/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /********************************************\ Queue Control Unit, DCF Control Unit Functions \********************************************/ #include "ath5k.h" #include "reg.h" #include "debug.h" /** * DOC: Queue Control Unit (QCU)/DCF Control Unit (DCU) functions * * Here we setup parameters for the 12 available TX queues. Note that * on the various registers we can usually only map the first 10 of them so * basically we have 10 queues to play with. Each queue has a matching * QCU that controls when the queue will get triggered and multiple QCUs * can be mapped to a single DCU that controls the various DFS parameters * for the various queues. In our setup we have a 1:1 mapping between QCUs * and DCUs allowing us to have different DFS settings for each queue. * * When a frame goes into a TX queue, QCU decides when it'll trigger a * transmission based on various criteria (such as how many data we have inside * it's buffer or -if it's a beacon queue- if it's time to fire up the queue * based on TSF etc), DCU adds backoff, IFSes etc and then a scheduler * (arbitrator) decides the priority of each QCU based on it's configuration * (e.g. beacons are always transmitted when they leave DCU bypassing all other * frames from other queues waiting to be transmitted). After a frame leaves * the DCU it goes to PCU for further processing and then to PHY for * the actual transmission. */ /******************\ * Helper functions * \******************/ /** * ath5k_hw_num_tx_pending() - Get number of pending frames for a given queue * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id */ u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) { u32 pending; AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num); /* Return if queue is declared inactive */ if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE) return false; /* XXX: How about AR5K_CFG_TXCNT ? */ if (ah->ah_version == AR5K_AR5210) return false; pending = ath5k_hw_reg_read(ah, AR5K_QUEUE_STATUS(queue)); pending &= AR5K_QCU_STS_FRMPENDCNT; /* It's possible to have no frames pending even if TXE * is set. To indicate that q has not stopped return * true */ if (!pending && AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue)) return true; return pending; } /** * ath5k_hw_release_tx_queue() - Set a transmit queue inactive * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id */ void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue) { if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num)) return; /* This queue will be skipped in further operations */ ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE; /*For SIMR setup*/ AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue); } /** * ath5k_cw_validate() - Make sure the given cw is valid * @cw_req: The contention window value to check * * Make sure cw is a power of 2 minus 1 and smaller than 1024 */ static u16 ath5k_cw_validate(u16 cw_req) { u32 cw = 1; cw_req = min(cw_req, (u16)1023); while (cw < cw_req) cw = (cw << 1) | 1; return cw; } /** * ath5k_hw_get_tx_queueprops() - Get properties for a transmit queue * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id * @queue_info: The &struct ath5k_txq_info to fill */ int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue, struct ath5k_txq_info *queue_info) { memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info)); return 0; } /** * ath5k_hw_set_tx_queueprops() - Set properties for a transmit queue * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id * @qinfo: The &struct ath5k_txq_info to use * * Returns 0 on success or -EIO if queue is inactive */ int