/* * Copyright (c) 2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Module for common driver code between ath9k and ath9k_htc */ #include #include #include "common.h" MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Shared library for Atheros wireless 802.11n LAN cards."); MODULE_LICENSE("Dual BSD/GPL"); /* Common RX processing */ /* Assumes you've already done the endian to CPU conversion */ static bool ath9k_rx_accept(struct ath_common *common, struct sk_buff *skb, struct ieee80211_rx_status *rxs, struct ath_rx_status *rx_stats, bool *decrypt_error) { struct ath_hw *ah = common->ah; struct ieee80211_hdr *hdr; __le16 fc; hdr = (struct ieee80211_hdr *) skb->data; fc = hdr->frame_control; if (!rx_stats->rs_datalen) return false; /* * rs_status follows rs_datalen so if rs_datalen is too large * we can take a hint that hardware corrupted it, so ignore * those frames. */ if (rx_stats->rs_datalen > common->rx_bufsize) return false; /* * rs_more indicates chained descriptors which can be used * to link buffers together for a sort of scatter-gather * operation. * * The rx_stats->rs_status will not be set until the end of the * chained descriptors so it can be ignored if rs_more is set. The * rs_more will be false at the last element of the chained * descriptors. */ if (!rx_stats->rs_more && rx_stats->rs_status != 0) { if (rx_stats->rs_status & ATH9K_RXERR_CRC) rxs->flag |= RX_FLAG_FAILED_FCS_CRC; if (rx_stats->rs_status & ATH9K_RXERR_PHY) return false; if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) { *decrypt_error = true; } else if (rx_stats->rs_status & ATH9K_RXERR_MIC) { if (ieee80211_is_ctl(fc)) /* * Sometimes, we get invalid * MIC failures on valid control frames. * Remove these mic errors. */ rx_stats->rs_status &= ~ATH9K_RXERR_MIC; else rxs->flag |= RX_FLAG_MMIC_ERROR; } /* * Reject error frames with the exception of * decryption and MIC failures. For monitor mode, * we also ignore the CRC error. */ if (ah->opmode == NL80211_IFTYPE_MONITOR) { if (rx_stats->rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | ATH9K_RXERR_CRC)) return false; } else { if (rx_stats->rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) { return false; } } } return true; } static u8 ath9k_process_rate(struct ath_common *common, struct ieee80211_hw *hw, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rxs, struct sk_buff *skb) { struct ieee80211_supported_band *sband; enum ieee80211_band band; unsigned int i = 0; band = hw->conf.channel->band; sband = hw->wiphy->bands[band]; if (rx_stats->rs_rate & 0x80) { /* HT rate */ rxs->flag |= RX_FLAG_HT; if (rx_stats->rs_flags & ATH9K_RX_2040) rxs->flag |= RX_FLAG_40MHZ; if (rx_stats->rs_flags & ATH9K_RX_GI) rxs->flag |= RX_FLAG_SHORT_GI; return rx_stats->rs_rate & 0x7f; } for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].hw_value == rx_stats->rs_rate) return i; if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { rxs->flag |= RX_FLAG_SHORTPRE; return i; } } /* No valid hardware bitrate found -- we should not get here */ ath_print(common, ATH_DBG_XMIT, "unsupported hw bitrate detected " "0x%02x using 1 Mbit\n", rx_stats->rs_rate); if ((common->debug_mask & ATH_DBG_XMIT)) print_hex_dump_bytes("", DUMP_PREFIX_NONE, skb->data, skb->len); return 0; } static void ath9k_process_rssi(struct ath_common *common, struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_rx_status *rx_stats) { struct ath_hw *ah = common->ah; struct ieee80211_sta *sta; struct ieee80211_hdr *hdr; struct ath_node *an; int last_rssi = ATH_RSSI_DUMMY_MARKER; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; rcu_read_lock(); /* * XXX: use ieee80211_find_sta! This requires quite a bit of work * under the current ath9k virtual wiphy implementation as we have * no way of tying a vif to wiphy. Typically vifs are attached to * at least one