/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "htc.h" #include "htt.h" #include "txrx.h" #include "debug.h" #include "trace.h" #include /* slightly larger than one large A-MPDU */ #define HTT_RX_RING_SIZE_MIN 128 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */ #define HTT_RX_RING_SIZE_MAX 2048 #define HTT_RX_AVG_FRM_BYTES 1000 /* ms, very conservative */ #define HTT_RX_HOST_LATENCY_MAX_MS 20 /* ms, conservative */ #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10 /* when under memory pressure rx ring refill may fail and needs a retry */ #define HTT_RX_RING_REFILL_RETRY_MS 50 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt) { int size; /* * It is expected that the host CPU will typically be able to * service the rx indication from one A-MPDU before the rx * indication from the subsequent A-MPDU happens, roughly 1-2 ms * later. However, the rx ring should be sized very conservatively, * to accomodate the worst reasonable delay before the host CPU * services a rx indication interrupt. * * The rx ring need not be kept full of empty buffers. In theory, * the htt host SW can dynamically track the low-water mark in the * rx ring, and dynamically adjust the level to which the rx ring * is filled with empty buffers, to dynamically meet the desired * low-water mark. * * In contrast, it's difficult to resize the rx ring itself, once * it's in use. Thus, the ring itself should be sized very * conservatively, while the degree to which the ring is filled * with empty buffers should be sized moderately conservatively. */ /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ size = htt->max_throughput_mbps + 1000 / (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS; if (size < HTT_RX_RING_SIZE_MIN) size = HTT_RX_RING_SIZE_MIN; if (size > HTT_RX_RING_SIZE_MAX) size = HTT_RX_RING_SIZE_MAX; size = roundup_pow_of_two(size); return size; } static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt) { int size; /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ size = htt->max_throughput_mbps * 1000 / (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS; /* * Make sure the fill level is at least 1 less than the ring size. * Leaving 1 element empty allows the SW to easily distinguish * between a full ring vs. an empty ring. */ if (size >= htt->rx_ring.size) size = htt->rx_ring.size - 1; return size; } static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) { struct sk_buff *skb; struct ath10k_skb_cb *cb; int i; for (i = 0; i < htt->rx_ring.fill_cnt; i++) { skb = htt->rx_ring.netbufs_ring[i]; cb = ATH10K_SKB_CB(skb); dma_unmap_single(htt->ar->dev, cb->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } htt->rx_ring.fill_cnt = 0; } static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { struct htt_rx_desc *rx_desc; struct sk_buff *skb; dma_addr_t paddr; int ret = 0, idx; idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr)); while (num > 0) { skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); if (!skb) { ret = -ENOMEM; goto fail; } if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) skb_pull(skb, PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - skb->data); /* Clear rx_desc attention word before posting to Rx ring */ rx_desc = (struct htt_rx_desc *)skb->data; rx_desc->attention.flags = __cpu_to_le32(0); paddr = dma_map_single(htt->ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { dev_kfree_skb_any(skb); ret = -ENOMEM; goto fail; } ATH10K_SKB_CB(skb)->paddr = paddr; htt->rx_ring.netbufs_ring[idx] = skb; htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); htt->rx_ring.fill_cnt++; num--; idx++; idx &= htt->rx_ring.size_mask; } fail: *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx); return ret; } static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { lockdep_assert_held(&htt->rx_ring.lock); return __ath10k_htt_rx_ring_fill_n(htt, num); } static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) { int ret, num_deficit, num_to_fill; /* Refilling the whole RX ring buffer proves to be a bad idea. The * reason is RX may take up significant amount of CPU cycles and starve * other tasks, e.g. TX on an ethernet device while acting as a bridge * with ath10k wlan interface. This ended up with very poor performance * once CPU the