ath5k_hw_set_tx_queueprops(struct ath5k_hw *ah, int queue, const struct ath5k_txq_info *qinfo) { struct ath5k_txq_info *qi; AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num); qi = &ah->ah_txq[queue]; if (qi->tqi_type == AR5K_TX_QUEUE_INACTIVE) return -EIO; /* copy and validate values */ qi->tqi_type = qinfo->tqi_type; qi->tqi_subtype = qinfo->tqi_subtype; qi->tqi_flags = qinfo->tqi_flags; /* * According to the docs: Although the AIFS field is 8 bit wide, * the maximum supported value is 0xFC. Setting it higher than that * will cause the DCU to hang. */ qi->tqi_aifs = min(qinfo->tqi_aifs, (u8)0xFC); qi->tqi_cw_min = ath5k_cw_validate(qinfo->tqi_cw_min); qi->tqi_cw_max = ath5k_cw_validate(qinfo->tqi_cw_max); qi->tqi_cbr_period = qinfo->tqi_cbr_period; qi->tqi_cbr_overflow_limit = qinfo->tqi_cbr_overflow_limit; qi->tqi_burst_time = qinfo->tqi_burst_time; qi->tqi_ready_time = qinfo->tqi_ready_time; /*XXX: Is this supported on 5210 ?*/ /*XXX: Is this correct for AR5K_WME_AC_VI,VO ???*/ if ((qinfo->tqi_type == AR5K_TX_QUEUE_DATA && ((qinfo->tqi_subtype == AR5K_WME_AC_VI) || (qinfo->tqi_subtype == AR5K_WME_AC_VO))) || qinfo->tqi_type == AR5K_TX_QUEUE_UAPSD) qi->tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS; return 0; } /** * ath5k_hw_setup_tx_queue() - Initialize a transmit queue * @ah: The &struct ath5k_hw * @queue_type: One of enum ath5k_tx_queue * @queue_info: The &struct ath5k_txq_info to use * * Returns 0 on success, -EINVAL on invalid arguments */ int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type, struct ath5k_txq_info *queue_info) { unsigned int queue; int ret; /* * Get queue by type */ /* 5210 only has 2 queues */ if (ah->ah_capabilities.cap_queues.q_tx_num == 2) { switch (queue_type) { case AR5K_TX_QUEUE_DATA: queue = AR5K_TX_QUEUE_ID_NOQCU_DATA; break; case AR5K_TX_QUEUE_BEACON: case AR5K_TX_QUEUE_CAB: queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON; break; default: return -EINVAL; } } else { switch (queue_type) { case AR5K_TX_QUEUE_DATA: for (queue = AR5K_TX_QUEUE_ID_DATA_MIN; ah->ah_txq[queue].tqi_type != AR5K_TX_QUEUE_INACTIVE; queue++) { if (queue > AR5K_TX_QUEUE_ID_DATA_MAX) return -EINVAL; } break; case AR5K_TX_QUEUE_UAPSD: queue = AR5K_TX_QUEUE_ID_UAPSD; break; case AR5K_TX_QUEUE_BEACON: queue = AR5K_TX_QUEUE_ID_BEACON; break; case AR5K_TX_QUEUE_CAB: queue = AR5K_TX_QUEUE_ID_CAB; break; default: return -EINVAL; } } /* * Setup internal queue structure */ memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info)); ah->ah_txq[queue].tqi_type = queue_type; if (queue_info != NULL) { queue_info->tqi_type = queue_type; ret = ath5k_hw_set_tx_queueprops(ah, queue, queue_info); if (ret) return ret; } /* * We use ah_txq_status to hold a temp value for * the Secondary interrupt mask registers on 5211+ * check out ath5k_hw_reset_tx_queue */ AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue); return queue; } /*******************************\ * Single QCU/DCU initialization * \*******************************/ /** * ath5k_hw_set_tx_retry_limits() - Set tx retry limits on DCU * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id * * This function is used when initializing a queue, to set * retry limits based on ah->ah_retry_* and the chipset used. */ void ath5k_hw_set_tx_retry_limits(struct ath5k_hw *ah, unsigned int queue) { /* Single data queue on AR5210 */ if (ah->ah_version == AR5K_AR5210) { struct ath5k_txq_info *tq = &ah->ah_txq[queue]; if (queue > 0) return; ath5k_hw_reg_write(ah, (tq->tqi_cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S) | AR5K_REG_SM(ah->ah_retry_long, AR5K_NODCU_RETRY_LMT_SLG_RETRY) | AR5K_REG_SM(ah->ah_retry_short, AR5K_NODCU_RETRY_LMT_SSH_RETRY) | AR5K_REG_SM(ah->ah_retry_long, AR5K_NODCU_RETRY_LMT_LG_RETRY) | AR5K_REG_SM(ah->ah_retry_short, AR5K_NODCU_RETRY_LMT_SH_RETRY), AR5K_NODCU_RETRY_LMT); /* DCU