/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/mlx4/cq.h> #include <linux/mlx4/qp.h> #include <linux/skbuff.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/vmalloc.h> #include "mlx4_en.h" static void *get_wqe(struct mlx4_en_rx_ring *ring, int n) { int offset = n << ring->srq.wqe_shift; return ring->buf + offset; } static void mlx4_en_srq_event(struct mlx4_srq *srq, enum mlx4_event type) { return; } static int mlx4_en_get_frag_header(struct skb_frag_struct *frags, void **mac_hdr, void **ip_hdr, void **tcpudp_hdr, u64 *hdr_flags, void *priv) { *mac_hdr = page_address(frags->page) + frags->page_offset; *ip_hdr = *mac_hdr + ETH_HLEN; *tcpudp_hdr = (struct tcphdr *)(*ip_hdr + sizeof(struct iphdr)); *hdr_flags = LRO_IPV4 | LRO_TCP; return 0; } static int mlx4_en_alloc_frag(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct mlx4_en_rx_alloc *ring_alloc, int i) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; struct mlx4_en_rx_alloc *page_alloc = &ring_alloc[i]; struct page *page; dma_addr_t dma; if (page_alloc->offset == frag_info->last_offset) { /* Allocate new page */ page = alloc_pages(GFP_ATOMIC | __GFP_COMP, MLX4_EN_ALLOC_ORDER); if (!page) return -ENOMEM; skb_frags[i].page = page_alloc->page; skb_frags[i].page_offset = page_alloc->offset; page_alloc->page = page; page_alloc->offset = frag_info->frag_align; } else { page = page_alloc->page; get_page(page); skb_frags[i].page = page; skb_frags[i].page_offset = page_alloc->offset; page_alloc->offset += frag_info->frag_stride; } dma = pci_map_single(mdev->pdev, page_address(skb_frags[i].page) + skb_frags[i].page_offset, frag_info->frag_size, PCI_DMA_FROMDEVICE); rx_desc->data[i].addr = cpu_to_be64(dma); return 0; } static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_rx_alloc *page_alloc; int i; for (i = 0; i < priv->num_frags; i++) { page_alloc = &ring->page_alloc[i]; page_alloc->page = alloc_pages(GFP_ATOMIC | __GFP_COMP, MLX4_EN_ALLOC_ORDER); if (!page_alloc->page) goto out; page_alloc->offset = priv->frag_info[i].frag_align; mlx4_dbg(DRV, priv, "Initialized allocator:%d with page:%p\n", i, page_alloc->page); } return 0; out: while (i--) { page_alloc = &ring->page_alloc[i]; put_page(page_alloc->page); page_alloc->page = NULL; } return -ENOMEM; } static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_rx_alloc *page_alloc; int i; for (i = 0; i < priv->num_frags; i++) { page_alloc = &ring->page_alloc[i]; mlx4_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", i, page_count(page_alloc->page)); put_page(page_alloc->page); page_alloc->page = NULL; } } static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; struct skb_frag_struct *skb_frags = ring->rx_info + (index << priv->log_rx_info); int possible_frags; int i; /* Pre-link descriptor */ rx_desc->next.next_wqe_index = cpu_to_be16((index + 1) & ring->size_mask); /* Set size and memtype fields */ for (i = 0; i < priv->num_frags; i++) { skb_frags[i].size = priv->frag_info[i].frag_size; rx_desc->data[i].byte_count = cpu_to_be32(priv->frag_info[i].frag_size); rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); } /* If the number of used fragments does not fill up the ring stride, * remaining (unused) fragments must be padded with null address/size * and a special memory key */ possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; for (i = priv->num_frags; i < possible_frags; i++) { rx_desc->data[i].byte_count = 0; rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); rx_desc->data[i].addr = 0; } } static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); struct skb_frag_struct *skb_frags = ring->rx_info + (index << priv->log_rx_info); int i; for (i = 0; i < priv->num_frags; i++) if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, ring->page_alloc, i)) goto err; return 0; err: while (i--) put_page(skb_frags[i].page); return -ENOMEM; } static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) { *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); } static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rx_ring *ring; int ring_ind; int