host system was overwhelmed with RX on ath10k. * * By limiting the number of refills the replenishing occurs * progressively. This in turns makes use of the fact tasklets are * processed in FIFO order. This means actual RX processing can starve * out refilling. If there's not enough buffers on RX ring FW will not * report RX until it is refilled with enough buffers. This * automatically balances load wrt to CPU power. * * This probably comes at a cost of lower maximum throughput but * improves the avarage and stability. */ spin_lock_bh(&htt->rx_ring.lock); num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); num_deficit -= num_to_fill; ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); if (ret == -ENOMEM) { /* * Failed to fill it to the desired level - * we'll start a timer and try again next time. * As long as enough buffers are left in the ring for * another A-MPDU rx, no special recovery is needed. */ mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); } else if (num_deficit > 0) { tasklet_schedule(&htt->rx_replenish_task); } spin_unlock_bh(&htt->rx_ring.lock); } static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) { struct ath10k_htt *htt = (struct ath10k_htt *)arg; ath10k_htt_rx_msdu_buff_replenish(htt); } static unsigned ath10k_htt_rx_ring_elems(struct ath10k_htt *htt) { return (__le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr) - htt->rx_ring.sw_rd_idx.msdu_payld) & htt->rx_ring.size_mask; } void ath10k_htt_rx_detach(struct ath10k_htt *htt) { int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld; del_timer_sync(&htt->rx_ring.refill_retry_timer); tasklet_kill(&htt->rx_replenish_task); while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) { struct sk_buff *skb = htt->rx_ring.netbufs_ring[sw_rd_idx]; struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); dma_unmap_single(htt->ar->dev, cb->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]); sw_rd_idx++; sw_rd_idx &= htt->rx_ring.size_mask; } dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); dma_free_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), htt->rx_ring.alloc_idx.vaddr, htt->rx_ring.alloc_idx.paddr); kfree(htt->rx_ring.netbufs_ring); } static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) { int idx; struct sk_buff *msdu; spin_lock_bh(&htt->rx_ring.lock); if (ath10k_htt_rx_ring_elems(htt) == 0) ath10k_warn("htt rx ring is empty!\n"); idx = htt->rx_ring.sw_rd_idx.msdu_payld; msdu = htt->rx_ring.netbufs_ring[idx]; idx++; idx &= htt->rx_ring.size_mask; htt->rx_ring.sw_rd_idx.msdu_payld = idx; htt->rx_ring.fill_cnt--; spin_unlock_bh(&htt->rx_ring.lock); return msdu; } static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb) { struct sk_buff *next; while (skb) { next = skb->next; dev_kfree_skb_any(skb); skb = next; } } static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, u8 **fw_desc, int *fw_desc_len, struct sk_buff **head_msdu, struct sk_buff **tail_msdu) { int msdu_len, msdu_chaining = 0; struct sk_buff *msdu; struct htt_rx_desc *rx_desc; if (ath10k_htt_rx_ring_elems(htt) == 0) ath10k_warn("htt rx ring is empty!\n"); if (htt->rx_confused) { ath10k_warn("htt is confused. refusing rx\n"); return 0; } msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt); while (msdu) { int last_msdu, msdu_len_invalid, msdu_chained; dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(msdu)->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ", msdu->data, msdu->len + skb_tailroom(msdu)); rx_desc = (struct htt_rx_desc *)msdu->data; /* FIXME: we must report msdu payload since this is what caller * expects now */ skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); /* * Sanity check - confirm the HW is finished filling in the * rx data. * If the HW and SW are working correctly, then it's guaranteed * that the HW's MAC DMA is done before this point in the SW. * To prevent the case that we handle a stale Rx descriptor, * just assert for now until we have a way to recover. */ if (!