on AR5211+ */ } else { ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_retry_long, AR5K_DCU_RETRY_LMT_RTS) | AR5K_REG_SM(ah->ah_retry_long, AR5K_DCU_RETRY_LMT_STA_RTS) | AR5K_REG_SM(max(ah->ah_retry_long, ah->ah_retry_short), AR5K_DCU_RETRY_LMT_STA_DATA), AR5K_QUEUE_DFS_RETRY_LIMIT(queue)); } } /** * ath5k_hw_reset_tx_queue() - Initialize a single hw queue * @ah: The &struct ath5k_hw * @queue: One of enum ath5k_tx_queue_id * * Set DCF properties for the given transmit queue on DCU * and configures all queue-specific parameters. */ int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue) { struct ath5k_txq_info *tq = &ah->ah_txq[queue]; AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num); tq = &ah->ah_txq[queue]; /* Skip if queue inactive or if we are on AR5210 * that doesn't have QCU/DCU */ if ((ah->ah_version == AR5K_AR5210) || (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)) return 0; /* * Set contention window (cw_min/cw_max) * and arbitrated interframe space (aifs)... */ ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cw_min, AR5K_DCU_LCL_IFS_CW_MIN) | AR5K_REG_SM(tq->tqi_cw_max, AR5K_DCU_LCL_IFS_CW_MAX) | AR5K_REG_SM(tq->tqi_aifs, AR5K_DCU_LCL_IFS_AIFS), AR5K_QUEUE_DFS_LOCAL_IFS(queue)); /* * Set tx retry limits for this queue */ ath5k_hw_set_tx_retry_limits(ah, queue); /* * Set misc registers */ /* Enable DCU to wait for next fragment from QCU */ AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue), AR5K_DCU_MISC_FRAG_WAIT); /* On Maui and Spirit use the global seqnum on DCU */ if (ah->ah_mac_version < AR5K_SREV_AR5211) AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue), AR5K_DCU_MISC_SEQNUM_CTL); /* Constant bit rate period */ if (tq->tqi_cbr_period) { ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period, AR5K_QCU_CBRCFG_INTVAL) | AR5K_REG_SM(tq->tqi_cbr_overflow_limit, AR5K_QCU_CBRCFG_ORN_THRES), AR5K_QUEUE_CBRCFG(queue)); AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_FRSHED_CBR); if (tq->tqi_cbr_overflow_limit) AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_CBR_THRES_ENABLE); } /* Ready time interval */ if (tq->tqi_ready_time && (tq->tqi_type != AR5K_TX_QUEUE_CAB)) ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time, AR5K_QCU_RDYTIMECFG_INTVAL) | AR5K_QCU_RDYTIMECFG_ENABLE, AR5K_QUEUE_RDYTIMECFG(queue)); if (tq->tqi_burst_time) { ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time, AR5K_DCU_CHAN_TIME_DUR) | AR5K_DCU_CHAN_TIME_ENABLE, AR5K_QUEUE_DFS_CHANNEL_TIME(queue)); if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE) AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_RDY_VEOL_POLICY); } /* Enable/disable Post frame backoff */ if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE) ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS, AR5K_QUEUE_DFS_MISC(queue)); /* Enable/disable fragmentation burst backoff */ if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG, AR5K_QUEUE_DFS_MISC(queue)); /* * Set registers by queue type */ switch (tq->tqi_type) { case AR5K_TX_QUEUE_BEACON: AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_FRSHED_DBA_GT | AR5K_QCU_MISC_CBREXP_BCN_DIS | AR5K_QCU_MISC_BCN_ENABLE); AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue), (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL << AR5K_DCU_MISC_ARBLOCK_CTL_S) | AR5K_DCU_MISC_ARBLOCK_IGNORE | AR5K_DCU_MISC_POST_FR_BKOFF_DIS | AR5K_DCU_MISC_BCN_ENABLE); break; case AR5K_TX_QUEUE_CAB: /* XXX: use BCN_SENT_GT, if we can figure out