_spread; vfdi_status->peer_count = 1 + efx->vf_count; vfdi_status->timer_quantum_ns = efx->timer_quantum_ns; rc = efx_sriov_vf_alloc(efx); if (rc) goto fail_alloc; mutex_init(&efx->local_lock); INIT_WORK(&efx->peer_work, efx_sriov_peer_work); INIT_LIST_HEAD(&efx->local_addr_list); INIT_LIST_HEAD(&efx->local_page_list); rc = efx_sriov_vfs_init(efx); if (rc) goto fail_vfs; rtnl_lock(); memcpy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr, ETH_ALEN); efx->vf_init_count = efx->vf_count; rtnl_unlock(); efx_sriov_usrev(efx, true); /* At this point we must be ready to accept VFDI requests */ rc = pci_enable_sriov(efx->pci_dev, efx->vf_count); if (rc) goto fail_pci; netif_info(efx, probe, net_dev, "enabled SR-IOV for %d VFs, %d VI per VF\n", efx->vf_count, efx_vf_size(efx)); return 0; fail_pci: efx_sriov_usrev(efx, false); rtnl_lock(); efx->vf_init_count = 0; rtnl_unlock(); efx_sriov_vfs_fini(efx); fail_vfs: cancel_work_sync(&efx->peer_work); efx_sriov_free_local(efx); kfree(efx->vf); fail_alloc: efx_nic_free_buffer(efx, &efx->vfdi_status); fail_status: efx_sriov_cmd(efx, false, NULL, NULL); fail_cmd: return rc; } void efx_sriov_fini(struct efx_nic *efx) { struct efx_vf *vf; unsigned int pos; if (efx->vf_init_count == 0) return; /* Disable all interfaces to reconfiguration */ BUG_ON(efx->vfdi_channel->enabled); efx_sriov_usrev(efx, false); rtnl_lock(); efx->vf_init_count = 0; rtnl_unlock(); /* Flush all reconfiguration work */ for (pos = 0; pos < efx->vf_count; ++pos) { vf = efx->vf + pos; cancel_work_sync(&vf->req); cancel_work_sync(&vf->reset_work); } cancel_work_sync(&efx->peer_work); pci_disable_sriov(efx->pci_dev); /* Tear down back-end state */ efx_sriov_vfs_fini(efx); efx_sriov_free_local(efx); kfree(efx->vf); efx_nic_free_buffer(efx, &efx->vfdi_status); efx_sriov_cmd(efx, false, NULL, NULL); } void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; struct efx_vf *vf; unsigned qid, seq, type, data; qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID); /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */ BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0); seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ); type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE); data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA); netif_vdbg(efx, hw, efx->net_dev, "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n", qid, seq, type, data); if (map_vi_index(efx, qid, &vf, NULL)) return; if (vf->busy) goto error; if (type == VFDI_EV_TYPE_REQ_WORD0) { /* Resynchronise */ vf->req_type = VFDI_EV_TYPE_REQ_WORD0; vf->req_seqno = seq + 1; vf->req_addr = 0; } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type) goto error; switch (vf->req_type) { case VFDI_EV_TYPE_REQ_WORD0: case VFDI_EV_TYPE_REQ_WORD1: case VFDI_EV_TYPE_REQ_WORD2: vf->req_addr |= (u64)data << (vf->req_type << 4); ++vf->req_type; return; case VFDI_EV_TYPE_REQ_WORD3: vf->req_addr |= (u64)data << 48; vf->req_type = VFDI_EV_TYPE_REQ_WORD0; vf->busy = true; queue_work(vfdi_workqueue, &vf->req); return; } error: if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "ERROR: Screaming VFDI request from %s\n", vf->pci_name); /* Reset the request and sequence number */ vf->req_type = VFDI_EV_TYPE_REQ_WORD0; vf->req_seqno = seq + 1; } void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i) { struct efx_vf *vf; if (vf_i > efx->vf_init_count) return; vf = efx->vf + vf_i; netif_info(efx, hw, efx->net_dev, "FLR on VF %s\n", vf->pci_name); vf->status_addr = 0; efx_vfdi_remove_all_filters(vf); efx_vfdi_flush_clear(vf); vf->evq0_count = 0; } void efx_sriov_mac_address_changed(struct efx_nic *efx) { struct vfdi_status *vfdi_status = efx->vfdi_status.addr; if (!efx->vf_init_count) return; memcpy(vfdi_status->peers[0].mac_addr, efx->net_dev->dev_addr, ETH_ALEN); queue_work(vfdi_workqueue, &efx->peer_work); } void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) { struct