(__le32_to_cpu(rx_desc->attention.flags) & RX_ATTENTION_FLAGS_MSDU_DONE)) { ath10k_htt_rx_free_msdu_chain(*head_msdu); *head_msdu = NULL; msdu = NULL; ath10k_err("htt rx stopped. cannot recover\n"); htt->rx_confused = true; break; } /* * Copy the FW rx descriptor for this MSDU from the rx * indication message into the MSDU's netbuf. HL uses the * same rx indication message definition as LL, and simply * appends new info (fields from the HW rx desc, and the * MSDU payload itself). So, the offset into the rx * indication message only has to account for the standard * offset of the per-MSDU FW rx desc info within the * message, and how many bytes of the per-MSDU FW rx desc * info have already been consumed. (And the endianness of * the host, since for a big-endian host, the rx ind * message contents, including the per-MSDU rx desc bytes, * were byteswapped during upload.) */ if (*fw_desc_len > 0) { rx_desc->fw_desc.info0 = **fw_desc; /* * The target is expected to only provide the basic * per-MSDU rx descriptors. Just to be sure, verify * that the target has not attached extension data * (e.g. LRO flow ID). */ /* or more, if there's extension data */ (*fw_desc)++; (*fw_desc_len)--; } else { /* * When an oversized AMSDU happened, FW will lost * some of MSDU status - in this case, the FW * descriptors provided will be less than the * actual MSDUs inside this MPDU. Mark the FW * descriptors so that it will still deliver to * upper stack, if no CRC error for this MPDU. * * FIX THIS - the FW descriptors are actually for * MSDUs in the end of this A-MSDU instead of the * beginning. */ rx_desc->fw_desc.info0 = 0; } msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), RX_MSDU_START_INFO0_MSDU_LENGTH); msdu_chained = rx_desc->frag_info.ring2_more_count; if (msdu_len_invalid) msdu_len = 0; skb_trim(msdu, 0); skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); msdu_len -= msdu->len; /* FIXME: Do chained buffers include htt_rx_desc or not? */ while (msdu_chained--) { struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(next)->paddr, next->len + skb_tailroom(next), DMA_FROM_DEVICE); ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ", next->data, next->len + skb_tailroom(next)); skb_trim(next, 0); skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE)); msdu_len -= next->len; msdu->next = next; msdu = next; msdu_chaining = 1; } if (msdu_len > 0) { /* This may suggest FW bug? */ ath10k_warn("htt rx msdu len not consumed (%d)\n", msdu_len); } last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & RX_MSDU_END_INFO0_LAST_MSDU; if (last_msdu) { msdu->next = NULL; break; } else { struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); msdu->next = next; msdu = next; } } *tail_msdu = msdu; /* * Don't refill the ring yet. * * First, the elements popped here are still in use - it is not * safe to overwrite them until the matching call to * mpdu_desc_list_next. Second, for efficiency it is preferable to * refill the rx ring with 1 PPDU's worth of rx buffers (something * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers * (something like 3 buffers). Consequently, we'll rely on the txrx * SW to tell us when it is done pulling all the PPDU's rx buffers * out of the rx ring, and then refill it just once. */ return msdu_chaining; } static void ath10k_htt_rx_replenish_task(unsigned long ptr) { struct ath10k_htt *htt = (struct ath10k_htt *)ptr; ath10k_htt_rx_msdu_buff_replenish(htt); } int ath10k_htt_rx_attach(struct ath10k_htt *htt) { dma_addr_t paddr; void *vaddr; struct timer_list *timer = &htt->rx_ring.refill_retry_timer; htt->rx_ring.size = ath10k_htt_rx_ring_size(htt); if (!is_power_of_2(htt->rx_ring.size)) { ath10k_warn("htt rx ring size is not power of 2\n"); return -EINVAL; } htt->rx_ring.size_mask = htt->rx_ring.size - 1; /* * Set the initial value for the level to which the rx ring * should be filled, based on the max throughput and the * worst likely latency for the host to fill the rx ring * with new buffers. In theory, this fill level can be * dynamically adjusted from the initial value set here, to * reflect the actual host latency rather than a * conservative assumption about the host latency. */ htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt); htt->rx_ring.netbufs_ring = kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *), GFP_KERNEL); if (!htt->rx_ring.netbufs_ring) goto err_netbuf; vaddr = dma_alloc_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), &paddr, GFP_DMA); if (!vaddr) goto err_dma_ring; htt->rx_ring.paddrs_ring = vaddr; htt->rx_ring.base_paddr = paddr; vaddr = dma_alloc_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), &paddr, GFP_DMA); if (!vaddr) goto err_dma_idx; htt->rx_ring.alloc_idx.vaddr = vaddr; htt->rx_ring.alloc_idx.paddr = paddr; htt->rx_ring.sw_rd_idx.msdu_payld = 0; *htt->rx_ring.alloc_idx.vaddr = 0; /* Initialize the Rx refill retry timer */ setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); spin_lock_init(&htt->rx_ring.lock); htt->rx_ring.fill_cnt = 0; if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) goto err_fill_ring; tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, (unsigned long)htt); ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", htt->rx_ring.size, htt->rx_ring.fill_level); return 0; err_fill_ring: ath10k_htt_rx_ring_free(htt); dma_free_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), htt->rx_ring.alloc_idx.vaddr, htt->rx_ring.alloc_idx.paddr); err_dma_idx: dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); err_dma_ring: kfree(htt->rx_ring.netbufs_ring); err_netbuf: return -ENOMEM; } static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: return 4; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */ case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */ case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return 8; case HTT_RX_MPDU_ENCRYPT_NONE: return 0; } ath10k_warn("unknown encryption type %d\n", type); return 0; } static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_NONE: case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: case HTT_RX_MPDU_ENCRYPT_WEP128: case HTT_RX_MPDU_ENCRYPT_WAPI: return 0; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: return 4; case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return 8; } ath10k_warn("unknown encryption type %d\n", type); return 0; } /* Applies for first msdu in chain, before altering it. */ static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb) { struct htt_rx_desc *rxd; enum rx_msdu_decap_format fmt; rxd = (void *)skb->data - sizeof(*rxd); fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); if (fmt == RX_MSDU_DECAP_RAW) return (void *)skb->data; else return (void *)skb->data - RX_HTT_HDR_STATUS_LEN; } /* This function only applies for first msdu in an msdu chain */ static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr) { if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); if (qc[0] & 0x80) return true; } return false; } struct rfc1042_hdr { u8 llc_dsap; u8 llc_ssap; u8 llc_ctrl; u8 snap_oui[3]; __be16 snap_type; } __packed; struct amsdu_subframe_hdr { u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; __be16 len; } __packed; static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt, struct htt_rx_info *info) { struct htt_rx_desc *rxd; struct sk_buff *first; struct sk_buff *skb = info->skb; enum rx_msdu_decap_format fmt; enum htt_rx_mpdu_encrypt_type enctype; struct ieee80211_hdr *hdr; u8 hdr_buf[64], addr[ETH_ALEN], *qos; unsigned int hdr_len; rxd = (void *)skb->data - sizeof(*rxd); enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_ENCRYPT_TYPE); hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(hdr_buf, hdr, hdr_len); hdr = (struct ieee80211_hdr *)hdr_buf; /* FIXME: Hopefully this is a temporary measure. * * Reporting individual A-MSDU subframes means each reported frame * shares the same sequence number. * * mac80211 drops frames it recognizes as duplicates, i.e. * retransmission flag is set and sequence number matches sequence * number from a previous frame (as per IEEE 802.11-2012: 9.3.2.10 * "Duplicate detection and recovery") * * To avoid frames being dropped clear retransmission flag for all * received A-MSDUs. * * Worst case: actual duplicate frames will be reported but this should * still be handled gracefully by other OSI/ISO layers. */ hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_RETRY); first = skb; while (skb) { void *decap_hdr; int len; rxd = (void *)skb->data - sizeof(*rxd); fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); decap_hdr = (void *)rxd->rx_hdr_status; skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); /* First frame in an A-MSDU chain has more decapped data. */ if (skb == first) { len = round_up(ieee80211_hdrlen(hdr->frame_control), 4); len += round_up(ath10k_htt_rx_crypto_param_len(enctype), 