buf_ind; for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; if (mlx4_en_prepare_rx_desc(priv, ring, ring->actual_size)) { if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { mlx4_err(mdev, "Failed to allocate " "enough rx buffers\n"); return -ENOMEM; } else { if (netif_msg_rx_err(priv)) mlx4_warn(mdev, "Only %d buffers allocated\n", ring->actual_size); goto out; } } ring->actual_size++; ring->prod++; } } out: return 0; } static int mlx4_en_fill_rx_buf(struct net_device *dev, struct mlx4_en_rx_ring *ring) { struct mlx4_en_priv *priv = netdev_priv(dev); int num = 0; int err; while ((u32) (ring->prod - ring->cons) < ring->actual_size) { err = mlx4_en_prepare_rx_desc(priv, ring, ring->prod & ring->size_mask); if (err) { if (netif_msg_rx_err(priv)) mlx4_warn(priv->mdev, "Failed preparing rx descriptor\n"); priv->port_stats.rx_alloc_failed++; break; } ++num; ++ring->prod; } if ((u32) (ring->prod - ring->cons) == ring->size) ring->full = 1; return num; } static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; struct skb_frag_struct *skb_frags; struct mlx4_en_rx_desc *rx_desc; dma_addr_t dma; int index; int nr; mlx4_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", ring->cons, ring->prod); /* Unmap and free Rx buffers */ BUG_ON((u32) (ring->prod - ring->cons) > ring->size); while (ring->cons != ring->prod) { index = ring->cons & ring->size_mask; rx_desc = ring->buf + (index << ring->log_stride); skb_frags = ring->rx_info + (index << priv->log_rx_info); mlx4_dbg(DRV, priv, "Processing descriptor:%d\n", index); for (nr = 0; nr < priv->num_frags; nr++) { mlx4_dbg(DRV, priv, "Freeing fragment:%d\n", nr); dma = be64_to_cpu(rx_desc->data[nr].addr); mlx4_dbg(DRV, priv, "Unmaping buffer at dma:0x%llx\n", (u64) dma); pci_unmap_single(mdev->pdev, dma, skb_frags[nr].size, PCI_DMA_FROMDEVICE); put_page(skb_frags[nr].page); } ++ring->cons; } } void mlx4_en_rx_refill(struct work_struct *work) { struct delayed_work *delay = container_of(work, struct delayed_work, work); struct mlx4_en_priv *priv = container_of(delay, struct mlx4_en_priv, refill_task); struct mlx4_en_dev *mdev = priv->mdev; struct net_device *dev = priv->dev; struct mlx4_en_rx_ring *ring; int need_refill = 0; int i; mutex_lock(&mdev->state_lock); if (!mdev->device_up || !priv->port_up) goto out; /* We only get here if there are no receive buffers, so we can't race * with Rx interrupts while filling buffers */ for (i = 0; i < priv->rx_ring_num; i++) { ring = &priv->rx_ring[i]; if (ring->need_refill) { if (mlx4_en_fill_rx_buf(dev, ring)) { ring->need_refill = 0; mlx4_en_update_rx_prod_db(ring); } else need_refill = 1; } } if (need_refill) queue_delayed_work(mdev->workqueue, &priv->refill_task, HZ); out: mutex_unlock(&mdev->state_lock); } int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, u32 size, u16 stride) { struct mlx4_en_dev *mdev = priv->mdev; int err; int tmp; /* Sanity check SRQ size before proceeding */ if (size >= mdev->dev->caps.max_srq_wqes) return -EINVAL; ring->prod = 0; ring->cons = 0; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride; tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * sizeof(struct skb_frag_struct)); ring->rx_info = vmalloc(tmp); if (!ring->rx_info) { mlx4_err(mdev, "Failed allocating rx_info ring\n"); return -ENOMEM; } mlx4_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", ring->rx_info, tmp); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); if (err) goto err_ring; err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { mlx4_err(mdev, "Failed to map RX buffer\n"); goto err_hwq; } ring->buf = ring->wqres.buf.direct.buf; /* Configure lro mngr */ memset(&ring->lro, 0, sizeof(struct net_lro_mgr)); ring->lro.dev = priv->dev; ring->lro.features = LRO_F_NAPI; ring->lro.frag_align_pad = NET_IP_ALIGN; ring->lro.ip_summed = CHECKSUM_UNNECESSARY; ring->lro.ip_summed_aggr = CHECKSUM_UNNECESSARY; ring->lro.max_desc = mdev->profile.num_lro; ring->lro.max_aggr = MAX_SKB_FRAGS; ring->lro.lro_arr = kzalloc(mdev->profile.num_lro * sizeof(struct net_lro_desc), GFP_KERNEL); if (!ring->lro.lro_arr) { mlx4_err(mdev, "Failed