efx_vf *vf; unsigned queue, qid; queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); if (map_vi_index(efx, queue, &vf, &qid)) return; /* Ignore flush completions triggered by an FLR */ if (!test_bit(qid, vf->txq_mask)) return; __clear_bit(qid, vf->txq_mask); --vf->txq_count; if (efx_vfdi_flush_wake(vf)) wake_up(&vf->flush_waitq); } void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) { struct efx_vf *vf; unsigned ev_failed, queue, qid; queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); ev_failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); if (map_vi_index(efx, queue, &vf, &qid)) return; if (!test_bit(qid, vf->rxq_mask)) return; if (ev_failed) { set_bit(qid, vf->rxq_retry_mask); atomic_inc(&vf->rxq_retry_count); } else { __clear_bit(qid, vf->rxq_mask); --vf->rxq_count; } if (efx_vfdi_flush_wake(vf)) wake_up(&vf->flush_waitq); } /* Called from napi. Schedule the reset work item */ void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) { struct efx_vf *vf; unsigned int rel; if (map_vi_index(efx, dmaq, &vf, &rel)) return; if (net_ratelimit()) netif_err(efx, hw, efx->net_dev, "VF %d DMA Q %d reports descriptor fetch error.\n", vf->index, rel); queue_work(vfdi_workqueue, &vf->reset_work); } /* Reset all VFs */ void efx_sriov_reset(struct efx_nic *efx) { unsigned int vf_i; struct efx_buffer buf; struct efx_vf *vf; ASSERT_RTNL(); if (efx->vf_init_count == 0) return; efx_sriov_usrev(efx, true); (void)efx_sriov_cmd(efx, true, NULL, NULL); if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) return; for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) { vf = efx->vf + vf_i; efx_sriov_reset_vf(vf, &buf); } efx_nic_free_buffer(efx, &buf); } int efx_init_sriov(void) { /* A single threaded workqueue is sufficient. efx_sriov_vfdi() and * efx_sriov_peer_work() spend almost all their time sleeping for * MCDI to complete anyway */ vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi"); if (!vfdi_workqueue) return -ENOMEM; return 0; } void efx_fini_sriov(void) { destroy_workqueue(vfdi_workqueue); } int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_vf *vf; if (vf_i >= efx->vf_init_count) return -EINVAL; vf = efx->vf + vf_i; mutex_lock(&vf->status_lock); memcpy(vf->addr.mac_addr, mac, ETH_ALEN); __efx_sriov_update_vf_addr(vf); mutex_unlock(&vf->status_lock); return 0; } int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i, u16 vlan, u8 qos) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_vf *vf; u16 tci; if (vf_i >= efx->vf_init_count) return -EINVAL; vf = efx->vf + vf_i; mutex_lock(&vf->status_lock); tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT); vf->addr.tci = htons(tci); __efx_sriov_update_vf_addr(vf); mutex_unlock(&vf->status_lock); return 0; } int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i, bool spoofchk) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_vf *vf; int rc; if (vf_i >= efx->vf_init_count) return -EINVAL; vf = efx->vf + vf_i; mutex_lock(&vf->txq_lock); if (vf->txq_count == 0) { vf->tx_filter_mode = spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF; rc = 0; } else { /* This cannot be changed while TX queues are running */ rc = -EBUSY; } mutex_unlock(&vf->txq_lock); return rc; } int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i, struct ifla_vf_info *ivi) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_vf *vf; u16 tci; if (vf_i >= efx->vf_init_count) return -EINVAL; vf = efx->vf + vf_i; ivi->vf = vf_i; memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN); ivi->tx_rate = 0; tci = ntohs(vf->addr.tci); ivi->vlan = tci & VLAN_VID_MASK; ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7; ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON; return 0; }