/* File veth.c created by Kyle A. Lucke on Mon Aug 7 2000. */ /* * IBM eServer iSeries Virtual Ethernet Device Driver * Copyright (C) 2001 Kyle A. Lucke (klucke@us.ibm.com), IBM Corp. * Substantially cleaned up by: * Copyright (C) 2003 David Gibson , IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * * * This module implements the virtual ethernet device for iSeries LPAR * Linux. It uses hypervisor message passing to implement an * ethernet-like network device communicating between partitions on * the iSeries. * * The iSeries LPAR hypervisor currently allows for up to 16 different * virtual ethernets. These are all dynamically configurable on * OS/400 partitions, but dynamic configuration is not supported under * Linux yet. An ethXX network device will be created for each * virtual ethernet this partition is connected to. * * - This driver is responsible for routing packets to and from other * partitions. The MAC addresses used by the virtual ethernets * contains meaning and must not be modified. * * - Having 2 virtual ethernets to the same remote partition DOES NOT * double the available bandwidth. The 2 devices will share the * available hypervisor bandwidth. * * - If you send a packet to your own mac address, it will just be * dropped, you won't get it on the receive side. * * - Multicast is implemented by sending the frame frame to every * other partition. It is the responsibility of the receiving * partition to filter the addresses desired. * * Tunable parameters: * * VETH_NUMBUFFERS: This compile time option defaults to 120. It * controls how much memory Linux will allocate per remote partition * it is communicating with. It can be thought of as the maximum * number of packets outstanding to a remote partition at a time. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG #include "iseries_veth.h" MODULE_AUTHOR("Kyle Lucke "); MODULE_DESCRIPTION("iSeries Virtual ethernet driver"); MODULE_LICENSE("GPL"); #define VETH_NUMBUFFERS (120) #define VETH_ACKTIMEOUT (1000000) /* microseconds */ #define VETH_MAX_MCAST (12) #define VETH_MAX_MTU (9000) #if VETH_NUMBUFFERS < 10 #define ACK_THRESHOLD (1) #elif VETH_NUMBUFFERS < 20 #define ACK_THRESHOLD (4) #elif VETH_NUMBUFFERS < 40 #define ACK_THRESHOLD (10) #else #define ACK_THRESHOLD (20) #endif #define VETH_STATE_SHUTDOWN (0x0001) #define VETH_STATE_OPEN (0x0002) #define VETH_STATE_RESET (0x0004) #define VETH_STATE_SENTMON (0x0008) #define VETH_STATE_SENTCAPS (0x0010) #define VETH_STATE_GOTCAPACK (0x0020) #define VETH_STATE_GOTCAPS (0x0040) #define VETH_STATE_SENTCAPACK (0x0080) #define VETH_STATE_READY (0x0100) struct veth_msg { struct veth_msg *next; struct VethFramesData data; int token; unsigned long in_use; struct sk_buff *skb; struct device *dev; }; struct veth_lpar_connection { HvLpIndex remote_lp; struct work_struct statemachine_wq; struct veth_msg *msgs; int num_events; struct VethCapData local_caps; struct timer_list ack_timer; spinlock_t lock; unsigned long state; HvLpInstanceId src_inst; HvLpInstanceId dst_inst; struct VethLpEvent cap_event, cap_ack_event; u16 pending_acks[VETH_MAX_ACKS_PER_MSG]; u32 num_pending_acks; int num_ack_events; struct VethCapData remote_caps; u32 ack_timeout; spinlock_t msg_stack_lock; struct veth_msg *msg_stack_head; }; struct veth_port { struct device *dev; struct net_device_stats stats; u64 mac_addr; HvLpIndexMap lpar_map; spinlock_t pending_gate; struct sk_buff *pending_skb; HvLpIndexMap pending_lpmask; rwlock_t mcast_gate; int promiscuous; int all_mcast; int num_mcast; u64 mcast_addr[VETH_MAX_MCAST]; }; static HvLpIndex this_lp; static struct veth_lpar_connection *veth_cnx[HVMAXARCHITECTEDLPS]; /* = 0 */ static struct net_device *veth_dev[HVMAXARCHITECTEDVIRTUALLANS]; /* = 0 */ static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev); static void veth_recycle_msg(struct veth_lpar_connection *, struct veth_msg *); static void veth_flush_pending(struct veth_lpar_connection *cnx); static void veth_receive(struct veth_lpar_connection *, struct VethLpEvent *); static void veth_timed_ack(unsigned long connectionPtr); /* * Utility functions */ #define veth_info(fmt, args...) \ printk(KERN_INFO "iseries_veth: " fmt, ## args) #define veth_error(fmt, args...) \ printk(KERN_ERR "iseries_veth: Error: " fmt, ## args) #ifdef DEBUG #define veth_debug(fmt, args...) \ printk(KERN_DEBUG "iseries_veth: " fmt, ## args) #else #define veth_debug(fmt, args...) do {} while (0) #endif static inline void veth_stack_push(struct veth_lpar_connection *cnx, struct veth_msg *msg) { unsigned long flags; spin_lock_irqsave(&cnx->msg_stack_lock, flags); msg->next = cnx->msg_stack_head; cnx->msg_stack_head = msg; spin_unlock_irqrestore(&cnx->msg_stack_lock, flags); } static inline struct veth_msg *veth_stack_pop(struct veth_lpar_connection *cnx) { unsigned long flags; struct veth_msg *msg; spin_lock_irqsave(&cnx->msg_stack_lock, flags); msg = cnx->msg_stack_head; if (msg) cnx->msg_stack_head = cnx->msg_stack_head->next; spin_unlock_irqrestore(&cnx->msg_stack_lock, flags); return msg; } static inline HvLpEvent_Rc veth_signalevent(struct veth_lpar_connection *cnx, u16 subtype, HvLpEvent_AckInd ackind, HvLpEvent_AckType acktype, u64 token, u64 data1, u64 data2, u64 data3, u64 data4, u64 data5) { return HvCallEvent_signalLpEventFast(cnx->remote_lp, HvLpEvent_Type_VirtualLan, subtype, ackind, acktype, cnx->src_inst, cnx->dst_inst, token, data1, data2, data3, data4, data5); } static inline HvLpEvent_Rc veth_signaldata(struct veth_lpar_connection *cnx, u16 subtype, u64 token, void *data) { u64 *p = (u64 *) data; return veth_signalevent(cnx, subtype, HvLpEvent_AckInd_NoAck, HvLpEvent_AckType_ImmediateAck, token, p[0], p[1], p[2], p[3], p[4]); } struct veth_allocation { struct completion c; int num; }; static void veth_complete_allocation(void *parm, int number) { struct veth_allocation *vc = (struct veth_allocation *)parm; vc->num = number; complete(&vc->c); } static int veth_allocate_events(HvLpIndex rlp, int number) { struct veth_allocation vc = { COMPLETION_INITIALIZER(vc.c), 0 }; mf_allocate_lp_events(rlp, HvLpEvent_Type_VirtualLan, sizeof(struct VethLpEvent), number, &veth_complete_allocation, &vc); wait_for_completion(&vc.c); return vc.num; } /* * LPAR connection code */ static inline void veth_kick_statemachine(struct veth_lpar_connection *cnx) { schedule_work(&cnx->statemachine_wq); } static void veth_take_cap(struct veth_lpar_connection *cnx, struct VethLpEvent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); /* Receiving caps may mean the other end has just come up, so * we need to reload the instance ID of the far end */ cnx->dst_inst = HvCallEvent_getTargetLpInstanceId(cnx->remote_lp, HvLpEvent_Type_VirtualLan); if (cnx->state & VETH_STATE_GOTCAPS) { veth_error("Received a second capabilities from LPAR %d.\n", cnx->remote_lp); event->base_event.xRc = HvLpEvent_Rc_BufferNotAvailable; HvCallEvent_ackLpEvent((struct HvLpEvent *) event); } else { memcpy(&cnx->cap_event, event, sizeof(cnx->cap_event)); cnx->state |= VETH_STATE_GOTCAPS; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_take_cap_ack(struct veth_lpar_connection *cnx, struct VethLpEvent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); if (cnx->state & VETH_STATE_GOTCAPACK) { veth_error("Received a second capabilities ack from LPAR %d.\n", cnx->remote_lp); } else { memcpy(&cnx->cap_ack_event, event, sizeof(&cnx->cap_ack_event)); cnx->state |= VETH_STATE_GOTCAPACK; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_take_monitor_ack(struct veth_lpar_connection *cnx, struct VethLpEvent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); veth_debug("cnx %d: lost connection.\n", cnx->remote_lp); /* Avoid kicking the statemachine once we're shutdown. * It's unnecessary and it could break veth_stop_connection(). */ if (! (cnx->state & VETH_STATE_SHUTDOWN)) { cnx->state |= VETH_STATE_RESET; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_handle_ack(struct VethLpEvent *event) { HvLpIndex rlp = event->base_event.xTargetLp; struct veth_lpar_connection *cnx = veth_cnx[rlp]; BUG_ON(! cnx); switch (event->base_event.xSubtype) { case VethEventTypeCap: veth_take_cap_ack(cnx, event); break; case VethEventTypeMonitor: veth_take_monitor_ack(cnx, event); break; default: veth_error("Unknown ack type %d from LPAR %d.