/* * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter * * Copyright (C) 2003, 2007 IC Plus Corp * * Original Author: * * Craig Rich * Sundance Technology, Inc. * www.sundanceti.com * craig_rich@sundanceti.com * * Current Maintainer: * * Sorbica Shieh. * http://www.icplus.com.tw * sorbica@icplus.com.tw * * Jesse Huang * http://www.icplus.com.tw * jesse@icplus.com.tw */ #include <linux/crc32.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/mutex.h> #include <asm/div64.h> #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) #define IPG_RESET_MASK \ (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ IPG_AC_AUTO_INIT) #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) #define ipg_r32(reg) ioread32(ioaddr + (reg)) #define ipg_r16(reg) ioread16(ioaddr + (reg)) #define ipg_r8(reg) ioread8(ioaddr + (reg)) enum { netdev_io_size = 128 }; #include "ipg.h" #define DRV_NAME "ipg" MODULE_AUTHOR("IC Plus Corp. 2003"); MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); MODULE_LICENSE("GPL"); /* * Defaults */ #define IPG_MAX_RXFRAME_SIZE 0x0600 #define IPG_RXFRAG_SIZE 0x0600 #define IPG_RXSUPPORT_SIZE 0x0600 #define IPG_IS_JUMBO false /* * Variable record -- index by leading revision/length * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN */ static unsigned short DefaultPhyParam[] = { /* 11/12/03 IP1000A v1-3 rev=0x40 */ /*-------------------------------------------------------------------------- (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, --------------------------------------------------------------------------*/ /* 12/17/03 IP1000A v1-4 rev=0x40 */ (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 0x0000, 30, 0x005e, 9, 0x0700, /* 01/09/04 IP1000A v1-5 rev=0x41 */ (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 0x0000, 30, 0x005e, 9, 0x0700, 0x0000 }; static const char *ipg_brand_name[] = { "IC PLUS IP1000 1000/100/10 based NIC", "Sundance Technology ST2021 based NIC", "Tamarack Microelectronics TC9020/9021 based NIC", "Tamarack Microelectronics TC9020/9021 based NIC", "D-Link NIC", "D-Link NIC IP1000A" }; static struct pci_device_id ipg_pci_tbl[] __devinitdata = { { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, { PCI_VDEVICE(DLINK, 0x9021), 3 }, { PCI_VDEVICE(DLINK, 0x4000), 4 }, { PCI_VDEVICE(DLINK, 0x4020), 5 }, { 0, } }; MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); static inline void __iomem *ipg_ioaddr(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); return sp->ioaddr; } #ifdef IPG_DEBUG static void ipg_dump_rfdlist(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; u32 offset; IPG_DEBUG_MSG("_dump_rfdlist\n"); printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); printk(KERN_INFO "RFDList start address = %16.16lx\n", (unsigned long) sp->rxd_map); printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, offset, (unsigned long) sp->rxd[i].next_desc); offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, offset, (unsigned long) sp->rxd[i].rfs); offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, offset, (unsigned long) sp->rxd[i].frag_info); } } static void ipg_dump_tfdlist(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; u32 offset; IPG_DEBUG_MSG("_dump_tfdlist\n"); printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); printk(KERN_INFO "TFDList start address = %16.16lx\n", (unsigned long) sp->txd_map); printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, offset, (unsigned long) sp->txd[i].next_desc); offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, offset, (unsigned long) sp->txd[i].tfc); offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, offset, (unsigned long) sp->txd[i].frag_info); } } #endif static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) { ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); ndelay(IPG_PC_PHYCTRLWAIT_NS); } static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) { ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); } static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) { phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); } static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) { ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); } static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) { u16 bit_data; ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); return bit_data; } /* * Read a register from the Physical Layer device located * on the IPG NIC, using the IPG PHYCTRL register. */ static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) { void __iomem *ioaddr = ipg_ioaddr(dev); /* * The GMII mangement frame structure for a read is as follows: * * |Preamble|st|op|phyad|regad|ta| data |idle| * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | * * <32 1s> = 32 consecutive logic 1 values * A = bit of Physical Layer device address (MSB first) * R = bit of register address (MSB first) * z = High impedance state * D = bit of read data (MSB first) * * Transmission order is 'Preamble' field first, bits transmitted * left to right (first to last). */ struct { u32 field; unsigned int len; } p[] = { { GMII_PREAMBLE, 32 }, /* Preamble */ { GMII_ST, 2 }, /* ST */ { GMII_READ, 2 }, /* OP */ { phy_id, 5 }, /* PHYAD */ { phy_reg, 5 }, /* REGAD */ { 0x0000, 2 }, /* TA */ { 0x0000, 16 }, /* DATA */ { 0x0000, 1 } /* IDLE */ }; unsigned int i, j; u8 polarity, data; polarity = ipg_r8(PHY_CTRL); polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ for (j = 0; j < 5; j++) { for (i = 0; i < p[j].len; i++) { /* For each variable length field, the MSB must be * transmitted first. Rotate through the field bits, * starting with the MSB, and move each bit into the * the 1st (2^1) bit position (this is the bit position * corresponding to the MgmtData bit of the PhyCtrl * register for the IPG). * * Example: ST = 01; * * First write a '0' to bit 1 of the PhyCtrl * register, then write a '1' to bit 1 of the * PhyCtrl register. * * To do this, right shift the MSB of ST by the value: * [field length - 1 - #ST bits already written] * then left shift this result by 1. */ data = (p[j].field >> (p[j].len - 1 - i)) << 1; data &= IPG_PC_MGMTDATA; data |= polarity | IPG_PC_MGMTDIR; ipg_drive_phy_ctl_low_high(ioaddr, data); } } send_three_state(ioaddr, polarity); read_phy_bit(ioaddr, polarity); /* * For a read cycle, the bits for the next two fields (TA and * DATA) are driven by the PHY (the IPG reads these bits). */ for (i = 0; i < p[6].len; i++) { p[6].field |= (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); } send_three_state(ioaddr, polarity); send_three_state(ioaddr, polarity); send_three_state(ioaddr, polarity); send_end(ioaddr, polarity); /* Return the value of the DATA field. */ return p[6].field; } /* * Write to a register from the Physical Layer device located * on the IPG NIC, using the IPG PHYCTRL register. */ static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) { void __iomem *ioaddr = ipg_ioaddr(dev); /* * The GMII mangement frame structure for a read is as follows: * * |Preamble|st|op|phyad|regad|ta| data |idle| * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | * * <32 1s> = 32 consecutive logic 1 values * A = bit of Physical Layer device address (MSB first) * R = bit of register address (MSB first) * z = High impedance state * D = bit of write data (MSB first) * * Transmission order is 'Preamble' field first, bits transmitted * left to right (first to last). */ struct { u32 field; unsigned int len; } p[] = { { GMII_PREAMBLE, 32 }, /* Preamble */ { GMII_ST, 2 }, /* ST */ { GMII_WRITE, 2 }, /* OP */ { phy_id, 5 }, /* PHYAD */ { phy_reg, 5 }, /* REGAD */ { 0x0002, 2 }, /* TA */ { val & 0xffff, 16 }, /* DATA */ { 0x0000, 1 } /* IDLE */ }; unsigned int i, j; u8 polarity, data; polarity = ipg_r8(PHY_CTRL); polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ for (j = 0; j < 7; j++) { for (i = 0; i < p[j].len; i++) { /* For each variable length field, the MSB must be * transmitted first. Rotate through the field bits, * starting with the MSB, and move each bit into the * the 1st (2^1) bit position (this is the bit position * corresponding to the MgmtData bit of the PhyCtrl * register for the IPG). * * Example: ST = 01; * * First write a '0' to bit 1 of the PhyCtrl * register, then write a '1' to bit 1 of the * PhyCtrl register. * * To do this, right shift the MSB of ST by the value: * [field length - 1 - #ST bits already written] * then left shift this result by 1. */ data = (p[j].field >> (p[j].len - 1 - i)) << 1; data &= IPG_PC_MGMTDATA; data |= polarity | IPG_PC_MGMTDIR; ipg_drive_phy_ctl_low_high(ioaddr, data); } } /* The last cycle is a tri-state, so read from the PHY. */ for (j = 7; j < 8; j++) { for (i = 0; i < p[j].len; i++) { ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); p[j].field |= ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); } } } static void ipg_set_led_mode(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; u32 mode; mode = ipg_r32(ASIC_CTRL); mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); if ((sp->led_mode & 0x03) > 1) mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ if ((sp->led_mode & 0x01) == 1) mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ if ((sp->led_mode & 0x08) == 8) mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ ipg_w32(mode, ASIC_CTRL); } static void ipg_set_phy_set(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; int physet; physet = ipg_r8(PHY_SET); physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); physet |= ((sp->led_mode & 0x70) >> 4); ipg_w8(physet, PHY_SET); } static int ipg_reset(struct net_device *dev, u32 resetflags) { /* Assert functional resets via the IPG AsicCtrl * register as specified by the 'resetflags' input * parameter. */ void __iomem *ioaddr = ipg_ioaddr(dev); unsigned int timeout_count = 0; IPG_DEBUG_MSG("_reset\n"); ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); /* Delay added to account for problem with 10Mbps reset. */ mdelay(IPG_AC_RESETWAIT); while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { mdelay(IPG_AC_RESETWAIT); if (++timeout_count > IPG_AC_RESET_TIMEOUT) return -ETIME; } /* Set LED Mode in Asic Control */ ipg_set_led_mode(dev); /* Set PHYSet Register Value */ ipg_set_phy_set(dev); return 0; } /* Find the GMII PHY address. */ static int ipg_find_phyaddr(struct net_device *dev) { unsigned int phyaddr, i; for (i = 0; i < 32; i++) { u32 status; /* Search for the correct PHY address among 32 possible. */ phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; /* 10/22/03 Grace change verify from GMII_PHY_STATUS to GMII_PHY_ID1 */ status = mdio_read(dev, phyaddr, MII_BMSR); if ((status != 0xFFFF) && (status != 0)) return phyaddr; } return 0x1f; } /* * Configure IPG based on result of IEEE 802.3 PHY * auto-negotiation. */ static int ipg_config_autoneg(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int txflowcontrol; unsigned int rxflowcontrol; unsigned int fullduplex; u32 mac_ctrl_val; u32 asicctrl; u8 phyctrl; IPG_DEBUG_MSG("_config_autoneg\n"); asicctrl = ipg_r32(ASIC_CTRL); phyctrl = ipg_r8(PHY_CTRL); mac_ctrl_val = ipg_r32(MAC_CTRL); /* Set flags for use in resolving auto-negotation, assuming * non-1000Mbps, half duplex, no flow control. */ fullduplex = 0; txflowcontrol = 0; rxflowcontrol = 0; /* To accomodate a problem in 10Mbps operation, * set a global flag if PHY running in 10Mbps mode. */ sp->tenmbpsmode = 0; printk(KERN_INFO "%s: Link speed = ", dev->name); /* Determine actual speed of operation. */ switch (phyctrl & IPG_PC_LINK_SPEED) { case IPG_PC_LINK_SPEED_10MBPS: printk("10Mbps.\n"); printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", dev->name); sp->tenmbpsmode = 1; break; case IPG_PC_LINK_SPEED_100MBPS: printk("100Mbps.\n"); break; case IPG_PC_LINK_SPEED_1000MBPS: printk("1000Mbps.\n"); break; default: printk("undefined!\n"); return 0; } if (phyctrl & IPG_PC_DUPLEX_STATUS) { fullduplex = 1; txflowcontrol = 1; rxflowcontrol = 1; } /* Configure full duplex, and flow control. */ if (fullduplex == 1) { /* Configure IPG for full duplex operation. */ printk(KERN_INFO "%s: setting full duplex, ", dev->name); mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; if (txflowcontrol == 1) { printk("TX flow control"); mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; } else { printk("no TX flow control"); mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; } if (rxflowcontrol == 1) { printk(", RX flow control."); mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; } else { printk(", no RX flow control."); mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; } printk("\n"); } else { /* Configure IPG for half duplex operation. */ printk(KERN_INFO "%s: setting half duplex, " "no TX flow control, no RX flow control.