/********************************************************************* * * vlsi_ir.h: VLSI82C147 PCI IrDA controller driver for Linux * * Version: 0.5 * * Copyright (c) 2001-2003 Martin Diehl * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ********************************************************************/ #ifndef IRDA_VLSI_FIR_H #define IRDA_VLSI_FIR_H /* ================================================================ * compatibility stuff */ /* definitions not present in pci_ids.h */ #ifndef PCI_CLASS_WIRELESS_IRDA #define PCI_CLASS_WIRELESS_IRDA 0x0d00 #endif #ifndef PCI_CLASS_SUBCLASS_MASK #define PCI_CLASS_SUBCLASS_MASK 0xffff #endif /* ================================================================ */ /* non-standard PCI registers */ enum vlsi_pci_regs { VLSI_PCI_CLKCTL = 0x40, /* chip clock input control */ VLSI_PCI_MSTRPAGE = 0x41, /* addr [31:24] for all busmaster cycles */ VLSI_PCI_IRMISC = 0x42 /* mainly legacy UART related */ }; /* ------------------------------------------ */ /* VLSI_PCI_CLKCTL: Clock Control Register (u8, rw) */ /* Three possible clock sources: either on-chip 48MHz PLL or * external clock applied to EXTCLK pin. External clock may * be either 48MHz or 40MHz, which is indicated by XCKSEL. * CLKSTP controls whether the selected clock source gets * connected to the IrDA block. * * On my HP OB-800 the BIOS sets external 40MHz clock as source * when IrDA enabled and I've never detected any PLL lock success. * Apparently the 14.3...MHz OSC input required for the PLL to work * is not connected and the 40MHz EXTCLK is provided externally. * At least this is what makes the driver working for me. */ enum vlsi_pci_clkctl { /* PLL control */ CLKCTL_PD_INV = 0x04, /* PD#: inverted power down signal, * i.e. PLL is powered, if PD_INV set */ CLKCTL_LOCK = 0x40, /* (ro) set, if PLL is locked */ /* clock source selection */ CLKCTL_EXTCLK = 0x20, /* set to select external clock input, not PLL */ CLKCTL_XCKSEL = 0x10, /* set to indicate EXTCLK is 40MHz, not 48MHz */ /* IrDA block control */ CLKCTL_CLKSTP = 0x80, /* set to disconnect from selected clock source */ CLKCTL_WAKE = 0x08 /* set to enable wakeup feature: whenever IR activity * is detected, PD_INV gets set(?) and CLKSTP cleared */ }; /* ------------------------------------------ */ /* VLSI_PCI_MSTRPAGE: Master Page Register (u8, rw) and busmastering stuff */ #define DMA_MASK_USED_BY_HW 0xffffffff #define DMA_MASK_MSTRPAGE 0x00ffffff #define MSTRPAGE_VALUE (DMA_MASK_MSTRPAGE >> 24) /* PCI busmastering is somewhat special for this guy - in short: * * We select to operate using fixed MSTRPAGE=0, use ISA DMA * address restrictions to make the PCI BM api aware of this, * but ensure the hardware is dealing with real 32bit access. * * In detail: * The chip executes normal 32bit busmaster cycles, i.e. * drives all 32 address lines. These addresses however are * composed of [0:23] taken from various busaddr-pointers * and [24:31] taken from the MSTRPAGE register in the VLSI82C147 * config space. Therefore _all_ busmastering must be * targeted to/from one single 16MB (busaddr-) superpage! * The point is to make sure all the allocations for memory * locations with busmaster access (ring descriptors, buffers) * are indeed bus-mappable to the same 16MB range (for x86 this * means they must reside in the same 16MB physical memory address * range). The only constraint we have which supports "several objects * mappable to common 16MB range" paradigma, is the old ISA DMA * restriction to the first 