\n", event->base_event.xSubtype, rlp); }; } static void veth_handle_int(struct VethLpEvent *event) { HvLpIndex rlp = event->base_event.xSourceLp; struct veth_lpar_connection *cnx = veth_cnx[rlp]; unsigned long flags; int i; BUG_ON(! cnx); switch (event->base_event.xSubtype) { case VethEventTypeCap: veth_take_cap(cnx, event); break; case VethEventTypeMonitor: /* do nothing... this'll hang out here til we're dead, * and the hypervisor will return it for us. */ break; case VethEventTypeFramesAck: spin_lock_irqsave(&cnx->lock, flags); for (i = 0; i < VETH_MAX_ACKS_PER_MSG; ++i) { u16 msgnum = event->u.frames_ack_data.token[i]; if (msgnum < VETH_NUMBUFFERS) veth_recycle_msg(cnx, cnx->msgs + msgnum); } spin_unlock_irqrestore(&cnx->lock, flags); veth_flush_pending(cnx); break; case VethEventTypeFrames: veth_receive(cnx, event); break; default: veth_error("Unknown interrupt type %d from LPAR %d.\n", event->base_event.xSubtype, rlp); }; } static void veth_handle_event(struct HvLpEvent *event, struct pt_regs *regs) { struct VethLpEvent *veth_event = (struct VethLpEvent *)event; if (event->xFlags.xFunction == HvLpEvent_Function_Ack) veth_handle_ack(veth_event); else if (event->xFlags.xFunction == HvLpEvent_Function_Int) veth_handle_int(veth_event); } static int veth_process_caps(struct veth_lpar_connection *cnx) { struct VethCapData *remote_caps = &cnx->remote_caps; int num_acks_needed; /* Convert timer to jiffies */ cnx->ack_timeout = remote_caps->ack_timeout * HZ / 1000000; if ( (remote_caps->num_buffers == 0) || (remote_caps->ack_threshold > VETH_MAX_ACKS_PER_MSG) || (remote_caps->ack_threshold == 0) || (cnx->ack_timeout == 0) ) { veth_error("Received incompatible capabilities from LPAR %d.\n", cnx->remote_lp); return HvLpEvent_Rc_InvalidSubtypeData; } num_acks_needed = (remote_caps->num_buffers / remote_caps->ack_threshold) + 1; /* FIXME: locking on num_ack_events? */ if (cnx->num_ack_events < num_acks_needed) { int num; num = veth_allocate_events(cnx->remote_lp, num_acks_needed-cnx->num_ack_events); if (num > 0) cnx->num_ack_events += num; if (cnx->num_ack_events < num_acks_needed) { veth_error("Couldn't allocate enough ack events " "for LPAR %d.\n", cnx->remote_lp); return HvLpEvent_Rc_BufferNotAvailable; } } return HvLpEvent_Rc_Good; } /* FIXME: The gotos here are a bit dubious */ static void veth_statemachine(void *p) { struct veth_lpar_connection *cnx = (struct veth_lpar_connection *)p; int rlp = cnx->remote_lp; int rc; spin_lock_irq(&cnx->lock); restart: if (cnx->state & VETH_STATE_RESET) { int i; if (cnx->state & VETH_STATE_OPEN) HvCallEvent_closeLpEventPath(cnx->remote_lp, HvLpEvent_Type_VirtualLan); /* * Reset ack data. This prevents the ack_timer actually * doing anything, even if it runs one more time when * we drop the lock below. */ memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks)); cnx->num_pending_acks = 0; cnx->state &= ~(VETH_STATE_RESET | VETH_STATE_SENTMON | VETH_STATE_OPEN | VETH_STATE_SENTCAPS | VETH_STATE_GOTCAPACK | VETH_STATE_GOTCAPS | VETH_STATE_SENTCAPACK | VETH_STATE_READY); /* Clean up any leftover messages */ if (cnx->msgs) for (i = 0; i < VETH_NUMBUFFERS; ++i) veth_recycle_msg(cnx, cnx->msgs + i); /* Drop the lock so we can do stuff that might sleep or * take other locks. */ spin_unlock_irq(&cnx->lock); del_timer_sync(&cnx->ack_timer); veth_flush_pending(cnx); spin_lock_irq(&cnx->lock); if (cnx->state & VETH_STATE_RESET) goto restart; /* Hack, wait for the other end to reset itself. */ if (! (cnx->state & VETH_STATE_SHUTDOWN)) { schedule_delayed_work(&cnx->statemachine_wq, 5 * HZ); goto out; } } if (cnx->state & VETH_STATE_SHUTDOWN) /* It's all over, do nothing */ goto out; if ( !(cnx->state & VETH_STATE_OPEN) ) { if (! cnx->msgs || (cnx->num_events < (2 + VETH_NUMBUFFERS)) ) goto cant_cope; HvCallEvent_openLpEventPath(rlp, HvLpEvent_Type_VirtualLan); cnx->src_inst = HvCallEvent_getSourceLpInstanceId(rlp, HvLpEvent_Type_VirtualLan); cnx->dst_inst = HvCallEvent_getTargetLpInstanceId(rlp, HvLpEvent_Type_VirtualLan); cnx->state |= VETH_STATE_OPEN; } if ( (cnx->state & VETH_STATE_OPEN) && !