\n", dev->name); mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & ~IPG_MC_TX_FLOW_CONTROL_ENABLE & ~IPG_MC_RX_FLOW_CONTROL_ENABLE; } ipg_w32(mac_ctrl_val, MAC_CTRL); return 0; } /* Determine and configure multicast operation and set * receive mode for IPG. */ static void ipg_nic_set_multicast_list(struct net_device *dev) { void __iomem *ioaddr = ipg_ioaddr(dev); struct dev_mc_list *mc_list_ptr; unsigned int hashindex; u32 hashtable[2]; u8 receivemode; IPG_DEBUG_MSG("_nic_set_multicast_list\n"); receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; if (dev->flags & IFF_PROMISC) { /* NIC to be configured in promiscuous mode. */ receivemode = IPG_RM_RECEIVEALLFRAMES; } else if ((dev->flags & IFF_ALLMULTI) || ((dev->flags & IFF_MULTICAST) && (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { /* NIC to be configured to receive all multicast * frames. */ receivemode |= IPG_RM_RECEIVEMULTICAST; } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) { /* NIC to be configured to receive selected * multicast addresses. */ receivemode |= IPG_RM_RECEIVEMULTICASTHASH; } /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. * The IPG applies a cyclic-redundancy-check (the same CRC * used to calculate the frame data FCS) to the destination * address all incoming multicast frames whose destination * address has the multicast bit set. The least significant * 6 bits of the CRC result are used as an addressing index * into the hash table. If the value of the bit addressed by * this index is a 1, the frame is passed to the host system. */ /* Clear hashtable. */ hashtable[0] = 0x00000000; hashtable[1] = 0x00000000; /* Cycle through all multicast addresses to filter. */ for (mc_list_ptr = dev->mc_list; mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { /* Calculate CRC result for each multicast address. */ hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, ETH_ALEN); /* Use only the least significant 6 bits. */ hashindex = hashindex & 0x3F; /* Within "hashtable", set bit number "hashindex" * to a logic 1. */ set_bit(hashindex, (void *)hashtable); } /* Write the value of the hashtable, to the 4, 16 bit * HASHTABLE IPG registers. */ ipg_w32(hashtable[0], HASHTABLE_0); ipg_w32(hashtable[1], HASHTABLE_1); ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); } static int ipg_io_config(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = ipg_ioaddr(dev); u32 origmacctrl; u32 restoremacctrl; IPG_DEBUG_MSG("_io_config\n"); origmacctrl = ipg_r32(MAC_CTRL); restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; /* Based on compilation option, determine if FCS is to be * stripped on receive frames by IPG. */ if (!IPG_STRIP_FCS_ON_RX) restoremacctrl |= IPG_MC_RCV_FCS; /* Determine if transmitter and/or receiver are * enabled so we may restore MACCTRL correctly. */ if (origmacctrl & IPG_MC_TX_ENABLED) restoremacctrl |= IPG_MC_TX_ENABLE; if (origmacctrl & IPG_MC_RX_ENABLED) restoremacctrl |= IPG_MC_RX_ENABLE; /* Transmitter and receiver must be disabled before setting * IFSSelect. */ ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & IPG_MC_RSVD_MASK, MAC_CTRL); /* Now that transmitter and receiver are disabled, write * to IFSSelect. */ ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); /* Set RECEIVEMODE register. */ ipg_nic_set_multicast_list(dev); ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); /* IPG multi-frag frame bug workaround. * Per silicon revision B3 eratta. */ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); /* IPG TX poll now bug workaround. * Per silicon revision B3 eratta. */ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); /* IPG RX poll now bug workaround. * Per silicon revision B3 eratta. */ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); /* Now restore MACCTRL to original setting. */ ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); /* Disable unused RMON statistics. */ ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); /* Disable unused MIB statistics. */ ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); return 0; } /* * Create a receive buffer within system memory and update * NIC private structure appropriately. */ static int ipg_get_rxbuff(struct net_device *dev, int entry) { struct ipg_nic_private *sp = netdev_priv(dev); struct ipg_rx *rxfd = sp->rxd + entry; struct sk_buff *skb; u64 rxfragsize; IPG_DEBUG_MSG("_get_rxbuff\n"); skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size); if (!skb) { sp->rx_buff[entry] = NULL; return -ENOMEM; } /* Associate the receive buffer with the IPG NIC. */ skb->dev = dev; /* Save the address of the sk_buff structure. */ sp->rx_buff[entry] = skb; rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); /* Set the RFD fragment length. */ rxfragsize = sp->rxfrag_size; rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); return 0; } static int init_rfdlist(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; IPG_DEBUG_MSG("_init_rfdlist\n"); for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { struct ipg_rx *rxfd = sp->rxd + i; if (sp->rx_buff[i]) { pci_unmap_single(sp->pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb_irq(sp->rx_buff[i]); sp->rx_buff[i] = NULL; } /* Clear out the RFS field. */ rxfd->rfs = 0x0000000000000000; if (ipg_get_rxbuff(dev, i) < 0) { /* * A receive buffer was not ready, break the * RFD list here. */ IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); /* Just in case we cannot allocate a single RFD. * Should not occur. */ if (i == 0) { printk(KERN_ERR "%s: No memory available" " for RFD list.\n", dev->name); return -ENOMEM; } } rxfd->next_desc = cpu_to_le64(sp->rxd_map + sizeof(struct ipg_rx)*(i + 1)); } sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); sp->rx_current = 0; sp->rx_dirty = 0; /* Write the location of the RFDList to the IPG. */ ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); ipg_w32(0x00000000, RFD_LIST_PTR_1); return 0; } static void init_tfdlist(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; IPG_DEBUG_MSG("_init_tfdlist\n"); for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { struct ipg_tx *txfd = sp->txd + i; txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); if (sp->tx_buff[i]) { dev_kfree_skb_irq(sp->tx_buff[i]); sp->tx_buff[i] = NULL; } txfd->next_desc = cpu_to_le64(sp->txd_map + sizeof(struct ipg_tx)*(i + 1)); } sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); sp->tx_current = 0; sp->tx_dirty = 0; /* Write the location of the TFDList to the IPG. */ IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", (u32) sp->txd_map); ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); ipg_w32(0x00000000, TFD_LIST_PTR_1); sp->reset_current_tfd = 1; } /* * Free all transmit buffers which have already been transfered * via DMA to the IPG. */ static void ipg_nic_txfree(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); unsigned int released, pending, dirty; IPG_DEBUG_MSG("_nic_txfree\n"); pending = sp->tx_current - sp->tx_dirty; dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; for (released = 0; released < pending; released++) { struct sk_buff *skb = sp->tx_buff[dirty]; struct ipg_tx *txfd = sp->txd + dirty; IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); /* Look at each TFD's TFC field beginning * at the last freed TFD up to the current TFD. * If the TFDDone bit is set, free the associated * buffer. */ if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) break; /* Free the transmit buffer. */ if (skb) { pci_unmap_single(sp->pdev, le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); sp->tx_buff[dirty] = NULL; } dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; } sp->tx_dirty += released; if (netif_queue_stopped(dev) && (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { netif_wake_queue(dev); } } static void ipg_tx_timeout(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | IPG_AC_FIFO); spin_lock_irq(&sp->lock); /* Re-configure after DMA reset. */ if (ipg_io_config(dev) < 0) { printk(KERN_INFO "%s: Error during re-configuration.\n", dev->name); } init_tfdlist(dev); spin_unlock_irq(&sp->lock); ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, MAC_CTRL); } /* * For TxComplete interrupts, free all transmit * buffers which have already been transfered via DMA * to the IPG. */ static void ipg_nic_txcleanup(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; IPG_DEBUG_MSG("_nic_txcleanup\n"); for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { /* Reading the TXSTATUS register clears the * TX_COMPLETE interrupt. */ u32 txstatusdword = ipg_r32(TX_STATUS); IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); /* Check for Transmit errors. Error bits only valid if * TX_COMPLETE bit in the TXSTATUS register is a 1. */ if (!(txstatusdword & IPG_TS_TX_COMPLETE)) break; /* If in 10Mbps mode, indicate transmit is ready. */ if (sp->tenmbpsmode) { netif_wake_queue(dev); } /* Transmit error, increment stat counters. */ if (txstatusdword & IPG_TS_TX_ERROR) { IPG_DEBUG_MSG("Transmit error.\n"); sp->stats.tx_errors++; } /* Late collision, re-enable transmitter. */ if (txstatusdword & IPG_TS_LATE_COLLISION) { IPG_DEBUG_MSG("Late collision on transmit.\n"); ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, MAC_CTRL); } /* Maximum collisions, re-enable transmitter. */ if (txstatusdword & IPG_TS_TX_MAX_COLL) { IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, MAC_CTRL); } /* Transmit underrun, reset and re-enable * transmitter. */ if (txstatusdword & IPG_TS_TX_UNDERRUN) { IPG_DEBUG_MSG("Transmitter underrun.\n"); sp->stats.tx_fifo_errors++; ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | IPG_AC_FIFO); /* Re-configure after DMA reset. */ if (ipg_io_config(dev) < 0) { printk(KERN_INFO "%s: Error during re-configuration.\n", dev->name); } init_tfdlist(dev); ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, MAC_CTRL); } } ipg_nic_txfree(dev); } /* Provides statistical information about the IPG NIC. */ static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; u16 temp1; u16 temp2; IPG_DEBUG_MSG("_nic_get_stats\n"); /* Check to see if the NIC has been initialized via nic_open, * before trying to read statistic registers. */ if (!test_bit(__LINK_STATE_START, &dev->state)) return &sp->stats; sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); sp->stats.rx_errors += temp1; sp->stats.rx_missed_errors += temp1; temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + ipg_r32(IPG_LATECOLLISIONS); temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); sp->stats.collisions += temp1; sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); /* detailed tx_errors */ sp->stats.tx_carrier_errors += temp2; /* detailed rx_errors */ sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + ipg_r16(IPG_FRAMETOOLONGERRRORS); sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); /* Unutilized IPG statistic registers. */ ipg_r32(IPG_MCSTFRAMESRCVDOK); return &sp->stats; } /* Restore used receive buffers. */ static int ipg_nic_rxrestore(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); const unsigned int curr = sp->rx_current; unsigned int dirty = sp->rx_dirty; IPG_DEBUG_MSG("_nic_rxrestore\n"); for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { unsigned int entry = dirty % IPG_RFDLIST_LENGTH; /* rx_copybreak may poke hole here and there. */ if (sp->rx_buff[entry]) continue; /* Generate a new receive buffer to replace the * current buffer (which will be released by the * Linux system). */ if (ipg_get_rxbuff(dev, entry) < 0) { IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); break; } /* Reset the RFS field. */ sp->rxd[entry].rfs = 0x0000000000000000; } sp->rx_dirty = dirty; return 0; } /* use jumboindex and jumbosize to control jumbo frame status * initial status is jumboindex=-1 and jumbosize=0 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump * previous receiving and need to continue dumping the current one */ enum { NORMAL_PACKET, ERROR_PACKET }; enum { FRAME_NO_START_NO_END = 0, FRAME_WITH_START = 1, FRAME_WITH_END = 10, FRAME_WITH_START_WITH_END = 11 }; static void ipg_nic_rx_free_skb(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; if (sp->rx_buff[entry]) { struct ipg_rx *rxfd = sp->rxd + entry; pci_unmap_single(sp->pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb_irq(sp->rx_buff[entry]); sp->rx_buff[entry] = NULL; } } static int ipg_nic_rx_check_frame_type(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); int type = FRAME_NO_START_NO_END; if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) type += FRAME_WITH_START; if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) type += FRAME_WITH_END; return type; } static int ipg_nic_rx_check_error(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; struct ipg_rx *rxfd = sp->rxd + entry; if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", (unsigned long) rxfd->rfs); /* Increment general receive error statistic. */ sp->stats.rx_errors++; /* Increment detailed receive error statistics. */ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); sp->stats.rx_fifo_errors++; } if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { IPG_DEBUG_MSG("RX runt occured.