sdata of a wiphy on mac80211 but with ath9k virtual * wiphy you'd have to iterate over every wiphy and each sdata. */ sta = ieee80211_find_sta_by_hw(hw, hdr->addr2); if (sta) { an = (struct ath_node *) sta->drv_priv; if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr) ATH_RSSI_LPF(an->last_rssi, rx_stats->rs_rssi); last_rssi = an->last_rssi; } rcu_read_unlock(); if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) rx_stats->rs_rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); if (rx_stats->rs_rssi < 0) rx_stats->rs_rssi = 0; /* Update Beacon RSSI, this is used by ANI. */ if (ieee80211_is_beacon(fc)) ah->stats.avgbrssi = rx_stats->rs_rssi; } /* * For Decrypt or Demic errors, we only mark packet status here and always push * up the frame up to let mac80211 handle the actual error case, be it no * decryption key or real decryption error. This let us keep statistics there. */ int ath9k_cmn_rx_skb_preprocess(struct ath_common *common, struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rx_status, bool *decrypt_error) { struct ath_hw *ah = common->ah; memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); if (!ath9k_rx_accept(common, skb, rx_status, rx_stats, decrypt_error)) return -EINVAL; ath9k_process_rssi(common, hw, skb, rx_stats); rx_status->rate_idx = ath9k_process_rate(common, hw, rx_stats, rx_status, skb); rx_status->mactime = ath9k_hw_extend_tsf(ah, rx_stats->rs_tstamp); rx_status->band = hw->conf.channel->band; rx_status->freq = hw->conf.channel->center_freq; rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi; rx_status->antenna = rx_stats->rs_antenna; rx_status->flag |= RX_FLAG_TSFT; return 0; } EXPORT_SYMBOL(ath9k_cmn_rx_skb_preprocess); void ath9k_cmn_rx_skb_postprocess(struct ath_common *common, struct sk_buff *skb, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rxs, bool decrypt_error) { struct ath_hw *ah = common->ah; struct ieee80211_hdr *hdr; int hdrlen, padpos, padsize; u8 keyix; __le16 fc; /* see if any padding is done by the hw and remove it */ hdr = (struct ieee80211_hdr *) skb->data; hdrlen = ieee80211_get_hdrlen_from_skb(skb); fc = hdr->frame_control; padpos = ath9k_cmn_padpos(hdr->frame_control); /* The MAC header is padded to have 32-bit boundary if the * packet payload is non-zero. The general calculation for * padsize would take into account odd header lengths: * padsize = (4 - padpos % 4) % 4; However, since only * even-length headers are used, padding can only be 0 or 2 * bytes and we can optimize this a bit. In addition, we must * not try to remove padding from short control frames that do * not have payload. */ padsize = padpos & 3; if (padsize && skb->len>=padpos+padsize+FCS_LEN) { memmove(skb->data + padsize, skb->data, padpos); skb_pull(skb, padsize); } keyix = rx_stats->rs_keyix; if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && ieee80211_has_protected(fc)) { rxs->flag |= RX_FLAG_DECRYPTED; } else if (ieee80211_has_protected(fc) && !decrypt_error && skb->len >= hdrlen + 4) { keyix = skb->data[hdrlen + 3] >> 6; if (test_bit(keyix, common->keymap)) rxs->flag |= RX_FLAG_DECRYPTED; } if (ah->sw_mgmt_crypto && (rxs->flag & RX_FLAG_DECRYPTED) && ieee80211_is_mgmt(fc)) /* Use software decrypt for management frames. */ rxs->flag &= ~RX_FLAG_DECRYPTED; } EXPORT_SYMBOL(ath9k_cmn_rx_skb_postprocess); int ath9k_cmn_padpos(__le16 frame_control) { int padpos = 24; if (ieee80211_has_a4(frame_control)) { padpos += ETH_ALEN; } if (ieee80211_is_data_qos(frame_control)) { padpos += IEEE80211_QOS_CTL_LEN; } return padpos; } EXPORT_SYMBOL(ath9k_cmn_padpos); int ath9k_cmn_get_hw_crypto_keytype(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); if (tx_info->control.hw_key) { if (tx_info->control.hw_key->alg == ALG_WEP) return ATH9K_KEY_TYPE_WEP; else if (tx_info->control.hw_key->alg == ALG_TKIP) return