(cnx->state & VETH_STATE_SENTMON) ) { rc = veth_signalevent(cnx, VethEventTypeMonitor, HvLpEvent_AckInd_DoAck, HvLpEvent_AckType_DeferredAck, 0, 0, 0, 0, 0, 0); if (rc == HvLpEvent_Rc_Good) { cnx->state |= VETH_STATE_SENTMON; } else { if ( (rc != HvLpEvent_Rc_PartitionDead) && (rc != HvLpEvent_Rc_PathClosed) ) veth_error("Error sending monitor to LPAR %d, " "rc = %d\n", rlp, rc); /* Oh well, hope we get a cap from the other * end and do better when that kicks us */ goto out; } } if ( (cnx->state & VETH_STATE_OPEN) && !(cnx->state & VETH_STATE_SENTCAPS)) { u64 *rawcap = (u64 *)&cnx->local_caps; rc = veth_signalevent(cnx, VethEventTypeCap, HvLpEvent_AckInd_DoAck, HvLpEvent_AckType_ImmediateAck, 0, rawcap[0], rawcap[1], rawcap[2], rawcap[3], rawcap[4]); if (rc == HvLpEvent_Rc_Good) { cnx->state |= VETH_STATE_SENTCAPS; } else { if ( (rc != HvLpEvent_Rc_PartitionDead) && (rc != HvLpEvent_Rc_PathClosed) ) veth_error("Error sending caps to LPAR %d, " "rc = %d\n", rlp, rc); /* Oh well, hope we get a cap from the other * end and do better when that kicks us */ goto out; } } if ((cnx->state & VETH_STATE_GOTCAPS) && !(cnx->state & VETH_STATE_SENTCAPACK)) { struct VethCapData *remote_caps = &cnx->remote_caps; memcpy(remote_caps, &cnx->cap_event.u.caps_data, sizeof(*remote_caps)); spin_unlock_irq(&cnx->lock); rc = veth_process_caps(cnx); spin_lock_irq(&cnx->lock); /* We dropped the lock, so recheck for anything which * might mess us up */ if (cnx->state & (VETH_STATE_RESET|VETH_STATE_SHUTDOWN)) goto restart; cnx->cap_event.base_event.xRc = rc; HvCallEvent_ackLpEvent((struct HvLpEvent *)&cnx->cap_event); if (rc == HvLpEvent_Rc_Good) cnx->state |= VETH_STATE_SENTCAPACK; else goto cant_cope; } if ((cnx->state & VETH_STATE_GOTCAPACK) && (cnx->state & VETH_STATE_GOTCAPS) && !(cnx->state & VETH_STATE_READY)) { if (cnx->cap_ack_event.base_event.xRc == HvLpEvent_Rc_Good) { /* Start the ACK timer */ cnx->ack_timer.expires = jiffies + cnx->ack_timeout; add_timer(&cnx->ack_timer); cnx->state |= VETH_STATE_READY; } else { veth_error("Caps rejected by LPAR %d, rc = %d\n", rlp, cnx->cap_ack_event.base_event.xRc); goto cant_cope; } } out: spin_unlock_irq(&cnx->lock); return; cant_cope: /* FIXME: we get here if something happens we really can't * cope with. The link will never work once we get here, and * all we can do is not lock the rest of the system up */ veth_error("Unrecoverable error on connection to LPAR %d, shutting down" " (state = 0x%04lx)\n", rlp, cnx->state); cnx->state |= VETH_STATE_SHUTDOWN; spin_unlock_irq(&cnx->lock); } static int veth_init_connection(u8 rlp) { struct veth_lpar_connection *cnx; struct veth_msg *msgs; int i; if ( (rlp == this_lp) || ! HvLpConfig_doLpsCommunicateOnVirtualLan(this_lp, rlp) ) return 0; cnx = kmalloc(sizeof(*cnx), GFP_KERNEL); if (! cnx) return -ENOMEM; memset(cnx, 0, sizeof(*cnx)); cnx->remote_lp = rlp; spin_lock_init(&cnx->lock); INIT_WORK(&cnx->statemachine_wq, veth_statemachine, cnx); init_timer(&cnx->ack_timer); cnx->ack_timer.function = veth_timed_ack; cnx->ack_timer.data = (unsigned long) cnx; memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks)); veth_cnx[rlp] = cnx; msgs = kmalloc(VETH_NUMBUFFERS * sizeof(struct veth_msg), GFP_KERNEL); if (! msgs) { veth_error("Can't allocate buffers for LPAR %d.\n", rlp); return -ENOMEM; } cnx->msgs = msgs; memset(msgs, 0, VETH_NUMBUFFERS * sizeof(struct veth_msg)); spin_lock_init(&cnx->msg_stack_lock); for (i = 0; i < VETH_NUMBUFFERS; i++) { msgs[i].token = i; veth_stack_push(cnx, msgs + i); } cnx->num_events = veth_allocate_events(rlp, 2 + VETH_NUMBUFFERS); if (cnx->num_events < (2 + VETH_NUMBUFFERS)) { veth_error("Can't allocate enough events for LPAR %d.