\n"); sp->stats.rx_length_errors++; } /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, * error count handled by a IPG statistic register. */ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { IPG_DEBUG_MSG("RX alignment error occured.\n"); sp->stats.rx_frame_errors++; } /* Do nothing for IPG_RFS_RXFCSERROR, error count * handled by a IPG statistic register. */ /* Free the memory associated with the RX * buffer since it is erroneous and we will * not pass it to higher layer processes. */ if (sp->rx_buff[entry]) { pci_unmap_single(sp->pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb_irq(sp->rx_buff[entry]); sp->rx_buff[entry] = NULL; } return ERROR_PACKET; } return NORMAL_PACKET; } static void ipg_nic_rx_with_start_and_end(struct net_device *dev, struct ipg_nic_private *sp, struct ipg_rx *rxfd, unsigned entry) { struct ipg_jumbo *jumbo = &sp->jumbo; struct sk_buff *skb; int framelen; if (jumbo->found_start) { dev_kfree_skb_irq(jumbo->skb); jumbo->found_start = 0; jumbo->current_size = 0; jumbo->skb = NULL; } /* 1: found error, 0 no error */ if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) return; skb = sp->rx_buff[entry]; if (!skb) return; /* accept this frame and send to upper layer */ framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; if (framelen > sp->rxfrag_size) framelen = sp->rxfrag_size; skb_put(skb, framelen); skb->protocol = eth_type_trans(skb, dev); skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); sp->rx_buff[entry] = NULL; } static void ipg_nic_rx_with_start(struct net_device *dev, struct ipg_nic_private *sp, struct ipg_rx *rxfd, unsigned entry) { struct ipg_jumbo *jumbo = &sp->jumbo; struct pci_dev *pdev = sp->pdev; struct sk_buff *skb; /* 1: found error, 0 no error */ if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) return; /* accept this frame and send to upper layer */ skb = sp->rx_buff[entry]; if (!skb) return; if (jumbo->found_start) dev_kfree_skb_irq(jumbo->skb); pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); skb_put(skb, sp->rxfrag_size); jumbo->found_start = 1; jumbo->current_size = sp->rxfrag_size; jumbo->skb = skb; sp->rx_buff[entry] = NULL; } static void ipg_nic_rx_with_end(struct net_device *dev, struct ipg_nic_private *sp, struct ipg_rx *rxfd, unsigned entry) { struct ipg_jumbo *jumbo = &sp->jumbo; /* 1: found error, 0 no error */ if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { struct sk_buff *skb = sp->rx_buff[entry]; if (!skb) return; if (jumbo->found_start) { int framelen, endframelen; framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; endframelen = framelen - jumbo->current_size; if (framelen > sp->rxsupport_size) dev_kfree_skb_irq(jumbo->skb); else { memcpy(skb_put(jumbo->skb, endframelen), skb->data, endframelen); jumbo->skb->protocol = eth_type_trans(jumbo->skb, dev); jumbo->skb->ip_summed = CHECKSUM_NONE; netif_rx(jumbo->skb); } } jumbo->found_start = 0; jumbo->current_size = 0; jumbo->skb = NULL; ipg_nic_rx_free_skb(dev); } else { dev_kfree_skb_irq(jumbo->skb); jumbo->found_start = 0; jumbo->current_size = 0; jumbo->skb = NULL; } } static void ipg_nic_rx_no_start_no_end(struct net_device *dev, struct ipg_nic_private *sp, struct ipg_rx *rxfd, unsigned entry) { struct ipg_jumbo *jumbo = &sp->jumbo; /* 1: found error, 0 no error */ if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { struct sk_buff *skb = sp->rx_buff[entry]; if (skb) { if (jumbo->found_start) { jumbo->current_size += sp->rxfrag_size; if (jumbo->current_size <= sp->rxsupport_size) { memcpy(skb_put(jumbo->skb, sp->rxfrag_size), skb->data, sp->rxfrag_size); } } ipg_nic_rx_free_skb(dev); } } else { dev_kfree_skb_irq(jumbo->skb); jumbo->found_start = 0; jumbo->current_size = 0; jumbo->skb = NULL; } } static int ipg_nic_rx_jumbo(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); unsigned int curr = sp->rx_current; void __iomem *ioaddr = sp->ioaddr; unsigned int i; IPG_DEBUG_MSG("_nic_rx\n"); for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { unsigned int entry = curr % IPG_RFDLIST_LENGTH; struct ipg_rx *rxfd = sp->rxd + entry; if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE))) break; switch (ipg_nic_rx_check_frame_type(dev)) { case FRAME_WITH_START_WITH_END: ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); break; case FRAME_WITH_START: ipg_nic_rx_with_start(dev, sp, rxfd, entry); break; case FRAME_WITH_END: ipg_nic_rx_with_end(dev, sp, rxfd, entry); break; case FRAME_NO_START_NO_END: ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); break; } } sp->rx_current = curr; if (i == IPG_MAXRFDPROCESS_COUNT) { /* There are more RFDs to process, however the * allocated amount of RFD processing time has * expired. Assert Interrupt Requested to make * sure we come back to process the remaining RFDs. */ ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); } ipg_nic_rxrestore(dev); return 0; } static int ipg_nic_rx(struct net_device *dev) { /* Transfer received Ethernet frames to higher network layers. */ struct ipg_nic_private *sp = netdev_priv(dev); unsigned int curr = sp->rx_current; void __iomem *ioaddr = sp->ioaddr; struct ipg_rx *rxfd; unsigned int i; IPG_DEBUG_MSG("_nic_rx\n"); #define __RFS_MASK \ cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { unsigned int entry = curr % IPG_RFDLIST_LENGTH; struct sk_buff *skb = sp->rx_buff[entry]; unsigned int framelen; rxfd = sp->rxd + entry; if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) break; /* Get received frame length. */ framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; /* Check for jumbo frame arrival with too small * RXFRAG_SIZE. */ if (framelen > sp->rxfrag_size) { IPG_DEBUG_MSG ("RFS FrameLen > allocated fragment size.\n"); framelen = sp->rxfrag_size; } if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", (unsigned long int) rxfd->rfs); /* Increment general receive error statistic. */ sp->stats.rx_errors++; /* Increment detailed receive error statistics. */ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); sp->stats.rx_fifo_errors++; } if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { IPG_DEBUG_MSG("RX runt occured.\n"); sp->stats.rx_length_errors++; } if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; /* Do nothing, error count handled by a IPG * statistic register. */ if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { IPG_DEBUG_MSG("RX alignment error occured.