16MB of physical address range. * Hence the approach here is to enable PCI busmaster support using * the correct 32bit dma-mask used by the chip. Afterwards the device's * dma-mask gets restricted to 24bit, which must be honoured somehow by * all allocations for memory areas to be exposed to the chip ... * * Note: * Don't be surprised to get "Setting latency timer..." messages every * time when PCI busmastering is enabled for the chip. * The chip has its PCI latency timer RO fixed at 0 - which is not a * problem here, because it is never requesting _burst_ transactions. */ /* ------------------------------------------ */ /* VLSI_PCIIRMISC: IR Miscellaneous Register (u8, rw) */ /* legacy UART emulation - not used by this driver - would require: * (see below for some register-value definitions) * * - IRMISC_UARTEN must be set to enable UART address decoding * - IRMISC_UARTSEL configured * - IRCFG_MASTER must be cleared * - IRCFG_SIR must be set * - IRENABLE_PHYANDCLOCK must be asserted 0->1 (and hence IRENABLE_SIR_ON) */ enum vlsi_pci_irmisc { /* IR transceiver control */ IRMISC_IRRAIL = 0x40, /* (ro?) IR rail power indication (and control?) * 0=3.3V / 1=5V. Probably set during power-on? * unclear - not touched by driver */ IRMISC_IRPD = 0x08, /* transceiver power down, if set */ /* legacy UART control */ IRMISC_UARTTST = 0x80, /* UART test mode - "always write 0" */ IRMISC_UARTEN = 0x04, /* enable UART address decoding */ /* bits [1:0] IRMISC_UARTSEL to select legacy UART address */ IRMISC_UARTSEL_3f8 = 0x00, IRMISC_UARTSEL_2f8 = 0x01, IRMISC_UARTSEL_3e8 = 0x02, IRMISC_UARTSEL_2e8 = 0x03 }; /* ================================================================ */ /* registers mapped to 32 byte PCI IO space */ /* note: better access all registers at the indicated u8/u16 size * although some of them contain only 1 byte of information. * some of them (particaluarly PROMPT and IRCFG) ignore * access when using the wrong addressing mode! */ enum vlsi_pio_regs { VLSI_PIO_IRINTR = 0x00, /* interrupt enable/request (u8, rw) */ VLSI_PIO_RINGPTR = 0x02, /* rx/tx ring pointer (u16, ro) */ VLSI_PIO_RINGBASE = 0x04, /* [23:10] of ring address (u16, rw) */ VLSI_PIO_RINGSIZE = 0x06, /* rx/tx ring size (u16, rw) */ VLSI_PIO_PROMPT = 0x08, /* triggers ring processing (u16, wo) */ /* 0x0a-0x0f: reserved / duplicated UART regs */ VLSI_PIO_IRCFG = 0x10, /* configuration select (u16, rw) */ VLSI_PIO_SIRFLAG = 0x12, /* BOF/EOF for filtered SIR (u16, ro) */ VLSI_PIO_IRENABLE = 0x14, /* enable and status register (u16, rw/ro) */ VLSI_PIO_PHYCTL = 0x16, /* physical layer current status (u16, ro) */ VLSI_PIO_NPHYCTL = 0x18, /* next physical layer select (u16, rw) */ VLSI_PIO_MAXPKT = 0x1a, /* [11:0] max len for packet receive (u16, rw) */ VLSI_PIO_RCVBCNT = 0x1c /* current receive-FIFO byte count (u16, ro) */ /* 0x1e-0x1f: reserved / duplicated UART regs */ }; /* ------------------------------------------ */ /* VLSI_PIO_IRINTR: Interrupt Register (u8, rw) */ /* enable-bits: * 1 = enable / 0 = disable * interrupt condition bits: * set according to corresponding interrupt source * (regardless of the state of the enable bits) * enable bit status indicates whether interrupt gets raised * write-to-clear * note: RPKTINT and TPKTINT behave different in legacy UART mode (which we don't use :-) */ enum vlsi_pio_irintr { IRINTR_ACTEN = 0x80, /* activity interrupt enable */ IRINTR_ACTIVITY = 0x40, /* activity monitor (traffic detected) */ IRINTR_RPKTEN = 0x20, /* receive packet interrupt enable*/ IRINTR_RPKTINT = 0x10, /* rx-packet transfered from fifo to memory finished */ IRINTR_TPKTEN = 0x08, /* transmit packet interrupt enable */ IRINTR_TPKTINT = 0x04, /* last bit of tx-packet+crc shifted to ir-pulser */ IRINTR_OE_EN = 0x02, /* UART rx fifo overrun error interrupt enable */ IRINTR_OE_INT = 0x01 /* UART rx fifo overrun error (read LSR to clear) */ }; /* we use this mask to check whether the (shared PCI) interrupt is ours */ #define IRINTR_INT_MASK (IRINTR_ACTIVITY|IRINTR_RPKTINT|IRINTR_TPKTINT) /* ------------------------------------------ */ /* VLSI_PIO_RINGPTR: Ring Pointer Read-Back Register (u16, ro) */ /* _both_ ring pointers are indices relative to the _entire_ rx,tx-ring! * i.e. the referenced descriptor is located * at RINGBASE + PTR * sizeof(descr) for rx and tx * therefore, the tx-pointer has offset MAX_RING_DESCR */ #define MAX_RING_DESCR 64 /* tx, rx rings may contain up to 64 descr each */ #define RINGPTR_RX_MASK (MAX_RING_DESCR-1) #define RINGPTR_TX_MASK ((MAX_RING_DESCR-1)<<8) #define RINGPTR_GET_RX(p) ((p)&RINGPTR_RX_MASK) #define RINGPTR_GET_TX(p) (((p)&RINGPTR_TX_MASK)>>8) /* ------------------------------------------ */ /* VLSI_PIO_RINGBASE: Ring Pointer Base Address Register (u16, ro) */ /* Contains [23:10] part of the ring base (bus-) address * which must be 1k-alinged. [31:24] is taken from * VLSI_PCI_MSTRPAGE above. * The controller initiates non-burst PCI BM cycles to * fetch and update the descriptors in the ring. * Once fetched, the descriptor remains cached onchip * until it gets closed and updated due to the ring * processing state machine. * The entire ring area is split in rx and tx areas with each * area consisting of 64 descriptors of 8 bytes each. * The rx(tx) ring is located at ringbase+0 (ringbase+64*8). */ #define BUS_TO_RINGBASE(p) (((p)>>10)&0x3fff) /* ------------------------------------------ */ /* VLSI_PIO_RINGSIZE: Ring Size Register (u16, rw) */ /* bit mask to indicate the ring size to be used for rx and tx. * possible values encoded bits * 4 0000 * 8 0001 * 16 0011 * 32 0111 * 64 1111 * located at [15:12] for tx and [11:8] for rx ([7:0] unused) * * note: probably a good idea to have IRCFG_MSTR cleared when writing * this so the state machines are stopped and the RINGPTR is reset! */ #define SIZE_TO_BITS(num) ((((num)-1)>>2)&0x0f) #define TX_RX_TO_RINGSIZE(tx,rx) ((SIZE_TO_BITS(tx)<<12)|(SIZE_TO_BITS(rx)<<8)) #define RINGSIZE_TO_RXSIZE(rs) ((((rs)&0x0f00)>>6)+4) #define RINGSIZE_TO_TXSIZE(rs) ((((rs)&0xf000)>>10)+4) /* ------------------------------------------ */ /* VLSI_PIO_PROMPT: Ring Prompting Register (u16, write-to-start) */ /* writing any value kicks the ring processing state machines * for both tx, rx rings as follows: * - active rings (currently owning an active descriptor) * ignore the prompt and continue * - idle rings fetch the next descr from the ring and start * their processing */ /* ------------------------------------------ */ /* VLSI_PIO_IRCFG: IR Config Register (u16, rw) */ /* notes: * - not more than one SIR/MIR/FIR bit must be set at any time * - SIR, MIR, FIR and CRC16 select the configuration which will * be applied on next 0->1 transition of IRENABLE_PHYANDCLOCK (see below). * - besides allowing the PCI interface to execute busmaster cycles * and therefore the ring SM to operate, the MSTR bit has side-effects: * when MSTR is cleared, the RINGPTR's get reset and the legacy UART mode * (in contrast to busmaster access mode) gets enabled. * - clearing ENRX or setting ENTX while data