\n", rlp); return -ENOMEM; } cnx->local_caps.num_buffers = VETH_NUMBUFFERS; cnx->local_caps.ack_threshold = ACK_THRESHOLD; cnx->local_caps.ack_timeout = VETH_ACKTIMEOUT; return 0; } static void veth_stop_connection(u8 rlp) { struct veth_lpar_connection *cnx = veth_cnx[rlp]; if (! cnx) return; spin_lock_irq(&cnx->lock); cnx->state |= VETH_STATE_RESET | VETH_STATE_SHUTDOWN; veth_kick_statemachine(cnx); spin_unlock_irq(&cnx->lock); /* There's a slim chance the reset code has just queued the * statemachine to run in five seconds. If so we need to cancel * that and requeue the work to run now. */ if (cancel_delayed_work(&cnx->statemachine_wq)) { spin_lock_irq(&cnx->lock); veth_kick_statemachine(cnx); spin_unlock_irq(&cnx->lock); } /* Wait for the state machine to run. */ flush_scheduled_work(); if (cnx->num_events > 0) mf_deallocate_lp_events(cnx->remote_lp, HvLpEvent_Type_VirtualLan, cnx->num_events, NULL, NULL); if (cnx->num_ack_events > 0) mf_deallocate_lp_events(cnx->remote_lp, HvLpEvent_Type_VirtualLan, cnx->num_ack_events, NULL, NULL); } static void veth_destroy_connection(u8 rlp) { struct veth_lpar_connection *cnx = veth_cnx[rlp]; if (! cnx) return; kfree(cnx->msgs); kfree(cnx); veth_cnx[rlp] = NULL; } /* * net_device code */ static int veth_open(struct net_device *dev) { struct veth_port *port = (struct veth_port *) dev->priv; memset(&port->stats, 0, sizeof (port->stats)); netif_start_queue(dev); return 0; } static int veth_close(struct net_device *dev) { netif_stop_queue(dev); return 0; } static struct net_device_stats *veth_get_stats(struct net_device *dev) { struct veth_port *port = (struct veth_port *) dev->priv; return &port->stats; } static int veth_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > VETH_MAX_MTU)) return -EINVAL; dev->mtu = new_mtu; return 0; } static void veth_set_multicast_list(struct net_device *dev) { struct veth_port *port = (struct veth_port *) dev->priv; unsigned long flags; write_lock_irqsave(&port->mcast_gate, flags); if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); port->promiscuous = 1; } else if ( (dev->flags & IFF_ALLMULTI) || (dev->mc_count > VETH_MAX_MCAST) ) { port->all_mcast = 1; } else { struct dev_mc_list *dmi = dev->mc_list; int i; /* Update table */ port->num_mcast = 0; for (i = 0; i < dev->mc_count; i++) { u8 *addr = dmi->dmi_addr; u64 xaddr = 0; if (addr[0] & 0x01) {/* multicast address? */ memcpy(&xaddr, addr, ETH_ALEN); port->mcast_addr[port->num_mcast] = xaddr; port->num_mcast++; } dmi = dmi->next; } } write_unlock_irqrestore(&port->mcast_gate, flags); } static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strncpy(info->driver, "veth", sizeof(info->driver) - 1); info->driver[sizeof(info->driver) - 1] = '\0'; strncpy(info->version, "1.0", sizeof(info->version) - 1); } static int veth_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { ecmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); ecmd->advertising = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); ecmd->port = PORT_FIBRE; ecmd->transceiver = XCVR_INTERNAL; ecmd->phy_address = 0; ecmd->speed = SPEED_1000; ecmd->duplex = DUPLEX_FULL; ecmd->autoneg = AUTONEG_ENABLE; ecmd->maxtxpkt = 120; ecmd->maxrxpkt = 120; return 0; } static u32 veth_get_link(struct net_device *dev) { return 1; } static struct ethtool_ops ops = { .get_drvinfo = veth_get_drvinfo, .get_settings = veth_get_settings, .get_link = veth_get_link, }; static void veth_tx_timeout(struct net_device *dev) { struct veth_port *port = (struct veth_port *)dev->priv; struct net_device_stats *stats = &port->stats; unsigned long flags; int i; stats->tx_errors++; spin_lock_irqsave(&port->pending_gate, flags); if (!port->pending_lpmask) { spin_unlock_irqrestore(&port->pending_gate, flags); return; } printk(KERN_WARNING "%s: Tx timeout! Resetting lp connections: %08x\n", dev->name, port->pending_lpmask); for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { struct veth_lpar_connection *cnx = veth_cnx[i]; if (! (port->pending_lpmask & (1<lock); cnx->state |= VETH_STATE_RESET; veth_kick_statemachine(cnx); spin_unlock(&cnx->lock); } spin_unlock_irqrestore(&port->pending_gate, flags); } static struct net_device * __init veth_probe_one(int vlan, struct device *vdev) { struct net_device *dev; struct veth_port *port; int i, rc; dev = alloc_etherdev(sizeof (struct veth_port)); if (! dev) { veth_error("Unable to allocate net_device structure!