\n"); sp->stats.rx_frame_errors++; } if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; /* Do nothing, error count handled by a IPG * statistic register. */ /* Free the memory associated with the RX * buffer since it is erroneous and we will * not pass it to higher layer processes. */ if (skb) { __le64 info = rxfd->frag_info; pci_unmap_single(sp->pdev, le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb_irq(skb); } } else { /* Adjust the new buffer length to accomodate the size * of the received frame. */ skb_put(skb, framelen); /* Set the buffer's protocol field to Ethernet. */ skb->protocol = eth_type_trans(skb, dev); /* The IPG encountered an error with (or * there were no) IP/TCP/UDP checksums. * This may or may not indicate an invalid * IP/TCP/UDP frame was received. Let the * upper layer decide. */ skb->ip_summed = CHECKSUM_NONE; /* Hand off frame for higher layer processing. * The function netif_rx() releases the sk_buff * when processing completes. */ netif_rx(skb); } /* Assure RX buffer is not reused by IPG. */ sp->rx_buff[entry] = NULL; } /* * If there are more RFDs to proces and the allocated amount of RFD * processing time has expired, assert Interrupt Requested to make * sure we come back to process the remaining RFDs. */ if (i == IPG_MAXRFDPROCESS_COUNT) ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); #ifdef IPG_DEBUG /* Check if the RFD list contained no receive frame data. */ if (!i) sp->EmptyRFDListCount++; #endif while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; rxfd = sp->rxd + entry; IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); /* An unexpected event, additional code needed to handle * properly. So for the time being, just disregard the * frame. */ /* Free the memory associated with the RX * buffer since it is erroneous and we will * not pass it to higher layer processes. */ if (sp->rx_buff[entry]) { pci_unmap_single(sp->pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb_irq(sp->rx_buff[entry]); } /* Assure RX buffer is not reused by IPG. */ sp->rx_buff[entry] = NULL; } sp->rx_current = curr; /* Check to see if there are a minimum number of used * RFDs before restoring any (should improve performance.) */ if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) ipg_nic_rxrestore(dev); return 0; } static void ipg_reset_after_host_error(struct work_struct *work) { struct ipg_nic_private *sp = container_of(work, struct ipg_nic_private, task.work); struct net_device *dev = sp->dev; IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); /* * Acknowledge HostError interrupt by resetting * IPG DMA and HOST. */ ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); init_rfdlist(dev); init_tfdlist(dev); if (ipg_io_config(dev) < 0) { printk(KERN_INFO "%s: Cannot recover from PCI error.\n", dev->name); schedule_delayed_work(&sp->task, HZ); } } static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) { struct net_device *dev = dev_inst; struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int handled = 0; u16 status; IPG_DEBUG_MSG("_interrupt_handler\n"); if (sp->is_jumbo) ipg_nic_rxrestore(dev); spin_lock(&sp->lock); /* Get interrupt source information, and acknowledge * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, * IntRequested, MacControlFrame, LinkEvent) interrupts * if issued. Also, all IPG interrupts are disabled by * reading IntStatusAck. */ status = ipg_r16(INT_STATUS_ACK); IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); /* Shared IRQ of remove event. */ if (!(status & IPG_IS_RSVD_MASK)) goto out_enable; handled = 1; if (unlikely(!netif_running(dev))) goto out_unlock; /* If RFDListEnd interrupt, restore all used RFDs. */ if (status & IPG_IS_RFD_LIST_END) { IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); /* The RFD list end indicates an RFD was encountered * with a 0 NextPtr, or with an RFDDone bit set to 1 * (indicating the RFD is not read for use by the * IPG.) Try to restore all RFDs. */ ipg_nic_rxrestore(dev); #ifdef IPG_DEBUG /* Increment the RFDlistendCount counter. */ sp->RFDlistendCount++; #endif } /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or * IntRequested interrupt, process received frames. */ if ((status & IPG_IS_RX_DMA_PRIORITY) || (status & IPG_IS_RFD_LIST_END) || (status & IPG_IS_RX_DMA_COMPLETE) || (status & IPG_IS_INT_REQUESTED)) { #ifdef IPG_DEBUG /* Increment the RFD list checked counter if interrupted * only to check the RFD list. */ if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | IPG_IS_UPDATE_STATS))) sp->RFDListCheckedCount++; #endif if (sp->is_jumbo) ipg_nic_rx_jumbo(dev); else ipg_nic_rx(dev); } /* If TxDMAComplete interrupt, free used TFDs. */ if (status & IPG_IS_TX_DMA_COMPLETE) ipg_nic_txfree(dev); /* TxComplete interrupts indicate one of numerous actions. * Determine what action to take based on TXSTATUS register. */ if (status & IPG_IS_TX_COMPLETE) ipg_nic_txcleanup(dev); /* If UpdateStats interrupt, update Linux Ethernet statistics */ if (status & IPG_IS_UPDATE_STATS) ipg_nic_get_stats(dev); /* If HostError interrupt, reset IPG. */ if (status & IPG_IS_HOST_ERROR) { IPG_DDEBUG_MSG("HostError Interrupt\n"); schedule_delayed_work(&sp->task, 0); } /* If LinkEvent interrupt, resolve autonegotiation. */ if (status & IPG_IS_LINK_EVENT) { if (ipg_config_autoneg(dev) < 0) printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); } /* If MACCtrlFrame interrupt, do nothing. */ if (status & IPG_IS_MAC_CTRL_FRAME) IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); /* If RxComplete interrupt, do nothing. */ if (status & IPG_IS_RX_COMPLETE) IPG_DEBUG_MSG("RxComplete interrupt.\n"); /* If RxEarly interrupt, do nothing. */ if (status & IPG_IS_RX_EARLY) IPG_DEBUG_MSG("RxEarly interrupt.