is received may stall the * receive fifo until ENRX reenabled _and_ another packet arrives * - SIRFILT means the chip performs the required unwrapping of hardware * headers (XBOF's, BOF/EOF) and un-escaping in the _receive_ direction. * Only the resulting IrLAP payload is copied to the receive buffers - * but with the 16bit FCS still encluded. Question remains, whether it * was already checked or we should do it before passing the packet to IrLAP? */ enum vlsi_pio_ircfg { IRCFG_LOOP = 0x4000, /* enable loopback test mode */ IRCFG_ENTX = 0x1000, /* transmit enable */ IRCFG_ENRX = 0x0800, /* receive enable */ IRCFG_MSTR = 0x0400, /* master enable */ IRCFG_RXANY = 0x0200, /* receive any packet */ IRCFG_CRC16 = 0x0080, /* 16bit (not 32bit) CRC select for MIR/FIR */ IRCFG_FIR = 0x0040, /* FIR 4PPM encoding mode enable */ IRCFG_MIR = 0x0020, /* MIR HDLC encoding mode enable */ IRCFG_SIR = 0x0010, /* SIR encoding mode enable */ IRCFG_SIRFILT = 0x0008, /* enable SIR decode filter (receiver unwrapping) */ IRCFG_SIRTEST = 0x0004, /* allow SIR decode filter when not in SIR mode */ IRCFG_TXPOL = 0x0002, /* invert tx polarity when set */ IRCFG_RXPOL = 0x0001 /* invert rx polarity when set */ }; /* ------------------------------------------ */ /* VLSI_PIO_SIRFLAG: SIR Flag Register (u16, ro) */ /* register contains hardcoded BOF=0xc0 at [7:0] and EOF=0xc1 at [15:8] * which is used for unwrapping received frames in SIR decode-filter mode */ /* ------------------------------------------ */ /* VLSI_PIO_IRENABLE: IR Enable Register (u16, rw/ro) */ /* notes: * - IREN acts as gate for latching the configured IR mode information * from IRCFG and IRPHYCTL when IREN=reset and applying them when * IREN gets set afterwards. * - ENTXST reflects IRCFG_ENTX * - ENRXST = IRCFG_ENRX && (!IRCFG_ENTX || IRCFG_LOOP) */ enum vlsi_pio_irenable { IRENABLE_PHYANDCLOCK = 0x8000, /* enable IR phy and gate the mode config (rw) */ IRENABLE_CFGER = 0x4000, /* mode configuration error (ro) */ IRENABLE_FIR_ON = 0x2000, /* FIR on status (ro) */ IRENABLE_MIR_ON = 0x1000, /* MIR on status (ro) */ IRENABLE_SIR_ON = 0x0800, /* SIR on status (ro) */ IRENABLE_ENTXST = 0x0400, /* transmit enable status (ro) */ IRENABLE_ENRXST = 0x0200, /* Receive enable status (ro) */ IRENABLE_CRC16_ON = 0x0100 /* 16bit (not 32bit) CRC enabled status (ro) */ }; #define IRENABLE_MASK 0xff00 /* Read mask */ /* ------------------------------------------ */ /* VLSI_PIO_PHYCTL: IR Physical Layer Current Control Register (u16, ro) */ /* read-back of the currently applied physical layer status. * applied from VLSI_PIO_NPHYCTL at rising edge of IRENABLE_PHYANDCLOCK * contents identical to VLSI_PIO_NPHYCTL (see below) */ /* ------------------------------------------ */ /* VLSI_PIO_NPHYCTL: IR Physical Layer Next Control Register (u16, rw) */ /* latched during IRENABLE_PHYANDCLOCK=0 and applied at 0-1 transition * * consists of BAUD[15:10], PLSWID[9:5] and PREAMB[4:0] bits defined as follows: * * SIR-mode: BAUD = (115.2kHz / baudrate) - 1 * PLSWID = (pulsetime * freq / (BAUD+1)) - 1 * where pulsetime is the requested IrPHY pulse width * and freq is 8(16)MHz for 40(48)MHz primary input clock * PREAMB: don't care for SIR * * The nominal SIR pulse width is 3/16 bit time so we have PLSWID=12 * fixed for all SIR speeds at 40MHz input clock (PLSWID=24 at 48MHz). * IrPHY also allows shorter pulses down to the nominal pulse duration * at 115.2kbaud (minus some tolerance) which is 1.41 usec. * Using the expression PLSWID = 12/(BAUD+1)-1 (multiplied