4); decap_hdr += len; } switch (fmt) { case RX_MSDU_DECAP_RAW: /* remove trailing FCS */ skb_trim(skb, skb->len - FCS_LEN); break; case RX_MSDU_DECAP_NATIVE_WIFI: /* pull decapped header and copy DA */ hdr = (struct ieee80211_hdr *)skb->data; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN); skb_pull(skb, hdr_len); /* push original 802.11 header */ hdr = (struct ieee80211_hdr *)hdr_buf; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(skb, hdr_len), hdr, hdr_len); /* original A-MSDU header has the bit set but we're * not including A-MSDU subframe header */ hdr = (struct ieee80211_hdr *)skb->data; qos = ieee80211_get_qos_ctl(hdr); qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; /* original 802.11 header has a different DA */ memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN); break; case RX_MSDU_DECAP_ETHERNET2_DIX: /* strip ethernet header and insert decapped 802.11 * header, amsdu subframe header and rfc1042 header */ len = 0; len += sizeof(struct rfc1042_hdr); len += sizeof(struct amsdu_subframe_hdr); skb_pull(skb, sizeof(struct ethhdr)); memcpy(skb_push(skb, len), decap_hdr, len); memcpy(skb_push(skb, hdr_len), hdr, hdr_len); break; case RX_MSDU_DECAP_8023_SNAP_LLC: /* insert decapped 802.11 header making a singly * A-MSDU */ memcpy(skb_push(skb, hdr_len), hdr, hdr_len); break; } info->skb = skb; info->encrypt_type = enctype; skb = skb->next; info->skb->next = NULL; ath10k_process_rx(htt->ar, info); } /* FIXME: It might be nice to re-assemble the A-MSDU when there's a * monitor interface active for sniffing purposes. */ } static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info) { struct sk_buff *skb = info->skb; struct htt_rx_desc *rxd; struct ieee80211_hdr *hdr; enum rx_msdu_decap_format fmt; enum htt_rx_mpdu_encrypt_type enctype; int hdr_len; void *rfc1042; /* This shouldn't happen. If it does than it may be a FW bug. */ if (skb->next) { ath10k_warn("received chained non A-MSDU frame\n"); ath10k_htt_rx_free_msdu_chain(skb->next); skb->next = NULL; } rxd = (void *)skb->data - sizeof(*rxd); fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_ENCRYPT_TYPE); hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; hdr_len = ieee80211_hdrlen(hdr->frame_control); skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); switch (fmt) { case RX_MSDU_DECAP_RAW: /* remove trailing FCS */ skb_trim(skb, skb->len - FCS_LEN); break; case RX_MSDU_DECAP_NATIVE_WIFI: /* Pull decapped header */ hdr = (struct ieee80211_hdr *)skb->data; hdr_len = ieee80211_hdrlen(hdr->frame_control); skb_pull(skb, hdr_len); /* Push original header */ hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(skb, hdr_len), hdr, hdr_len); break; case RX_MSDU_DECAP_ETHERNET2_DIX: /* strip ethernet header and insert decapped 802.11 header and * rfc1042 header */ rfc1042 = hdr; rfc1042 += roundup(hdr_len, 4); rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4); skb_pull(skb, sizeof(struct ethhdr)); memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)), rfc1042, sizeof(struct rfc1042_hdr)); memcpy(skb_push(skb, hdr_len), hdr, hdr_len); break; case RX_MSDU_DECAP_8023_SNAP_LLC: /* remove A-MSDU subframe header and insert * decapped 802.11 header. rfc1042 header is already there */ skb_pull(skb, sizeof(struct amsdu_subframe_hdr)); memcpy(skb_push(skb, hdr_len), hdr, hdr_len); break; } info->skb = skb; info->encrypt_type = enctype; ath10k_process_rx(htt->ar, info); } static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb) { struct htt_rx_desc *rxd; u32 flags; rxd = (void *)skb->data - sizeof(*rxd); flags = __le32_to_cpu(rxd->attention.flags); if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR) return true; return false; } static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb) { struct htt_rx_desc *rxd; u32 flags; rxd = (void *)skb->data - sizeof(*rxd); flags = __le32_to_cpu(rxd->attention.flags); if (flags & RX_ATTENTION_FLAGS_FCS_ERR) return true; return false; } static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) { struct htt_rx_desc *rxd; u32 flags, info; bool is_ip4, is_ip6; bool is_tcp, is_udp; bool ip_csum_ok, tcpudp_csum_ok; rxd = (void *)skb->data - sizeof(*rxd); flags = __le32_to_cpu(rxd->attention.flags); info = __le32_to_cpu(rxd->msdu_start.info1); is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); if (!is_ip4 && !is_ip6) return CHECKSUM_NONE; if (!is_tcp && !is_udp) return CHECKSUM_NONE; if (!ip_csum_ok) return CHECKSUM_NONE; if (!tcpudp_csum_ok) return CHECKSUM_NONE; return CHECKSUM_UNNECESSARY; } static void ath10k_htt_rx_handler(struct ath10k_htt *htt, struct htt_rx_indication *rx) { struct htt_rx_info info; struct htt_rx_indication_mpdu_range *mpdu_ranges; struct ieee80211_hdr *hdr; int num_mpdu_ranges; int fw_desc_len; u8 *fw_desc; int i, j; memset(&info, 0, sizeof(info)); fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); fw_desc = (u8 *)&rx->fw_desc; num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", rx, sizeof(*rx) + (sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges)); for (i = 0; i < num_mpdu_ranges; i++) { info.status = mpdu_ranges[i].mpdu_range_status; for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) { struct sk_buff *msdu_head, *msdu_tail; enum htt_rx_mpdu_status status; int msdu_chaining; msdu_head = NULL; msdu_tail = NULL; msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, &msdu_head, &msdu_tail); if (!msdu_head) { ath10k_warn("htt rx no data!\n"); continue; } if (msdu_head->len == 0) { ath10k_dbg(ATH10K_DBG_HTT, "htt rx dropping due to zero-len\n"); ath10k_htt_rx_free_msdu_chain(msdu_head); continue; } if (ath10k_htt_rx_has_decrypt_err(msdu_head)) { ath10k_htt_rx_free_msdu_chain(msdu_head); continue; } status = info.status; /* Skip mgmt frames while we handle this in WMI */ if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL) { ath10k_htt_rx_free_msdu_chain(msdu_head); continue; } if (status != HTT_RX_IND_MPDU_STATUS_OK && status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR && !htt->ar->monitor_enabled) { ath10k_dbg(ATH10K_DBG_HTT, "htt rx ignoring frame w/ status %d\n", status); ath10k_htt_rx_free_msdu_chain(msdu_head); continue; } /* FIXME: we do not support chaining yet. * this needs investigation */ if (msdu_chaining) { ath10k_warn("msdu_chaining is true\n"); ath10k_htt_rx_free_msdu_chain(msdu_head); continue; } info.skb = msdu_head; info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head); info.signal = ATH10K_DEFAULT_NOISE_FLOOR; info.signal += rx->ppdu.combined_rssi; info.rate.info0 = rx->ppdu.info0; info.rate.info1 = __le32_to_cpu(rx->ppdu.info1); info.rate.info2 = __le32_to_cpu(rx->ppdu.info2); hdr = ath10k_htt_rx_skb_get_hdr(msdu_head); if (ath10k_htt_rx_hdr_is_amsdu(hdr)) ath10k_htt_rx_amsdu(htt, &info); else ath10k_htt_rx_msdu(htt, &info); } } tasklet_schedule(&htt->rx_replenish_task); } static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, struct htt_rx_fragment_indication *frag) { struct sk_buff *msdu_head, *msdu_tail; struct htt_rx_desc *rxd; enum rx_msdu_decap_format fmt; struct htt_rx_info info = {}; struct ieee80211_hdr *hdr; int msdu_chaining; bool tkip_mic_err; bool decrypt_err; u8 *fw_desc; int fw_desc_len, hdrlen, paramlen; int trim; fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); fw_desc = (u8 *)frag->fw_msdu_rx_desc; msdu_head = NULL; msdu_tail = NULL; msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, &msdu_head, &msdu_tail); ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); if (!msdu_head) { ath10k_warn("htt rx frag no data\n"); return; } if (msdu_chaining || msdu_head != msdu_tail) { ath10k_warn("aggregation with fragmentation?!\n"); ath10k_htt_rx_free_msdu_chain(msdu_head); return; } /* FIXME: implement signal strength */ hdr = (struct ieee80211_hdr *)msdu_head->data; rxd = (void *)msdu_head->data - sizeof(*rxd); tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) & RX_ATTENTION_FLAGS_DECRYPT_ERR); fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); if (fmt != RX_MSDU_DECAP_RAW) { ath10k_warn("we dont support non-raw fragmented rx yet\n"); dev_kfree_skb_any(msdu_head); goto end; } info.skb = msdu_head; info.status = HTT_RX_IND_MPDU_STATUS_OK; info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_ENCRYPT_TYPE); info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb); if (tkip_mic_err) { ath10k_warn("tkip mic error\n"); info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR; } if (decrypt_err) { ath10k_warn("decryption err in fragmented rx\n"); dev_kfree_skb_any(info.skb); goto