ATH9K_KEY_TYPE_TKIP; else if (tx_info->control.hw_key->alg == ALG_CCMP) return ATH9K_KEY_TYPE_AES; } return ATH9K_KEY_TYPE_CLEAR; } EXPORT_SYMBOL(ath9k_cmn_get_hw_crypto_keytype); static u32 ath9k_get_extchanmode(struct ieee80211_channel *chan, enum nl80211_channel_type channel_type) { u32 chanmode = 0; switch (chan->band) { case IEEE80211_BAND_2GHZ: switch (channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_G_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_G_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_G_HT40MINUS; break; } break; case IEEE80211_BAND_5GHZ: switch (channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_A_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_A_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_A_HT40MINUS; break; } break; default: break; } return chanmode; } /* * Update internal channel flags. */ void ath9k_cmn_update_ichannel(struct ieee80211_hw *hw, struct ath9k_channel *ichan) { struct ieee80211_channel *chan = hw->conf.channel; struct ieee80211_conf *conf = &hw->conf; ichan->channel = chan->center_freq; ichan->chan = chan; if (chan->band == IEEE80211_BAND_2GHZ) { ichan->chanmode = CHANNEL_G; ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G; } else { ichan->chanmode = CHANNEL_A; ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM; } if (conf_is_ht(conf)) ichan->chanmode = ath9k_get_extchanmode(chan, conf->channel_type); } EXPORT_SYMBOL(ath9k_cmn_update_ichannel); /* * Get the internal channel reference. */ struct ath9k_channel *ath9k_cmn_get_curchannel(struct ieee80211_hw *hw, struct ath_hw *ah) { struct ieee80211_channel *curchan = hw->conf.channel; struct ath9k_channel *channel; u8 chan_idx; chan_idx = curchan->hw_value; channel = &ah->channels[chan_idx]; ath9k_cmn_update_ichannel(hw, channel); return channel; } EXPORT_SYMBOL(ath9k_cmn_get_curchannel); static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key, struct ath9k_keyval *hk, const u8 *addr, bool authenticator) { struct ath_hw *ah = common->ah; const u8 *key_rxmic; const u8 *key_txmic; key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; if (addr == NULL) { /* * Group key installation - only two key cache entries are used * regardless of splitmic capability since group key is only * used either for TX or RX. */ if (authenticator) { memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic)); } else { memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic)); } return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr); } if (!common->splitmic) { /* TX and RX keys share the same key cache entry. */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr); } /* Separate key cache entries for TX and RX */ /* TX key goes at first index, RX key at +32. */ memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) { /* TX MIC entry failed. No need to proceed further */ ath_print(common, ATH_DBG_FATAL, "Setting TX MIC Key Failed\n"); return 0; } memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); /* XXX delete tx key on failure? */ return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr); } static int ath_reserve_key_cache_slot_tkip(struct ath_common *common) { int i; for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { if (test_bit(i, common->keymap) || test_bit(i + 64, common->keymap)) continue; /* At least one part of TKIP key allocated */ if (common->splitmic && (test_bit(i + 32, common->keymap) || test_bit(i + 64 + 32, common->keymap))) continue; /* At least one part of TKIP key allocated */ /* Found a free slot for a TKIP key */ return i; } return -1; } static int ath_reserve_key_cache_slot(struct ath_common *common) { int i; /* First, try to find slots that would not be available for TKIP. */ if (common->splitmic) { for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) { if (!test_bit(i, common->keymap) && (test_bit(i + 32, common->keymap) || test_bit(i + 64, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i; if (!test_bit(i + 32, common->keymap) && (test_bit(i, common->keymap) || test_bit(i + 64, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i + 32; if (!test_bit(i + 64, common->keymap) && (test_bit(i , common->keymap) || test_bit(i + 32, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i + 64; if (!test_bit(i + 64 + 32, common->keymap) && (test_bit(i, common->keymap) || test_bit(i + 32, common->keymap) || test_bit(i + 64, common->keymap))) return i + 64 + 32; } } else { for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { if (!test_bit(i, common->keymap) && test_bit(i + 64, common->keymap)) return i; if (test_bit(i, common->keymap) && !test_bit(i + 64, common->keymap)) return i + 64; } } /* No partially used TKIP slots, pick any available slot */ for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) { /* Do not allow slots that could be needed for TKIP group keys * to be used. This limitation could be removed if we know that * TKIP will not be used. */ if (i >= 64 && i < 64 + IEEE80211_WEP_NKID) continue; if (common->splitmic) { if (i >= 32 && i < 32 + IEEE80211_WEP_NKID) continue; if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID) continue; } if (!test_bit(i, common->keymap)) return i; /* Found a free slot for a key */ } /* No free slot found */ return -1; } /* * Configure encryption in the HW. */ int ath9k_cmn_key_config(struct ath_common *common, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath_hw *ah = common->ah; struct ath9k_keyval hk; const u8 *mac = NULL; int ret = 0; int idx; memset(&hk, 0, sizeof(hk)); switch (key->alg) { case ALG_WEP: hk.kv_type = ATH9K_CIPHER_WEP; break; case ALG_TKIP: hk.kv_type = ATH9K_CIPHER_TKIP; break; case ALG_CCMP: hk.kv_type = ATH9K_CIPHER_AES_CCM; break; default: return -EOPNOTSUPP; } hk.kv_len = key->keylen; memcpy(hk.kv_val, key->key, key->keylen); if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { /* For now, use the default keys for broadcast keys. This may * need to change with virtual interfaces. */ idx = key->keyidx; } else if (key->keyidx) { if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; if (vif->type != NL80211_IFTYPE_AP) { /* Only keyidx 0 should be used with unicast key, but * allow this for client mode for now. */ idx = key->keyidx; } else return -EIO; } else { if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; if (key->alg == ALG_TKIP) idx = ath_reserve_key_cache_slot_tkip(common); else idx = ath_reserve_key_cache_slot(common); if (idx < 0) return -ENOSPC; /* no free key cache entries */ } if (key->alg == ALG_TKIP) ret = ath_setkey_tkip(common, idx, key->key, &hk, mac, vif->type == NL80211_IFTYPE_AP); else ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac); if (!ret) return -EIO; set_bit(idx, common->keymap); if (key->alg == ALG_TKIP) { set_bit(idx + 64, common->keymap); if (common->splitmic) { set_bit(idx + 32, common->keymap); set_bit(idx + 64 + 32, common->keymap); } } return idx; } EXPORT_SYMBOL(ath9k_cmn_key_config); /* * Delete Key. */ void ath9k_cmn_key_delete(struct ath_common *common, struct ieee80211_key_conf *key) { struct ath_hw *ah = common->ah; ath9k_hw_keyreset(ah, key->hw_key_idx); if (key->hw_key_idx < IEEE80211_WEP_NKID) return; clear_bit(key->hw_key_idx, common->keymap); if (key->alg != ALG_TKIP) return; clear_bit(key->hw_key_idx + 64, common->keymap); if (common->splitmic) { ath9k_hw_keyreset(ah, key->hw_key_idx + 32); clear_bit(key->hw_key_idx + 32, common->keymap); clear_bit(key->hw_key_idx + 64 + 32, common->keymap); } } EXPORT_SYMBOL(ath9k_cmn_key_delete); static int __init ath9k_cmn_init(void) { return 0; } module_init(ath9k_cmn_init); static void __exit ath9k_cmn_exit(void) { return; } module_exit(ath9k_cmn_exit);