how */ AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_FRSHED_DBA_GT | AR5K_QCU_MISC_CBREXP_DIS | AR5K_QCU_MISC_CBREXP_BCN_DIS); ath5k_hw_reg_write(ah, ((tq->tqi_ready_time - (AR5K_TUNE_SW_BEACON_RESP - AR5K_TUNE_DMA_BEACON_RESP) - AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) | AR5K_QCU_RDYTIMECFG_ENABLE, AR5K_QUEUE_RDYTIMECFG(queue)); AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue), (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL << AR5K_DCU_MISC_ARBLOCK_CTL_S)); break; case AR5K_TX_QUEUE_UAPSD: AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue), AR5K_QCU_MISC_CBREXP_DIS); break; case AR5K_TX_QUEUE_DATA: default: break; } /* TODO: Handle frame compression */ /* * Enable interrupts for this tx queue * in the secondary interrupt mask registers */ if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRORNINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrorn, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_CBRURNINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_cbrurn, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_QTRIGINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_qtrig, queue); if (tq->tqi_flags & AR5K_TXQ_FLAG_TXNOFRMINT_ENABLE) AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_nofrm, queue); /* Update secondary interrupt mask registers */ /* Filter out inactive queues */ ah->ah_txq_imr_txok &= ah->ah_txq_status; ah->ah_txq_imr_txerr &= ah->ah_txq_status; ah->ah_txq_imr_txurn &= ah->ah_txq_status; ah->ah_txq_imr_txdesc &= ah->ah_txq_status; ah->ah_txq_imr_txeol &= ah->ah_txq_status; ah->ah_txq_imr_cbrorn &= ah->ah_txq_status; ah->ah_txq_imr_cbrurn &= ah->ah_txq_status; ah->ah_txq_imr_qtrig &= ah->ah_txq_status; ah->ah_txq_imr_nofrm &= ah->ah_txq_status; ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok, AR5K_SIMR0_QCU_TXOK) | AR5K_REG_SM(ah->ah_txq_imr_txdesc, AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0); ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr, AR5K_SIMR1_QCU_TXERR) | AR5K_REG_SM(ah->ah_txq_imr_txeol, AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1); /* Update SIMR2 but don't overwrite rest simr2 settings */ AR5K_REG_DISABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_QCU_TXURN); AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_REG_SM(ah->ah_txq_imr_txurn, AR5K_SIMR2_QCU_TXURN)); ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_cbrorn, AR5K_SIMR3_QCBRORN) | AR5K_REG_SM(ah->ah_txq_imr_cbrurn, AR5K_SIMR3_QCBRURN), AR5K_SIMR3); ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_qtrig, AR5K_SIMR4_QTRIG), AR5K_SIMR4); /* Set TXNOFRM_QCU for the queues with TXNOFRM enabled */ ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_nofrm, AR5K_TXNOFRM_QCU), AR5K_TXNOFRM); /* No queue has TXNOFRM enabled, disable the interrupt * by setting AR5K_TXNOFRM to zero */ if (ah->ah_txq_imr_nofrm == 0) ath5k_hw_reg_write(ah, 0, AR5K_TXNOFRM); /* Set QCU mask for this DCU to save power */ AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(queue), queue); return 0; } /**************************\ * Global QCU/DCU functions * \**************************/ /** * ath5k_hw_set_ifs_intervals() - Set global inter-frame spaces on DCU * @ah: The &struct ath5k_hw * @slot_time: Slot time in us * * Sets the global IFS intervals on DCU (also works on AR5210) for * the given slot time and the current bwmode. */ int ath5k_hw_set_ifs_intervals(struct ath5k_hw *ah, unsigned int slot_time) { struct ieee80211_channel *channel = ah->ah_current_channel; struct ieee80211_rate *rate; u32 ack_tx_time, eifs, eifs_clock, sifs, sifs_clock; u32 slot_time_clock = ath5k_hw_htoclock(ah, slot_time); if (slot_time < 6 || slot_time_clock > AR5K_SLOT_TIME_MAX) return -EINVAL; sifs = ath5k_hw_get_default_sifs(ah); sifs_clock = ath5k_hw_htoclock(ah, sifs - 2); /* EIFS * Txtime of ack at lowest rate + SIFS + DIFS * (DIFS = SIFS + 2 * Slot time) * * Note: HAL has some predefined values for EIFS * Turbo: (37 + 2 * 6) * Default: (74 + 2 * 9) * Half: (149 + 2 * 13) * Quarter: (298 + 2 * 21) * * (74 + 2 * 6) for AR5210 default and turbo ! * * According to the formula we have * ack_tx_time = 25 for turbo and * ack_tx_time = 42.5 * clock multiplier * for default/half/quarter. * * This can't be right, 42 is what we would get * from ath5k_hw_get_frame_dur_for_bwmode or * ieee80211_generic_frame_duration for zero frame * length and without SIFS ! * * Also we have different lowest rate for 802.11a */ if (channel->band == IEEE80211_BAND_5GHZ) rate = &ah->sbands[IEEE80211_BAND_5GHZ].bitrates[0]; else rate = &ah->sbands[IEEE80211_BAND_2GHZ].bitrates[0]; ack_tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, false); /* ack_tx_time includes an SIFS already */ eifs = ack_tx_time + sifs + 2 * slot_time; eifs_clock = ath5k_hw_htoclock(ah, eifs); /* Set IFS settings on AR5210 */ if (ah->ah_version == AR5K_AR5210) { u32 pifs, pifs_clock, difs, difs_clock; /* Set slot time */ ath5k_hw_reg_write(ah, slot_time_clock, AR5K_SLOT_TIME); /* Set EIFS */ eifs_clock = AR5K_REG_SM(eifs_clock, AR5K_IFS1_EIFS); /* PIFS = Slot time + SIFS */ pifs = slot_time + sifs; pifs_clock = ath5k_hw_htoclock(ah, pifs); pifs_clock = AR5K_REG_SM(pifs_clock, AR5K_IFS1_PIFS); /* DIFS = SIFS + 2 * Slot time */ difs = sifs + 2 * slot_time; difs_clock = ath5k_hw_htoclock(ah, difs); /* Set SIFS/DIFS */ ath5k_hw_reg_write(ah, (difs_clock << AR5K_IFS0_DIFS_S) | sifs_clock, AR5K_IFS0); /* Set PIFS/EIFS and preserve AR5K_INIT_CARR_SENSE_EN */ ath5k_hw_reg_write(ah, pifs_clock | eifs_clock | (AR5K_INIT_CARR_SENSE_EN << AR5K_IFS1_CS_EN_S), AR5K_IFS1); return 0; } /* Set IFS slot time */ ath5k_hw_reg_write(ah, slot_time_clock, AR5K_DCU_GBL_IFS_SLOT); /* Set EIFS interval */ ath5k_hw_reg_write(ah, eifs_clock, AR5K_DCU_GBL_IFS_EIFS); /* Set SIFS interval in usecs */ AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC, AR5K_DCU_GBL_IFS_MISC_SIFS_DUR_USEC, sifs); /* Set SIFS interval in clock cycles */ ath5k_hw_reg_write(ah, sifs_clock, AR5K_DCU_GBL_IFS_SIFS); return 0; } /** * ath5k_hw_init_queues() - Initialize tx queues * @ah: The &struct ath5k_hw * * Initializes all tx queues based on information on * ah->ah_txq* set by the driver */ int ath5k_hw_init_queues(struct ath5k_hw *ah) { int i, ret; /* TODO: HW Compression support for data queues */ /* TODO: Burst prefetch for data queues */ /* * Reset queues and start beacon timers at the end of the reset routine * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping * Note: If we want we can assign multiple qcus on one dcu. */ if (ah->ah_version != AR5K_AR5210) for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) { ret = ath5k_hw_reset_tx_queue(ah, i); if (ret) { ATH5K_ERR(ah, "failed to reset TX queue #%d\n", i); return ret; } } else /* No QCU/DCU on AR5210, just set tx * retry limits. We set IFS parameters * on ath5k_hw_set_ifs_intervals */ ath5k_hw_set_tx_retry_limits(ah, 0); /* Set the turbo flag when operating on 40MHz */ if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) AR5K_REG_ENABLE_BITS(ah, AR5K_DCU_GBL_IFS_MISC, AR5K_DCU_GBL_IFS_MISC_TURBO_MODE); /* If we didn't set IFS timings through * ath5k_hw_set_coverage_class make sure * we set them here */ if (!ah->ah_coverage_class) { unsigned int slot_time = ath5k_hw_get_default_slottime(ah); ath5k_hw_set_ifs_intervals(ah, slot_time); } return 0; }