to allocate lro array\n"); goto err_map; } ring->lro.get_frag_header = mlx4_en_get_frag_header; return 0; err_map: mlx4_en_unmap_buffer(&ring->wqres.buf); err_hwq: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_ring: vfree(ring->rx_info); ring->rx_info = NULL; return err; } int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_wqe_srq_next_seg *next; struct mlx4_en_rx_ring *ring; int i; int ring_ind; int err; int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + DS_SIZE * priv->num_frags); int max_gs = (stride - sizeof(struct mlx4_wqe_srq_next_seg)) / DS_SIZE; for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; ring->prod = 0; ring->cons = 0; ring->actual_size = 0; ring->cqn = priv->rx_cq[ring_ind].mcq.cqn; ring->stride = stride; ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride; memset(ring->buf, 0, ring->buf_size); mlx4_en_update_rx_prod_db(ring); /* Initailize all descriptors */ for (i = 0; i < ring->size; i++) mlx4_en_init_rx_desc(priv, ring, i); /* Initialize page allocators */ err = mlx4_en_init_allocator(priv, ring); if (err) { mlx4_err(mdev, "Failed initializing ring allocator\n"); goto err_allocator; } /* Fill Rx buffers */ ring->full = 0; } err = mlx4_en_fill_rx_buffers(priv); if (err) goto err_buffers; for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; mlx4_en_update_rx_prod_db(ring); /* Configure SRQ representing the ring */ ring->srq.max = ring->size; ring->srq.max_gs = max_gs; ring->srq.wqe_shift = ilog2(ring->stride); for (i = 0; i < ring->srq.max; ++i) { next = get_wqe(ring, i); next->next_wqe_index = cpu_to_be16((i + 1) & (ring->srq.max - 1)); } err = mlx4_srq_alloc(mdev->dev, mdev->priv_pdn, &ring->wqres.mtt, ring->wqres.db.dma, &ring->srq); if (err){ mlx4_err(mdev, "Failed to allocate srq\n"); goto err_srq; } ring->srq.event = mlx4_en_srq_event; } return 0; err_srq: while (ring_ind >= 0) { ring = &priv->rx_ring[ring_ind]; mlx4_srq_free(mdev->dev, &ring->srq); ring_ind--; } err_buffers: for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) mlx4_en_free_rx_buf(priv, &priv->rx_ring[ring_ind]); ring_ind = priv->rx_ring_num - 1; err_allocator: while (ring_ind >= 0) { mlx4_en_destroy_allocator(priv, &priv->rx_ring[ring_ind]); ring_ind--; } return err; } void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; kfree(ring->lro.lro_arr); mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); vfree(ring->rx_info); ring->rx_info = NULL; } void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_srq_free(mdev->dev, &ring->srq); mlx4_en_free_rx_buf(priv, ring); mlx4_en_destroy_allocator(priv, ring); } /* Unmap a completed descriptor and free unused pages */ static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct skb_frag_struct *skb_frags_rx, struct mlx4_en_rx_alloc *page_alloc, int length) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_frag_info *frag_info; int nr; dma_addr_t dma; /* Collect used fragments while replacing them in the HW descirptors */ for (nr = 0; nr < priv->num_frags; nr++) { frag_info = &priv->frag_info[nr]; if (length <= frag_info->frag_prefix_size) break; /* Save page reference in skb */ skb_frags_rx[nr].page = skb_frags[nr].page; skb_frags_rx[nr].size = skb_frags[nr].size; skb_frags_rx[nr].page_offset = skb_frags[nr].page_offset; dma = be64_to_cpu(rx_desc->data[nr].addr); /* Allocate a replacement page */ if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, page_alloc, nr)) goto fail; /* Unmap buffer */ pci_unmap_single(mdev->pdev, dma, skb_frags[nr].size, PCI_DMA_FROMDEVICE); } /* Adjust size of last fragment to match actual length */ skb_frags_rx[nr - 1].size = length - priv->frag_info[nr - 1].frag_prefix_size; return nr; fail: /* Drop all accumulated fragments (which have already been replaced in * the descriptor) of this packet; remaining fragments are reused... */ while (nr > 0) { nr--; put_page(skb_frags_rx[nr].page); } return 0; } static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct mlx4_en_rx_alloc *page_alloc, unsigned int length) { struct mlx4_en_dev *mdev = priv->mdev; struct