\n"); return NULL; } port = (struct veth_port *) dev->priv; spin_lock_init(&port->pending_gate); rwlock_init(&port->mcast_gate); for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { HvLpVirtualLanIndexMap map; if (i == this_lp) continue; map = HvLpConfig_getVirtualLanIndexMapForLp(i); if (map & (0x8000 >> vlan)) port->lpar_map |= (1 << i); } port->dev = vdev; dev->dev_addr[0] = 0x02; dev->dev_addr[1] = 0x01; dev->dev_addr[2] = 0xff; dev->dev_addr[3] = vlan; dev->dev_addr[4] = 0xff; dev->dev_addr[5] = this_lp; dev->mtu = VETH_MAX_MTU; memcpy(&port->mac_addr, dev->dev_addr, 6); dev->open = veth_open; dev->hard_start_xmit = veth_start_xmit; dev->stop = veth_close; dev->get_stats = veth_get_stats; dev->change_mtu = veth_change_mtu; dev->set_mac_address = NULL; dev->set_multicast_list = veth_set_multicast_list; SET_ETHTOOL_OPS(dev, &ops); dev->watchdog_timeo = 2 * (VETH_ACKTIMEOUT * HZ / 1000000); dev->tx_timeout = veth_tx_timeout; SET_NETDEV_DEV(dev, vdev); rc = register_netdev(dev); if (rc != 0) { veth_error("Failed registering net device for vlan%d.\n", vlan); free_netdev(dev); return NULL; } veth_info("%s attached to iSeries vlan %d (LPAR map = 0x%.4X)\n", dev->name, vlan, port->lpar_map); return dev; } /* * Tx path */ static int veth_transmit_to_one(struct sk_buff *skb, HvLpIndex rlp, struct net_device *dev) { struct veth_lpar_connection *cnx = veth_cnx[rlp]; struct veth_port *port = (struct veth_port *) dev->priv; HvLpEvent_Rc rc; u32 dma_address, dma_length; struct veth_msg *msg = NULL; int err = 0; unsigned long flags; if (! cnx) { port->stats.tx_errors++; dev_kfree_skb(skb); return 0; } spin_lock_irqsave(&cnx->lock, flags); if (! (cnx->state & VETH_STATE_READY)) goto drop; if ((skb->len - 14) > VETH_MAX_MTU) goto drop; msg = veth_stack_pop(cnx); if (! msg) { err = 1; goto drop; } dma_length = skb->len; dma_address = dma_map_single(port->dev, skb->data, dma_length, DMA_TO_DEVICE); if (dma_mapping_error(dma_address)) goto recycle_and_drop; /* Is it really necessary to check the length and address * fields of the first entry here? */ msg->skb = skb; msg->dev = port->dev; msg->data.addr[0] = dma_address; msg->data.len[0] = dma_length; msg->data.eofmask = 1 << VETH_EOF_SHIFT; set_bit(0, &(msg->in_use)); rc = veth_signaldata(cnx, VethEventTypeFrames, msg->token, &msg->data); if (rc != HvLpEvent_Rc_Good) goto recycle_and_drop; spin_unlock_irqrestore(&cnx->lock, flags); return 0; recycle_and_drop: msg->skb = NULL; /* need to set in use to make veth_recycle_msg in case this * was a mapping failure */ set_bit(0, &msg->in_use); veth_recycle_msg(cnx, msg); drop: port->stats.tx_errors++; dev_kfree_skb(skb); spin_unlock_irqrestore(&cnx->lock, flags); return err; } static HvLpIndexMap veth_transmit_to_many(struct sk_buff *skb, HvLpIndexMap lpmask, struct net_device *dev) { struct veth_port *port = (struct veth_port *) dev->priv; int i; int rc; for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { if ((lpmask & (1 << i)) == 0) continue; rc = veth_transmit_to_one(skb_get(skb), i, dev); if (! rc) lpmask &= ~(1<stats.tx_packets++; port->stats.tx_bytes += skb->len; } return lpmask; } static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned char *frame = skb->data; struct veth_port *port = (struct veth_port *) dev->priv; unsigned long flags; HvLpIndexMap lpmask; if (! (frame[0] & 0x01)) { /* unicast packet */ HvLpIndex rlp = frame[5]; if ( ! ((1 << rlp) & port->lpar_map) ) { dev_kfree_skb(skb); return 0; } lpmask = 1 << rlp; } else { lpmask = port->lpar_map; } spin_lock_irqsave(&port->pending_gate, flags); lpmask = veth_transmit_to_many(skb, lpmask, dev); dev->trans_start = jiffies; if (! lpmask) { dev_kfree_skb(skb); } else { if (port->pending_skb) { veth_error("%s: TX while skb was pending!\n", dev->name); dev_kfree_skb(skb); spin_unlock_irqrestore(&port->pending_gate, flags); return 1; } port->pending_skb = skb; port->pending_lpmask = lpmask; netif_stop_queue(dev); } spin_unlock_irqrestore(&port->pending_gate, flags); return 0; } static void veth_recycle_msg(struct veth_lpar_connection *cnx, struct veth_msg *msg) { u32 dma_address, dma_length; if (test_and_clear_bit(0, &msg->in_use)) { dma_address = msg->data.addr[0]; dma_length = msg->data.len[0]; dma_unmap_single(msg->dev, dma_address, dma_length, DMA_TO_DEVICE); if (msg->skb) { dev_kfree_skb_any(msg->skb); msg->skb = NULL; } memset(&msg->data, 0, sizeof(msg->data)); veth_stack_push(cnx, msg); } else if (cnx->state & VETH_STATE_OPEN) { veth_error("Non-pending frame (# %d) acked by LPAR %d.