by two for 48MHz) * we get the minimum acceptable PLSWID values according to the VLSI * specification, which provides 1.5 usec pulse width for all speeds (except * for 2.4kbaud getting 6usec). This is fine with IrPHY v1.3 specs and * reduces the transceiver power which drains the battery. At 9.6kbaud for * example this amounts to more than 90% battery power saving! * * MIR-mode: BAUD = 0 * PLSWID = 9(10) for 40(48) MHz input clock * to get nominal MIR pulse width * PREAMB = 1 * * FIR-mode: BAUD = 0 * PLSWID: don't care * PREAMB = 15 */ #define PHYCTL_BAUD_SHIFT 10 #define PHYCTL_BAUD_MASK 0xfc00 #define PHYCTL_PLSWID_SHIFT 5 #define PHYCTL_PLSWID_MASK 0x03e0 #define PHYCTL_PREAMB_SHIFT 0 #define PHYCTL_PREAMB_MASK 0x001f #define PHYCTL_TO_BAUD(bwp) (((bwp)&PHYCTL_BAUD_MASK)>>PHYCTL_BAUD_SHIFT) #define PHYCTL_TO_PLSWID(bwp) (((bwp)&PHYCTL_PLSWID_MASK)>>PHYCTL_PLSWID_SHIFT) #define PHYCTL_TO_PREAMB(bwp) (((bwp)&PHYCTL_PREAMB_MASK)>>PHYCTL_PREAMB_SHIFT) #define BWP_TO_PHYCTL(b,w,p) ((((b)<<PHYCTL_BAUD_SHIFT)&PHYCTL_BAUD_MASK) \ | (((w)<<PHYCTL_PLSWID_SHIFT)&PHYCTL_PLSWID_MASK) \ | (((p)<<PHYCTL_PREAMB_SHIFT)&PHYCTL_PREAMB_MASK)) #define BAUD_BITS(br) ((115200/(br))-1) static inline unsigned calc_width_bits(unsigned baudrate, unsigned widthselect, unsigned clockselect) { unsigned tmp; if (widthselect) /* nominal 3/16 puls width */ return (clockselect) ? 12 : 24; tmp = ((clockselect) ? 12 : 24) / (BAUD_BITS(baudrate)+1); /* intermediate result of integer division needed here */ return (tmp>0) ? (tmp-1) : 0; } #define PHYCTL_SIR(br,ws,cs) BWP_TO_PHYCTL(BAUD_BITS(br),calc_width_bits((br),(ws),(cs)),0) #define PHYCTL_MIR(cs) BWP_TO_PHYCTL(0,((cs)?9:10),1) #define PHYCTL_FIR BWP_TO_PHYCTL(0,0,15) /* quite ugly, I know. But implementing these calculations here avoids * having magic numbers in the code and allows some playing with pulsewidths * without risk to violate the standards. * FWIW, here is the table for reference: * * baudrate BAUD min-PLSWID nom-PLSWID PREAMB * 2400 47 0(0) 12(24) 0 * 9600 11 0(0) 12(24) 0 * 19200 5 1(2) 12(24) 0 * 38400 2 3(6) 12(24) 0 * 57600 1 5(10) 12(24) 0 * 115200 0 11(22) 12(24) 0 * MIR 0 - 9(10) 1 * FIR 0 - 0 15 * * note: x(y) means x-value for 40MHz / y-value for 48MHz primary input clock */ /* ------------------------------------------ */ /* VLSI_PIO_MAXPKT: Maximum Packet Length register (u16, rw) */ /* maximum acceptable length for received packets */ /* hw imposed limitation - register uses only [11:0] */ #define MAX_PACKET_LENGTH 0x0fff /* IrLAP I-field (apparently not defined elsewhere) */ #define IRDA_MTU 2048 /* complete packet consists of A(1)+C(1)+I(<=IRDA_MTU) */ #define IRLAP_SKB_ALLOCSIZE (1+1+IRDA_MTU) /* the buffers we use to exchange frames with the hardware need to be * larger than IRLAP_SKB_ALLOCSIZE because we may have up to 4 bytes FCS * appended and, in SIR mode, a lot of frame wrapping bytes. The worst * case appears to be a SIR packet with I-size==IRDA_MTU and all bytes * requiring to be escaped to provide transparency. Furthermore, the peer * might ask for quite a number of additional XBOFs: * up to 115+48 XBOFS 163 * regular BOF 1 * A-field 1 * C-field 1 * I-field, IRDA_MTU, all escaped 4096 * FCS (16 bit at SIR, escaped) 4 * EOF 1 * AFAICS nothing in IrLAP guarantees A/C field not to need escaping * (f.e. 0xc0/0xc1 - i.e. BOF/EOF - are legal values there) so in the * worst case we have 4269 bytes total frame size. * However, the VLSI uses 12 bits only for all buffer length values, * which limits the maximum