end; } if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) { hdrlen = ieee80211_hdrlen(hdr->frame_control); paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type); /* It is more efficient to move the header than the payload */ memmove((void *)info.skb->data + paramlen, (void *)info.skb->data, hdrlen); skb_pull(info.skb, paramlen); hdr = (struct ieee80211_hdr *)info.skb->data; } /* remove trailing FCS */ trim = 4; /* remove crypto trailer */ trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type); /* last fragment of TKIP frags has MIC */ if (!ieee80211_has_morefrags(hdr->frame_control) && info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) trim += 8; if (trim > info.skb->len) { ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n"); dev_kfree_skb_any(info.skb); goto end; } skb_trim(info.skb, info.skb->len - trim); ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt frag mpdu: ", info.skb->data, info.skb->len); ath10k_process_rx(htt->ar, &info); end: if (fw_desc_len > 0) { ath10k_dbg(ATH10K_DBG_HTT, "expecting more fragmented rx in one indication %d\n", fw_desc_len); } } void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (struct htt_resp *)skb->data; /* confirm alignment */ if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath10k_warn("unaligned htt message, expect trouble\n"); ath10k_dbg(ATH10K_DBG_HTT, "HTT RX, msg_type: 0x%0X\n", resp->hdr.msg_type); switch (resp->hdr.msg_type) { case HTT_T2H_MSG_TYPE_VERSION_CONF: { htt->target_version_major = resp->ver_resp.major; htt->target_version_minor = resp->ver_resp.minor; complete(&htt->target_version_received); break; } case HTT_T2H_MSG_TYPE_RX_IND: { ath10k_htt_rx_handler(htt, &resp->rx_ind); break; } case HTT_T2H_MSG_TYPE_PEER_MAP: { struct htt_peer_map_event ev = { .vdev_id = resp->peer_map.vdev_id, .peer_id = __le16_to_cpu(resp->peer_map.peer_id), }; memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); ath10k_peer_map_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_PEER_UNMAP: { struct htt_peer_unmap_event ev = { .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), }; ath10k_peer_unmap_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { struct htt_tx_done tx_done = {}; int status = __le32_to_cpu(resp->mgmt_tx_completion.status); tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); switch (status) { case HTT_MGMT_TX_STATUS_OK: break; case HTT_MGMT_TX_STATUS_RETRY: tx_done.no_ack = true; break; case HTT_MGMT_TX_STATUS_DROP: tx_done.discard = true; break; } ath10k_txrx_tx_unref(htt, &tx_done); break; } case HTT_T2H_MSG_TYPE_TX_COMPL_IND: { struct htt_tx_done tx_done = {}; int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); __le16 msdu_id; int i; switch (status) { case HTT_DATA_TX_STATUS_NO_ACK: tx_done.no_ack = true; break; case HTT_DATA_TX_STATUS_OK: break; case HTT_DATA_TX_STATUS_DISCARD: case HTT_DATA_TX_STATUS_POSTPONE: case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: tx_done.discard = true; break; default: ath10k_warn("unhandled tx completion status %d\n", status); tx_done.discard = true; break; } ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", resp->data_tx_completion.num_msdus); for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { msdu_id = resp->data_tx_completion.msdus[i]; tx_done.msdu_id = __le16_to_cpu(msdu_id); ath10k_txrx_tx_unref(htt, &tx_done); } break; } case HTT_T2H_MSG_TYPE_SEC_IND: { struct ath10k *ar = htt->ar; struct htt_security_indication *ev = &resp->security_indication; ath10k_dbg(ATH10K_DBG_HTT, "sec ind peer_id %d unicast %d type %d\n", __le16_to_cpu(ev->peer_id), !!(ev->flags & HTT_SECURITY_IS_UNICAST), MS(ev->flags, HTT_SECURITY_TYPE)); complete(&ar->install_key_done); break; } case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); break; } case HTT_T2H_MSG_TYPE_TEST: /* FIX THIS */ break; case HTT_T2H_MSG_TYPE_STATS_CONF: trace_ath10k_htt_stats(skb->data, skb->len); break; case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: case HTT_T2H_MSG_TYPE_RX_ADDBA: case HTT_T2H_MSG_TYPE_RX_DELBA: case HTT_T2H_MSG_TYPE_RX_FLUSH: default: ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n", resp->hdr.msg_type); ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); break; }; /* Free the indication buffer */ dev_kfree_skb_any(skb); }