\n", cnx->remote_lp, msg->token); } } static void veth_flush_pending(struct veth_lpar_connection *cnx) { int i; for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) { struct net_device *dev = veth_dev[i]; struct veth_port *port; unsigned long flags; if (! dev) continue; port = (struct veth_port *)dev->priv; if (! (port->lpar_map & (1<remote_lp))) continue; spin_lock_irqsave(&port->pending_gate, flags); if (port->pending_skb) { port->pending_lpmask = veth_transmit_to_many(port->pending_skb, port->pending_lpmask, dev); if (! port->pending_lpmask) { dev_kfree_skb_any(port->pending_skb); port->pending_skb = NULL; netif_wake_queue(dev); } } spin_unlock_irqrestore(&port->pending_gate, flags); } } /* * Rx path */ static inline int veth_frame_wanted(struct veth_port *port, u64 mac_addr) { int wanted = 0; int i; unsigned long flags; if ( (mac_addr == port->mac_addr) || (mac_addr == 0xffffffffffff0000) ) return 1; if (! (((char *) &mac_addr)[0] & 0x01)) return 0; read_lock_irqsave(&port->mcast_gate, flags); if (port->promiscuous || port->all_mcast) { wanted = 1; goto out; } for (i = 0; i < port->num_mcast; ++i) { if (port->mcast_addr[i] == mac_addr) { wanted = 1; break; } } out: read_unlock_irqrestore(&port->mcast_gate, flags); return wanted; } struct dma_chunk { u64 addr; u64 size; }; #define VETH_MAX_PAGES_PER_FRAME ( (VETH_MAX_MTU+PAGE_SIZE-2)/PAGE_SIZE + 1 ) static inline void veth_build_dma_list(struct dma_chunk *list, unsigned char *p, unsigned long length) { unsigned long done; int i = 1; /* FIXME: skbs are continguous in real addresses. Do we * really need to break it into PAGE_SIZE chunks, or can we do * it just at the granularity of iSeries real->absolute * mapping? Indeed, given the way the allocator works, can we * count on them being absolutely contiguous? */ list[0].addr = ISERIES_HV_ADDR(p); list[0].size = min(length, PAGE_SIZE - ((unsigned long)p & ~PAGE_MASK)); done = list[0].size; while (done < length) { list[i].addr = ISERIES_HV_ADDR(p + done); list[i].size = min(length-done, PAGE_SIZE); done += list[i].size; i++; } } static void veth_flush_acks(struct veth_lpar_connection *cnx) { HvLpEvent_Rc rc; rc = veth_signaldata(cnx, VethEventTypeFramesAck, 0, &cnx->pending_acks); if (rc != HvLpEvent_Rc_Good) veth_error("Failed acking frames from LPAR %d, rc = %d\n", cnx->remote_lp, (int)rc); cnx->num_pending_acks = 0; memset(&cnx->pending_acks, 0xff, sizeof(cnx->pending_acks)); } static void veth_receive(struct veth_lpar_connection *cnx, struct VethLpEvent *event) { struct VethFramesData *senddata = &event->u.frames_data; int startchunk = 0; int nchunks; unsigned long flags; HvLpDma_Rc rc; do { u16 length = 0; struct sk_buff *skb; struct dma_chunk local_list[VETH_MAX_PAGES_PER_FRAME]; struct dma_chunk remote_list[VETH_MAX_FRAMES_PER_MSG]; u64 dest; HvLpVirtualLanIndex vlan; struct net_device *dev; struct veth_port *port; /* FIXME: do we need this? */ memset(local_list, 0, sizeof(local_list)); memset(remote_list, 0, sizeof(VETH_MAX_FRAMES_PER_MSG)); /* a 0 address marks the end of the valid entries */ if (senddata->addr[startchunk] == 0) break; /* make sure that we have at least 1 EOF entry in the * remaining entries */ if (! (senddata->eofmask >> (startchunk + VETH_EOF_SHIFT))) { veth_error("Missing EOF fragment in event " "eofmask = 0x%x startchunk = %d\n", (unsigned)senddata->eofmask, startchunk); break; } /* build list of chunks in this frame */ nchunks = 0; do { remote_list[nchunks].addr = (u64) senddata->addr[startchunk+nchunks] << 32; remote_list[nchunks].size = senddata->len[startchunk+nchunks]; length += remote_list[nchunks].size; } while (! (senddata->eofmask & (1 << (VETH_EOF_SHIFT + startchunk + nchunks++)))); /* length == total length of all chunks */ /* nchunks == # of chunks in this frame */ if ((length - ETH_HLEN) > VETH_MAX_MTU) { veth_error("Received oversize frame from LPAR %d " "(length = %d)\n", cnx->remote_lp, length); continue; } skb = alloc_skb(length, GFP_ATOMIC); if (!skb) continue; veth_build_dma_list(local_list, skb->data, length); rc = HvCallEvent_dmaBufList(HvLpEvent_Type_VirtualLan, event->base_event.xSourceLp, HvLpDma_Direction_RemoteToLocal, cnx->src_inst, cnx->dst_inst, HvLpDma_AddressType_RealAddress, HvLpDma_AddressType_TceIndex, ISERIES_HV_ADDR(&local_list), ISERIES_HV_ADDR(&remote_list), length); if (rc != HvLpDma_Rc_Good) { dev_kfree_skb_irq(skb); continue; } vlan = skb->data[9]; dev = veth_dev[vlan]; if (! dev) { /* * Some earlier versions of the driver sent * broadcasts down all connections, even to lpars * that weren't on the relevant vlan. So ignore * packets belonging to a vlan we're not on. * We can also be here if we receive packets while * the driver is going down, because then dev is NULL. */ dev_kfree_skb_irq(skb); continue; } port = (struct veth_port *)dev->priv; dest = *((u64 *) skb->data) & 0xFFFFFFFFFFFF0000; if ((vlan > HVMAXARCHITECTEDVIRTUALLANS) || !port) { dev_kfree_skb_irq(skb); continue; } if (! veth_frame_wanted(port, dest)) { dev_kfree_skb_irq(skb); continue; } skb_put(skb, length); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); /* send it up */ port->stats.rx_packets++; port->stats.rx_bytes += length; } while (startchunk += nchunks, startchunk < VETH_MAX_FRAMES_PER_MSG); /* Ack it */ spin_lock_irqsave(&cnx->lock, flags); BUG_ON(cnx->num_pending_acks > VETH_MAX_ACKS_PER_MSG); cnx->pending_acks[cnx->num_pending_acks++] = event->base_event.xCorrelationToken; if ( (cnx->num_pending_acks >= cnx->remote_caps.ack_threshold) || (cnx->num_pending_acks >= VETH_MAX_ACKS_PER_MSG) ) veth_flush_acks(cnx); spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_timed_ack(unsigned long ptr) { struct veth_lpar_connection *cnx = (struct veth_lpar_connection *) ptr; unsigned long flags; /* Ack all the events */ spin_lock_irqsave(&cnx->lock, flags); if (cnx->num_pending_acks > 0) veth_flush_acks(cnx); /* Reschedule the timer */ cnx->ack_timer.expires = jiffies + cnx->ack_timeout; add_timer(&cnx->ack_timer); spin_unlock_irqrestore(&cnx->lock, flags); } static int veth_remove(struct vio_dev *vdev) { int i = vdev->unit_address; struct net_device *dev; dev = veth_dev[i]; if (dev != NULL) { veth_dev[i] = NULL; unregister_netdev(dev); free_netdev(dev); } return 0; } static int veth_probe(struct vio_dev *vdev, const struct vio_device_id *id) { int i = vdev->unit_address; struct net_device *dev; dev = veth_probe_one(i, &vdev->dev); if (dev == NULL) { veth_remove(vdev); return 1; } veth_dev[i] = dev; /* Start the state machine on each connection, to commence * link negotiation */ for (i = 0; i < HVMAXARCHITECTEDLPS; i++) if (veth_cnx[i]) veth_kick_statemachine(veth_cnx[i]); return 0; } /** * veth_device_table: Used by vio.c to match devices that we * support. */ static struct vio_device_id veth_device_table[] __devinitdata = { { "vlan", "" }, { "", "" } }; MODULE_DEVICE_TABLE(vio, veth_device_table); static struct vio_driver veth_driver = { .name = "iseries_veth", .id_table = veth_device_table, .probe = veth_probe, .remove = veth_remove }; /* * Module initialization/cleanup */ void __exit veth_module_cleanup(void) { int i; /* Stop the queues first to stop any new packets being sent. */ for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) if (veth_dev[i]) netif_stop_queue(veth_dev[i]); /* Stop the connections before we unregister the driver. This * ensures there's no skbs lying around holding the device open. */ for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) veth_stop_connection(i); HvLpEvent_unregisterHandler(HvLpEvent_Type_VirtualLan); /* Hypervisor callbacks may have scheduled more work while we * were stoping connections. Now that we've disconnected from * the hypervisor make sure everything's finished. */ flush_scheduled_work(); vio_unregister_driver(&veth_driver); for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) veth_destroy_connection(i); } module_exit(veth_module_cleanup); int __init veth_module_init(void) { int i; int rc; this_lp = HvLpConfig_getLpIndex_outline(); for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) { rc = veth_init_connection(i); if (rc != 0) { veth_module_cleanup(); return rc; } } HvLpEvent_registerHandler(HvLpEvent_Type_VirtualLan, &veth_handle_event); return vio_register_driver(&veth_driver); } module_init(veth_module_init);