\n"); out_enable: /* Re-enable IPG interrupts. */ ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); out_unlock: spin_unlock(&sp->lock); return IRQ_RETVAL(handled); } static void ipg_rx_clear(struct ipg_nic_private *sp) { unsigned int i; for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { if (sp->rx_buff[i]) { struct ipg_rx *rxfd = sp->rxd + i; dev_kfree_skb_irq(sp->rx_buff[i]); sp->rx_buff[i] = NULL; pci_unmap_single(sp->pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, sp->rx_buf_sz, PCI_DMA_FROMDEVICE); } } } static void ipg_tx_clear(struct ipg_nic_private *sp) { unsigned int i; for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { if (sp->tx_buff[i]) { struct ipg_tx *txfd = sp->txd + i; pci_unmap_single(sp->pdev, le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, sp->tx_buff[i]->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(sp->tx_buff[i]); sp->tx_buff[i] = NULL; } } } static int ipg_nic_open(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; struct pci_dev *pdev = sp->pdev; int rc; IPG_DEBUG_MSG("_nic_open\n"); sp->rx_buf_sz = sp->rxsupport_size; /* Check for interrupt line conflicts, and request interrupt * line for IPG. * * IMPORTANT: Disable IPG interrupts prior to registering * IRQ. */ ipg_w16(0x0000, INT_ENABLE); /* Register the interrupt line to be used by the IPG within * the Linux system. */ rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED, dev->name, dev); if (rc < 0) { printk(KERN_INFO "%s: Error when requesting interrupt.\n", dev->name); goto out; } dev->irq = pdev->irq; rc = -ENOMEM; sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, &sp->rxd_map, GFP_KERNEL); if (!sp->rxd) goto err_free_irq_0; sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, &sp->txd_map, GFP_KERNEL); if (!sp->txd) goto err_free_rx_1; rc = init_rfdlist(dev); if (rc < 0) { printk(KERN_INFO "%s: Error during configuration.\n", dev->name); goto err_free_tx_2; } init_tfdlist(dev); rc = ipg_io_config(dev); if (rc < 0) { printk(KERN_INFO "%s: Error during configuration.\n", dev->name); goto err_release_tfdlist_3; } /* Resolve autonegotiation. */ if (ipg_config_autoneg(dev) < 0) printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); /* initialize JUMBO Frame control variable */ sp->jumbo.found_start = 0; sp->jumbo.current_size = 0; sp->jumbo.skb = NULL; /* Enable transmit and receive operation of the IPG. */ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, MAC_CTRL); netif_start_queue(dev); out: return rc; err_release_tfdlist_3: ipg_tx_clear(sp); ipg_rx_clear(sp); err_free_tx_2: dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); err_free_rx_1: dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); err_free_irq_0: free_irq(pdev->irq, dev); goto out; } static int ipg_nic_stop(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; struct pci_dev *pdev = sp->pdev; IPG_DEBUG_MSG("_nic_stop\n"); netif_stop_queue(dev); IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); IPG_DUMPTFDLIST(dev); do { (void) ipg_r16(INT_STATUS_ACK); ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); synchronize_irq(pdev->irq); } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); ipg_rx_clear(sp); ipg_tx_clear(sp); pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); free_irq(pdev->irq, dev); return 0; } static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; unsigned long flags; struct ipg_tx *txfd; IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); /* If in 10Mbps mode, stop the transmit queue so * no more transmit frames are accepted. */ if (sp->tenmbpsmode) netif_stop_queue(dev); if (sp->reset_current_tfd) { sp->reset_current_tfd = 0; entry = 0; } txfd = sp->txd + entry; sp->tx_buff[entry] = skb; /* Clear all TFC fields, except TFDDONE. */ txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); /* Specify the TFC field within the TFD. */ txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | (IPG_TFC_FRAMEID & sp->tx_current) | (IPG_TFC_FRAGCOUNT & (1 << 24))); /* * 16--17 (WordAlign) <- 3 (disable), * 0--15 (FrameId) <- sp->tx_current, * 24--27 (FragCount) <- 1 */ /* Request TxComplete interrupts at an interval defined * by the constant IPG_FRAMESBETWEENTXCOMPLETES. * Request TxComplete interrupt for every frame * if in 10Mbps mode to accomodate problem with 10Mbps * processing. */ if (sp->tenmbpsmode) txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); /* Based on compilation option, determine if FCS is to be * appended to transmit frame by IPG. */ if (!(IPG_APPEND_FCS_ON_TX)) txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); /* Based on compilation option, determine if IP, TCP and/or * UDP checksums are to be added to transmit frame by IPG. */ if (IPG_ADD_IPCHECKSUM_ON_TX) txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); if (IPG_ADD_TCPCHECKSUM_ON_TX) txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); if (IPG_ADD_UDPCHECKSUM_ON_TX) txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); /* Based on compilation option, determine if VLAN tag info is to be * inserted into transmit frame by IPG. */ if (IPG_INSERT_MANUAL_VLAN_TAG) { txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | ((u64) IPG_MANUAL_VLAN_VID << 32) | ((u64) IPG_MANUAL_VLAN_CFI << 44) | ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); } /* The fragment start location within system memory is defined * by the sk_buff structure's data field. The physical address * of this location within the system's virtual memory space * is determined using the IPG_HOST2BUS_MAP function. */ txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); /* The length of the fragment within system memory is defined by * the sk_buff structure's len field. */ txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & ((u64) (skb->len & 0xffff) << 48)); /* Clear the TFDDone bit last to indicate the TFD is ready * for transfer to the IPG. */ txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); spin_lock_irqsave(&sp->lock, flags); sp->tx_current++; mmiowb(); ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) netif_stop_queue(dev); spin_unlock_irqrestore(&sp->lock, flags); return NETDEV_TX_OK; } static void ipg_set_phy_default_param(unsigned char rev, struct net_device *dev, int phy_address) { unsigned short length; unsigned char revision; unsigned short *phy_param; unsigned short address, value; phy_param = &DefaultPhyParam[0]; length = *phy_param & 0x00FF; revision = (unsigned char)((*phy_param) >> 8); phy_param++; while (length != 0) { if (rev == revision) { while (length > 1) { address = *phy_param; value = *(phy_param + 1); phy_param += 2; mdio_write(dev, phy_address, address, value); length -= 4; } break; } else { phy_param += length / 2; length = *phy_param & 0x00FF; revision = (unsigned char)((*phy_param) >> 8); phy_param++; } } } static int read_eeprom(struct net_device *dev, int eep_addr) { void __iomem *ioaddr = ipg_ioaddr(dev); unsigned int i; int ret = 0; u16 value; value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); ipg_w16(value, EEPROM_CTRL); for (i = 0; i < 1000; i++) { u16 data; mdelay(10); data = ipg_r16(EEPROM_CTRL); if (!