useable buffer size <= 4095. * Note this is not a limitation in the receive case because we use * the SIR filtering mode where the hw unwraps the frame and only the * bare packet+fcs is stored into the buffer - in contrast to the SIR * tx case where we have to pass frame-wrapped packets to the hw. * If this would ever become an issue in real life, the only workaround * I see would be using the legacy UART emulation in SIR mode. */ #define XFER_BUF_SIZE MAX_PACKET_LENGTH /* ------------------------------------------ */ /* VLSI_PIO_RCVBCNT: Receive Byte Count Register (u16, ro) */ /* receive packet counter gets incremented on every non-filtered * byte which was put in the receive fifo and reset for each * new packet. Used to decide whether we are just in the middle * of receiving */ /* better apply the [11:0] mask when reading, as some docs say the * reserved [15:12] would return 1 when reading - which is wrong AFAICS */ #define RCVBCNT_MASK 0x0fff /******************************************************************/ /* descriptors for rx/tx ring * * accessed by hardware - don't change! * * the descriptor is owned by hardware, when the ACTIVE status bit * is set and nothing (besides reading status to test the bit) * shall be done. The bit gets cleared by hw, when the descriptor * gets closed. Premature reaping of descriptors owned be the chip * can be achieved by disabling IRCFG_MSTR * * Attention: Writing addr overwrites status! * * ### FIXME: depends on endianess (but there ain't no non-i586 ob800 ;-) */ struct ring_descr_hw { volatile __le16 rd_count; /* tx/rx count [11:0] */ __le16 reserved; union { __le32 addr; /* [23:0] of the buffer's busaddress */ struct { u8 addr_res[3]; volatile u8 status; /* descriptor status */ } __attribute__((packed)) rd_s; } __attribute((packed)) rd_u; } __attribute__ ((packed)); #define rd_addr rd_u.addr #define rd_status rd_u.rd_s.status /* ring descriptor status bits */ #define RD_ACTIVE 0x80 /* descriptor owned by hw (both TX,RX) */ /* TX ring descriptor status */ #define RD_TX_DISCRC 0x40 /* do not send CRC (for SIR) */ #define RD_TX_BADCRC 0x20 /* force a bad CRC */ #define RD_TX_PULSE 0x10 /* send indication pulse after this frame (MIR/FIR) */ #define RD_TX_FRCEUND 0x08 /* force underrun */ #define RD_TX_CLRENTX 0x04 /* clear ENTX after this frame */ #define RD_TX_UNDRN 0x01 /* TX fifo underrun (probably PCI problem) */ /* RX ring descriptor status */ #define RD_RX_PHYERR 0x40 /* physical encoding error */ #define RD_RX_CRCERR 0x20 /* CRC error (MIR/FIR) */ #define RD_RX_LENGTH 0x10 /* frame exceeds buffer length */ #define RD_RX_OVER 0x08 /* RX fifo overrun (probably PCI problem) */ #define RD_RX_SIRBAD 0x04 /* EOF missing: BOF follows BOF (SIR, filtered) */ #define RD_RX_ERROR 0x7c /* any error in received frame */ /* the memory required to hold the 2 descriptor rings */ #define HW_RING_AREA_SIZE (2 * MAX_RING_DESCR * sizeof(struct ring_descr_hw)) /******************************************************************/ /* sw-ring descriptors consists of a bus-mapped transfer buffer with * associated skb and a pointer to the hw entry descriptor */ struct ring_descr { struct ring_descr_hw *hw; struct sk_buff *skb; void *buf; }; /* wrappers for operations on hw-exposed ring descriptors * access to the hw-part of the descriptors must use these. */ static inline int rd_is_active(struct ring_descr *rd) { return ((rd->hw->rd_status & RD_ACTIVE) != 0); } static inline void rd_activate(struct ring_descr *rd) { rd->hw->rd_status |= RD_ACTIVE; } static inline void rd_set_status(struct ring_descr *rd, u8 s) { rd->hw->rd_status = s; /* may pass ownership to the hardware */ } static inline void rd_set_addr_status(struct ring_descr *rd, dma_addr_t a, u8 s) { /* order is important for two reasons: * - overlayed: writing addr overwrites status * - we want to write status last so we have valid address in * case status has RD_ACTIVE set */ if ((a & ~DMA_MASK_MSTRPAGE)>>24 != MSTRPAGE_VALUE) { IRDA_ERROR("%s: pci busaddr inconsistency!