sk_buff *skb; void *va; int used_frags; dma_addr_t dma; skb = dev_alloc_skb(SMALL_PACKET_SIZE + NET_IP_ALIGN); if (!skb) { mlx4_dbg(RX_ERR, priv, "Failed allocating skb\n"); return NULL; } skb->dev = priv->dev; skb_reserve(skb, NET_IP_ALIGN); skb->len = length; skb->truesize = length + sizeof(struct sk_buff); /* Get pointer to first fragment so we could copy the headers into the * (linear part of the) skb */ va = page_address(skb_frags[0].page) + skb_frags[0].page_offset; if (length <= SMALL_PACKET_SIZE) { /* We are copying all relevant data to the skb - temporarily * synch buffers for the copy */ dma = be64_to_cpu(rx_desc->data[0].addr); dma_sync_single_range_for_cpu(&mdev->pdev->dev, dma, 0, length, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, va, length); dma_sync_single_range_for_device(&mdev->pdev->dev, dma, 0, length, DMA_FROM_DEVICE); skb->tail += length; } else { /* Move relevant fragments to skb */ used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, skb_frags, skb_shinfo(skb)->frags, page_alloc, length); skb_shinfo(skb)->nr_frags = used_frags; /* Copy headers into the skb linear buffer */ memcpy(skb->data, va, HEADER_COPY_SIZE); skb->tail += HEADER_COPY_SIZE; /* Skip headers in first fragment */ skb_shinfo(skb)->frags[0].page_offset += HEADER_COPY_SIZE; /* Adjust size of first fragment */ skb_shinfo(skb)->frags[0].size -= HEADER_COPY_SIZE; skb->data_len = length - HEADER_COPY_SIZE; } return skb; } static void mlx4_en_copy_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int from, int to, int num) { struct skb_frag_struct *skb_frags_from; struct skb_frag_struct *skb_frags_to; struct mlx4_en_rx_desc *rx_desc_from; struct mlx4_en_rx_desc *rx_desc_to; int from_index, to_index; int nr, i; for (i = 0; i < num; i++) { from_index = (from + i) & ring->size_mask; to_index = (to + i) & ring->size_mask; skb_frags_from = ring->rx_info + (from_index << priv->log_rx_info); skb_frags_to = ring->rx_info + (to_index << priv->log_rx_info); rx_desc_from = ring->buf + (from_index << ring->log_stride); rx_desc_to = ring->buf + (to_index << ring->log_stride); for (nr = 0; nr < priv->num_frags; nr++) { skb_frags_to[nr].page = skb_frags_from[nr].page; skb_frags_to[nr].page_offset = skb_frags_from[nr].page_offset; rx_desc_to->data[nr].addr = rx_desc_from->data[nr].addr; } } } int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_cqe *cqe; struct mlx4_en_rx_ring *ring = &priv->rx_ring[cq->ring]; struct skb_frag_struct *skb_frags; struct skb_frag_struct lro_frags[MLX4_EN_MAX_RX_FRAGS]; struct mlx4_en_rx_desc *rx_desc; struct sk_buff *skb; int index; int nr; unsigned int length; int polled = 0; int ip_summed; if (!priv->port_up) return 0; /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx * descriptor offset can be deduced from the CQE index instead of * reading 'cqe->index' */ index = cq->mcq.cons_index & ring->size_mask; cqe = &cq->buf[index]; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cq->mcq.cons_index & cq->size)) { skb_frags = ring->rx_info + (index << priv->log_rx_info); rx_desc = ring->buf + (index << ring->log_stride); /* * make sure we read the CQE after we read the ownership bit */ rmb(); /* Drop packet on bad receive or bad checksum */ if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { mlx4_err(mdev, "CQE completed in error - vendor " "syndrom:%d syndrom:%d\n", ((struct mlx4_err_cqe *) cqe)->vendor_err_syndrome, ((struct mlx4_err_cqe *) cqe)->syndrome); goto next; } if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { mlx4_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); goto next; } /* * Packet is OK - process it. */ length = be32_to_cpu(cqe->byte_cnt); ring->bytes += length; ring->packets++; if (likely(priv->rx_csum)) { if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && (cqe->checksum == cpu_to_be16(0xffff))) { priv->port_stats.rx_chksum_good++; /* This packet is eligible for LRO if it is: * - DIX Ethernet (type interpretation) * - TCP/IP (v4) * - without IP options * - not an IP fragment */ if (mlx4_en_can_lro(cqe->status) && dev->features & NETIF_F_LRO) { nr = mlx4_en_complete_rx_desc( priv, rx_desc, skb_frags, lro_frags, ring->page_alloc, length); if (!nr) goto next; if (priv->vlgrp && (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK))) { lro_vlan_hwaccel_receive_frags( &ring->lro, lro_frags, length, length, priv->vlgrp, be16_to_cpu(cqe->sl_vid), NULL, 0); } else lro_receive_frags(&ring->lro, lro_frags, length, length, NULL, 0); goto next; } /* LRO not possible, complete processing here */ ip_summed = CHECKSUM_UNNECESSARY; INC_PERF_COUNTER(priv->pstats.lro_misses); } else { ip_summed = CHECKSUM_NONE; priv->port_stats.rx_chksum_none++; } } else { ip_summed = CHECKSUM_NONE; priv->port_stats.rx_chksum_none++; } skb = mlx4_en_rx_skb(priv, rx_desc, skb_frags, ring->page_alloc, length); if (!skb) { priv->stats.rx_dropped++; goto next; } skb->ip_summed = ip_summed; skb->protocol = eth_type_trans(skb, dev); /* Push it up the stack */ if (priv->vlgrp && (be32_to_cpu(cqe->vlan_my_qpn) & MLX4_CQE_VLAN_PRESENT_MASK)) { vlan_hwaccel_receive_skb(skb, priv->vlgrp, be16_to_cpu(cqe->sl_vid)); } else netif_receive_skb(skb); next: ++cq->mcq.cons_index; index = (cq->mcq.cons_index) & ring->size_mask; cqe = &cq->buf[index]; if (++polled == budget) { /* We are here because we reached the NAPI budget - * flush only pending LRO sessions */ lro_flush_all(&ring->lro); goto out; } } /* If CQ is empty flush all LRO sessions unconditionally */ lro_flush_all(&ring->lro); out: AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); mlx4_cq_set_ci(&cq->mcq); wmb(); /* ensure HW sees CQ consumer before we post new buffers */ ring->cons = cq->mcq.cons_index; ring->prod += polled; /* Polled descriptors were realocated in place */ if (unlikely(!ring->full)) { mlx4_en_copy_desc(priv, ring, ring->cons - polled, ring->prod - polled, polled); mlx4_en_fill_rx_buf(dev, ring); } mlx4_en_update_rx_prod_db(ring); return polled; } void mlx4_en_rx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); if (priv->port_up) netif_rx_schedule(&cq->napi); else mlx4_en_arm_cq(priv, cq); } /* Rx CQ polling - called by NAPI */ int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) { struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); struct net_device *dev = cq->dev; struct mlx4_en_priv *priv = netdev_priv(dev); int done; done = mlx4_en_process_rx_cq(dev, cq, budget); /* If we used up all the quota - we're probably not done yet... */ if (done == budget) INC_PERF_COUNTER(priv->pstats.napi_quota); else { /* Done for now */ netif_rx_complete(napi); mlx4_en_arm_cq(priv, cq); } return done; } /* Calculate the last offset position that accomodates a full fragment * (assuming fagment size = stride-align) */ static int mlx4_en_last_alloc_offset(struct mlx4_en_priv *priv, u16 stride, u16 align) { u16 res = MLX4_EN_ALLOC_SIZE % stride; u16 offset = MLX4_EN_ALLOC_SIZE - stride - res + align; mlx4_dbg(DRV, priv, "Calculated last offset for stride:%d align:%d " "res:%d offset:%d\n", stride, align, res, offset); return offset; } static int frag_sizes[] = { FRAG_SZ0, FRAG_SZ1, FRAG_SZ2, FRAG_SZ3 }; void mlx4_en_calc_rx_buf(struct net_device *dev) { struct mlx4_en_priv *priv = netdev_priv(dev); int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN + ETH_LLC_SNAP_SIZE; int buf_size = 0; int i = 0; while (buf_size < eff_mtu) { priv->frag_info[i].frag_size = (eff_mtu > buf_size + frag_sizes[i]) ? frag_sizes[i] : eff_mtu - buf_size; priv->frag_info[i].frag_prefix_size = buf_size; if (!i) { priv->frag_info[i].frag_align = NET_IP_ALIGN; priv->frag_info[i].frag_stride = ALIGN(frag_sizes[i] + NET_IP_ALIGN, SMP_CACHE_BYTES); } else { priv->frag_info[i].frag_align = 0; priv->frag_info[i].frag_stride = ALIGN(frag_sizes[i], SMP_CACHE_BYTES); } priv->frag_info[i].last_offset = mlx4_en_last_alloc_offset( priv, priv->frag_info[i].frag_stride, priv->frag_info[i].frag_align); buf_size += priv->frag_info[i].frag_size; i++; } priv->num_frags = i; priv->rx_skb_size = eff_mtu; priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct skb_frag_struct)); mlx4_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d " "num_frags:%d):\n", eff_mtu, priv->num_frags); for (i = 0; i < priv->num_frags; i++) { mlx4_dbg(DRV, priv, " frag:%d - size:%d prefix:%d align:%d " "stride:%d last_offset:%d\n", i, priv->frag_info[i].frag_size, priv->frag_info[i].frag_prefix_size, priv->frag_info[i].frag_align, priv->frag_info[i].frag_stride, priv->frag_info[i].last_offset); } } /* RSS related functions */ /* Calculate rss size and map each entry in rss table to rx ring */ void mlx4_en_set_default_rss_map(struct mlx4_en_priv *priv, struct mlx4_en_rss_map *rss_map, int num_entries, int num_rings) { int i; rss_map->size = roundup_pow_of_two(num_entries); mlx4_dbg(DRV, priv, "Setting default RSS map of %d entires\n", rss_map->size); for (i = 0; i < rss_map->size; i++) { rss_map->map[i] = i % num_rings; mlx4_dbg(DRV, priv, "Entry %d ---> ring %d\n", i, rss_map->map[i]); } } static void mlx4_en_sqp_event(struct mlx4_qp *qp, enum mlx4_event event) { return; } static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, int srqn, int cqn, enum mlx4_qp_state *state, struct mlx4_qp *qp) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_qp_context *context; int err = 0; context = kmalloc(sizeof *context , GFP_KERNEL); if (!context) { mlx4_err(mdev, "Failed to allocate qp context\n"); return -ENOMEM; } err = mlx4_qp_alloc(mdev->dev, qpn, qp); if (err) { mlx4_err(mdev, "Failed to allocate qp #%d\n", qpn); goto out; return err; } qp->event = mlx4_en_sqp_event; memset(context, 0, sizeof *context); mlx4_en_fill_qp_context(priv, 0, 0, 0, 0, qpn, cqn, srqn, context); err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, context, qp, state); if (err) { mlx4_qp_remove(mdev->dev, qp); mlx4_qp_free(mdev->dev, qp); } out: kfree(context); return err; } /* Allocate rx qp's and configure them according to rss map */ int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; struct mlx4_qp_context context; struct mlx4_en_rss_context *rss_context; void *ptr; int rss_xor = mdev->profile.rss_xor; u8 rss_mask = mdev->profile.rss_mask; int i, srqn, qpn, cqn; int err = 0; int good_qps = 0; mlx4_dbg(DRV, priv, "Configuring rss steering for port %u\n", priv->port); err = mlx4_qp_reserve_range(mdev->dev, rss_map->size, rss_map->size, &rss_map->base_qpn); if (err) { mlx4_err(mdev, "Failed reserving %d qps for port %u\n", rss_map->size, priv->port); return err; } for (i = 0; i < rss_map->size; i++) { cqn = priv->rx_ring[rss_map->map[i]].cqn; srqn = priv->rx_ring[rss_map->map[i]].srq.srqn; qpn = rss_map->base_qpn + i; err = mlx4_en_config_rss_qp(priv, qpn, srqn, cqn, &rss_map->state[i], &rss_map->qps[i]); if (err) goto rss_err; ++good_qps; } /* Configure RSS indirection qp */ err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &priv->base_qpn); if (err) { mlx4_err(mdev, "Failed to reserve range for RSS " "indirection qp\n"); goto rss_err; } err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp); if (err) { mlx4_err(mdev, "Failed to allocate RSS indirection QP\n"); goto reserve_err; } rss_map->indir_qp.event = mlx4_en_sqp_event; mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, priv->rx_ring[0].cqn, 0, &context); ptr = ((void *) &context) + 0x3c; rss_context = (struct mlx4_en_rss_context *) ptr; rss_context->base_qpn = cpu_to_be32(ilog2(rss_map->size) << 24 | (rss_map->base_qpn)); rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); rss_context->hash_fn = rss_xor & 0x3; rss_context->flags = rss_mask << 2; err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, &rss_map->indir_qp, &rss_map->indir_state); if (err) goto indir_err; return 0; indir_err: mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); reserve_err: mlx4_qp_release_range(mdev->dev, priv->base_qpn, 1); rss_err: for (i = 0; i < good_qps; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, rss_map->size); return err; } void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; int i; mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); mlx4_qp_release_range(mdev->dev, priv->base_qpn, 1); for (i = 0; i < rss_map->size; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, rss_map->size); }