(data & IPG_EC_EEPROM_BUSY)) { ret = ipg_r16(EEPROM_DATA); break; } } return ret; } static void ipg_init_mii(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); struct mii_if_info *mii_if = &sp->mii_if; int phyaddr; mii_if->dev = dev; mii_if->mdio_read = mdio_read; mii_if->mdio_write = mdio_write; mii_if->phy_id_mask = 0x1f; mii_if->reg_num_mask = 0x1f; mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); if (phyaddr != 0x1f) { u16 mii_phyctrl, mii_1000cr; u8 revisionid = 0; mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | GMII_PHY_1000BASETCONTROL_PreferMaster; mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); /* Set default phyparam */ pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); ipg_set_phy_default_param(revisionid, dev, phyaddr); /* Reset PHY */ mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); } } static int ipg_hw_init(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); void __iomem *ioaddr = sp->ioaddr; unsigned int i; int rc; /* Read/Write and Reset EEPROM Value */ /* Read LED Mode Configuration from EEPROM */ sp->led_mode = read_eeprom(dev, 6); /* Reset all functions within the IPG. Do not assert * RST_OUT as not compatible with some PHYs. */ rc = ipg_reset(dev, IPG_RESET_MASK); if (rc < 0) goto out; ipg_init_mii(dev); /* Read MAC Address from EEPROM */ for (i = 0; i < 3; i++) sp->station_addr[i] = read_eeprom(dev, 16 + i); for (i = 0; i < 3; i++) ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); /* Set station address in ethernet_device structure. */ dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; out: return rc; } static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ipg_nic_private *sp = netdev_priv(dev); int rc; mutex_lock(&sp->mii_mutex); rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); mutex_unlock(&sp->mii_mutex); return rc; } static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) { struct ipg_nic_private *sp = netdev_priv(dev); int err; /* Function to accomodate changes to Maximum Transfer Unit * (or MTU) of IPG NIC. Cannot use default function since * the default will not allow for MTU > 1500 bytes. */ IPG_DEBUG_MSG("_nic_change_mtu\n"); /* * Check that the new MTU value is between 68 (14 byte header, 46 byte * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. */ if (new_mtu < 68 || new_mtu > 10240) return -EINVAL; err = ipg_nic_stop(dev); if (err) return err; dev->mtu = new_mtu; sp->max_rxframe_size = new_mtu; sp->rxfrag_size = new_mtu; if (sp->rxfrag_size > 4088) sp->rxfrag_size = 4088; sp->rxsupport_size = sp->max_rxframe_size; if (new_mtu > 0x0600) sp->is_jumbo = true; else sp->is_jumbo = false; return ipg_nic_open(dev); } static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ipg_nic_private *sp = netdev_priv(dev); int rc; mutex_lock(&sp->mii_mutex); rc = mii_ethtool_gset(&sp->mii_if, cmd); mutex_unlock(&sp->mii_mutex); return rc; } static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ipg_nic_private *sp = netdev_priv(dev); int rc; mutex_lock(&sp->mii_mutex); rc = mii_ethtool_sset(&sp->mii_if, cmd); mutex_unlock(&sp->mii_mutex); return rc; } static int ipg_nway_reset(struct net_device *dev) { struct ipg_nic_private *sp = netdev_priv(dev); int rc; mutex_lock(&sp->mii_mutex); rc = mii_nway_restart(&sp->mii_if); mutex_unlock(&sp->mii_mutex); return rc; } static const struct ethtool_ops ipg_ethtool_ops = { .get_settings = ipg_get_settings, .set_settings = ipg_set_settings, .nway_reset = ipg_nway_reset, }; static void __devexit ipg_remove(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct ipg_nic_private *sp = netdev_priv(dev); IPG_DEBUG_MSG("_remove\n"); /* Un-register Ethernet device. */ unregister_netdev(dev); pci_iounmap(pdev, sp->ioaddr); pci_release_regions(pdev); free_netdev(dev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static const struct net_device_ops ipg_netdev_ops = { .ndo_open = ipg_nic_open, .ndo_stop = ipg_nic_stop, .ndo_start_xmit = ipg_nic_hard_start_xmit, .ndo_get_stats = ipg_nic_get_stats, .ndo_set_multicast_list = ipg_nic_set_multicast_list, .ndo_do_ioctl = ipg_ioctl, .ndo_tx_timeout = ipg_tx_timeout, .ndo_change_mtu = ipg_nic_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int __devinit ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id) { unsigned int i = id->driver_data; struct ipg_nic_private *sp; struct net_device *dev; void __iomem *ioaddr; int rc; rc = pci_enable_device(pdev); if (rc < 0) goto out; printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); pci_set_master(pdev); rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); if (rc < 0) { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc < 0) { printk(KERN_ERR "%s: DMA config failed.\n", pci_name(pdev)); goto err_disable_0; } } /* * Initialize net device. */ dev = alloc_etherdev(sizeof(struct ipg_nic_private)); if (!dev) { printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); rc = -ENOMEM; goto err_disable_0; } sp = netdev_priv(dev); spin_lock_init(&sp->lock); mutex_init(&sp->mii_mutex); sp->is_jumbo = IPG_IS_JUMBO; sp->rxfrag_size = IPG_RXFRAG_SIZE; sp->rxsupport_size = IPG_RXSUPPORT_SIZE; sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; /* Declare IPG NIC functions for Ethernet device methods. */ dev->netdev_ops = &ipg_netdev_ops; SET_NETDEV_DEV(dev, &pdev->dev); SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_free_dev_1; ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); if (!ioaddr) { printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); rc = -EIO; goto err_release_regions_2; } /* Save the pointer to the PCI device information. */ sp->ioaddr = ioaddr; sp->pdev = pdev; sp->dev = dev; INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); pci_set_drvdata(pdev, dev); rc = ipg_hw_init(dev); if (rc < 0) goto err_unmap_3; rc = register_netdev(dev); if (rc < 0) goto err_unmap_3; printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); out: return rc; err_unmap_3: pci_iounmap(pdev, ioaddr); err_release_regions_2: pci_release_regions(pdev); err_free_dev_1: free_netdev(dev); err_disable_0: pci_disable_device(pdev); goto out; } static struct pci_driver ipg_pci_driver = { .name = IPG_DRIVER_NAME, .id_table = ipg_pci_tbl, .probe = ipg_probe, .remove = __devexit_p(ipg_remove), }; static int __init ipg_init_module(void) { return pci_register_driver(&ipg_pci_driver); } static void __exit ipg_exit_module(void) { pci_unregister_driver(&ipg_pci_driver); } module_init(ipg_init_module); module_exit(ipg_exit_module);