\n", __FUNCTION__); dump_stack(); return; } a &= DMA_MASK_MSTRPAGE; /* clear highbyte to make sure we won't write * to status - just in case MSTRPAGE_VALUE!=0 */ rd->hw->rd_addr = cpu_to_le32(a); wmb(); rd_set_status(rd, s); /* may pass ownership to the hardware */ } static inline void rd_set_count(struct ring_descr *rd, u16 c) { rd->hw->rd_count = cpu_to_le16(c); } static inline u8 rd_get_status(struct ring_descr *rd) { return rd->hw->rd_status; } static inline dma_addr_t rd_get_addr(struct ring_descr *rd) { dma_addr_t a; a = le32_to_cpu(rd->hw->rd_addr); return (a & DMA_MASK_MSTRPAGE) | (MSTRPAGE_VALUE << 24); } static inline u16 rd_get_count(struct ring_descr *rd) { return le16_to_cpu(rd->hw->rd_count); } /******************************************************************/ /* sw descriptor rings for rx, tx: * * operations follow producer-consumer paradigm, with the hw * in the middle doing the processing. * ring size must be power of two. * * producer advances r->tail after inserting for processing * consumer advances r->head after removing processed rd * ring is empty if head==tail / full if (tail+1)==head */ struct vlsi_ring { struct pci_dev *pdev; int dir; unsigned len; unsigned size; unsigned mask; atomic_t head, tail; struct ring_descr *rd; }; /* ring processing helpers */ static inline struct ring_descr *ring_last(struct vlsi_ring *r) { int t; t = atomic_read(&r->tail) & r->mask; return (((t+1) & r->mask) == (atomic_read(&r->head) & r->mask)) ? NULL : &r->rd[t]; } static inline struct ring_descr *ring_put(struct vlsi_ring *r) { atomic_inc(&r->tail); return ring_last(r); } static inline struct ring_descr *ring_first(struct vlsi_ring *r) { int h; h = atomic_read(&r->head) & r->mask; return (h == (atomic_read(&r->tail) & r->mask)) ? NULL : &r->rd[h]; } static inline struct ring_descr *ring_get(struct vlsi_ring *r) { atomic_inc(&r->head); return ring_first(r); } /******************************************************************/ /* our private compound VLSI-PCI-IRDA device information */ typedef struct vlsi_irda_dev { struct pci_dev *pdev; struct net_device_stats stats; struct irlap_cb *irlap; struct qos_info qos; unsigned mode; int baud, new_baud; dma_addr_t busaddr; void *virtaddr; struct vlsi_ring *tx_ring, *rx_ring; struct timeval last_rx; spinlock_t lock; struct mutex mtx; u8 resume_ok; struct proc_dir_entry *proc_entry; } vlsi_irda_dev_t; /********************************************************/ /* the remapped error flags we use for returning from frame * post-processing in vlsi_process_tx/rx() after it was completed * by the hardware. These functions either return the >=0 number * of transfered bytes in case of success or the negative (-) * of the or'ed error flags. */ #define VLSI_TX_DROP 0x0001 #define VLSI_TX_FIFO 0x0002 #define VLSI_RX_DROP 0x0100 #define VLSI_RX_OVER 0x0200 #define VLSI_RX_LENGTH 0x0400 #define VLSI_RX_FRAME 0x0800 #define VLSI_RX_CRC 0x1000 /********************************************************/ #endif /* IRDA_VLSI_FIR_H */