/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2007-2008 Luis Rodriguez * Copyright (c) 2007-2008 Pavel Roskin * Copyright (c) 2007-2008 Jiri Slaby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #define _ATH5K_RESET /*****************************\ Reset functions and helpers \*****************************/ #include /* To determine if a card is pci-e */ #include /* For get_bitmask_order */ #include "ath5k.h" #include "reg.h" #include "base.h" #include "debug.h" /** * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 * * @ah: the &struct ath5k_hw * @channel: the currently set channel upon reset * * Write the delta slope coefficient (used on pilot tracking ?) for OFDM * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset(). * * Since delta slope is floating point we split it on its exponent and * mantissa and provide these values on hw. * * For more infos i think this patent is related * http://www.freepatentsonline.com/7184495.html */ static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { /* Get exponent and mantissa and set it */ u32 coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man, clock; if (!(ah->ah_version == AR5K_AR5212) || !(channel->hw_value & CHANNEL_OFDM)) BUG(); /* Get coefficient * ALGO: coef = (5 * clock * carrier_freq) / 2) * we scale coef by shifting clock value by 24 for * better precision since we use integers */ /* TODO: Half/quarter rate */ clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO); coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; /* Get exponent * ALGO: coef_exp = 14 - highest set bit position */ coef_exp = get_bitmask_order(coef_scaled); /* Doesn't make sense if it's zero*/ if (!coef_exp) return -EINVAL; /* Note: we've shifted coef_scaled by 24 */ coef_exp = 14 - (coef_exp - 24); /* Get mantissa (significant digits) * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ coef_man = coef_scaled + (1 << (24 - coef_exp - 1)); /* Calculate delta slope coefficient exponent * and mantissa (remove scaling) and set them on hw */ ds_coef_man = coef_man >> (24 - coef_exp); ds_coef_exp = coef_exp - 16; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); return 0; } /* * index into rates for control rates, we can set it up like this because * this is only used for AR5212 and we know it supports G mode */ static const unsigned int control_rates[] = { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 }; /** * ath5k_hw_write_rate_duration - fill rate code to duration table * * @ah: the &struct ath5k_hw * @mode: one of enum ath5k_driver_mode * * Write the rate code to duration table upon hw reset. This is a helper for * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on * the hardware, based on current mode, for each rate. The rates which are * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have * different rate code so we write their value twice (one for long preample * and one for short). * * Note: Band doesn't matter here, if we set the values for OFDM it works * on both a and g modes. So all we have to do is set values for all g rates * that include all OFDM and CCK rates. If we operate in turbo or xr/half/ * quarter rate mode, we need to use another set of bitrates (that's why we * need the mode parameter) but we don't handle these proprietary modes yet. */ static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah, unsigned int mode) { struct ath5k_softc *sc = ah->ah_sc; struct ieee80211_rate *rate; unsigned int i; /* Write rate duration table */ for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) { u32 reg; u16 tx_time; rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]]; /* Set ACK timeout */ reg = AR5K_RATE_DUR(rate->hw_value); /* An ACK frame consists of 10 bytes. If you add the FCS, * which ieee80211_generic_frame_duration() adds, * its 14 bytes. Note we use the control rate and not the * actual rate for this rate. See mac80211 tx.c * ieee80211_duration() for a brief description of * what rate we should choose to TX ACKs. */ tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw, sc->vif, 10, rate)); ath5k_hw_reg_write(ah, tx_time, reg); if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)) continue; /* * We're not distinguishing short preamble here, * This is true, all we'll get is a longer value here * which is not necessarilly bad. We could use * export ieee80211_frame_duration() but that needs to be * fixed first to be properly used by mac802111 drivers: * * - remove erp stuff and let the routine figure ofdm * erp rates * - remove passing argument ieee80211_local as * drivers don't have access to it * - move drivers using ieee80211_generic_frame_duration() * to this */ ath5k_hw_reg_write(ah, tx_time, reg + (AR5K_SET_SHORT_PREAMBLE << 2)); } } /* * Reset chipset */ static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) { int ret; u32 mask = val ? val : ~0U; ATH5K_TRACE(ah->ah_sc); /* Read-and-clear RX Descriptor Pointer*/ ath5k_hw_reg_read(ah, AR5K_RXDP); /* * Reset the device and wait until success */ ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); /* Wait at least 128 PCI clocks */ udelay(15); if (ah->ah_version == AR5K_AR5210) { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; } else { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; } ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false); /* * Reset configuration register (for hw byte-swap). Note that this * is only set for big endian. We do the necessary magic in * AR5K_INIT_CFG. */ if ((val & AR5K_RESET_CTL_PCU) == 0) ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); return ret; } /* * Sleep control */ int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode, bool set_chip, u16 sleep_duration) { unsigned int i; u32 staid, data; ATH5K_TRACE(ah->ah_sc); staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); switch (mode) { case AR5K_PM_AUTO: staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA; /* fallthrough */ case AR5K_PM_NETWORK_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_ALLOW | sleep_duration, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_FULL_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_AWAKE: staid &= ~AR5K_STA_ID1_PWR_SV; if (!set_chip) goto commit; /* Preserve sleep duration */ data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); if (data & 0xffc00000) data = 0; else data = data & 0xfffcffff; ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); udelay(15); for (i = 50; i > 0; i--) { /* Check if the chip did wake up */ if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_SPWR_DN) == 0) break; /* Wait a bit and retry */ udelay(200); ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); } /* Fail if the chip didn't wake up */ if (i <= 0) return -EIO; break; default: return -EINVAL; } commit: ah->ah_power_mode = mode; ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); return 0; } /* * Bring up MAC + PHY Chips and program PLL * TODO: Half/Quarter rate support */ int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial) { struct pci_dev *pdev = ah->ah_sc->pdev; u32 turbo, mode, clock, bus_flags; int ret; turbo = 0; mode = 0; clock = 0; ATH5K_TRACE(ah->ah_sc); /* Wakeup the device */ ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n"); return ret; } if (ah->ah_version != AR5K_AR5210) { /* * Get channel mode flags */ if (ah->ah_radio >= AR5K_RF5112) { mode = AR5K_PHY_MODE_RAD_RF5112; clock = AR5K_PHY_PLL_RF5112; } else { mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ clock = AR5K_PHY_PLL_RF5111; /*Zero*/ } if (flags & CHANNEL_2GHZ) { mode |= AR5K_PHY_MODE_FREQ_2GHZ; clock |= AR5K_PHY_PLL_44MHZ; if (flags & CHANNEL_CCK) { mode |= AR5K_PHY_MODE_MOD_CCK; } else if (flags & CHANNEL_OFDM) { /* XXX Dynamic OFDM/CCK is not supported by the * AR5211 so we set MOD_OFDM for plain g (no * CCK headers) operation. We need to test * this, 5211 might support ofdm-only g after * all, there are also initial register values * in the code for g mode (see initvals.c). */ if (ah->ah_version == AR5K_AR5211) mode |= AR5K_PHY_MODE_MOD_OFDM; else mode |= AR5K_PHY_MODE_MOD_DYN; } else { ATH5K_ERR(ah->ah_sc, "invalid radio modulation mode\n"); return -EINVAL; } } else if (flags & CHANNEL_5GHZ) { mode |= AR5K_PHY_MODE_FREQ_5GHZ; if (ah->ah_radio == AR5K_RF5413) clock = AR5K_PHY_PLL_40MHZ_5413; else clock |= AR5K_PHY_PLL_40MHZ; if (flags & CHANNEL_OFDM) mode |= AR5K_PHY_MODE_MOD_OFDM; else { ATH5K_ERR(ah->ah_sc, "invalid radio modulation mode\n"); return -EINVAL; } } else { ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n"); return -EINVAL; } if (flags & CHANNEL_TURBO) turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT; } else { /* Reset the device */ /* ...enable Atheros turbo mode if requested */ if (flags & CHANNEL_TURBO) ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, AR5K_PHY_TURBO); } /* reseting PCI on PCI-E cards results card to hang * and always return 0xffff... so we ingore that flag * for PCI-E cards */ bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI; /* Reset chipset */ if (ah->ah_version == AR5K_AR5210) { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); mdelay(2); } else { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND | bus_flags); } if (ret) { ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n"); return -EIO; } /* ...wakeup again!*/ ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n"); return ret; } /* ...final warm reset */ if (ath5k_hw_nic_reset(ah, 0)) { ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n"); return -EIO; } if (ah->ah_version != AR5K_AR5210) { /* ...update PLL if needed */ if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) { ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); udelay(300); } /* ...set the PHY operating mode */ ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); } return 0; } /* * If there is an external 32KHz crystal available, use it * as ref. clock instead of 32/40MHz clock and baseband clocks * to save power during sleep or restore normal 32/40MHz * operation. * * XXX: When operating on 32KHz certain PHY registers (27 - 31, * 123 - 127) require delay on access. */ static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 scal, spending, usec32; /* Only set 32KHz settings if we have an external * 32KHz crystal present */ if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) || AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) && enable) { /* 1 usec/cycle */ AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1); /* Set up tsf increment on each cycle */ AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61); /* Set baseband sleep control registers * and sleep control rate */ ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) spending = 0x14; else spending = 0x18; ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT); ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02); } else { ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT); ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03); } /* Enable sleep clock operation */ AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_EN); } else { /* Disable sleep clock operation and * restore default parameters */ AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_EN); AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_SLEEP_CLOCK_RATE, 0); ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR); ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT); if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) scal = AR5K_PHY_SCAL_32MHZ_2417; else if (ath5k_eeprom_is_hb63(ah)) scal = AR5K_PHY_SCAL_32MHZ_HB63; else scal = AR5K_PHY_SCAL_32MHZ; ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) spending = 0x14; else spending = 0x18; ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING); if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413)) usec32 = 39; else usec32 = 31; AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32); AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1); } return; } static bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, struct ieee80211_channel *channel) { u8 refclk_freq; if ((ah->ah_radio == AR5K_RF5112) || (ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) refclk_freq = 40; else refclk_freq = 32; if ((channel->center_freq % refclk_freq != 0) && ((channel->center_freq % refclk_freq < 10) || (channel->center_freq % refclk_freq > 22))) return true; else return false; } /* TODO: Half/Quarter rate */ static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { if (ah->ah_version == AR5K_AR5212 && ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { /* Setup ADC control */ ath5k_hw_reg_write(ah, (AR5K_REG_SM(2, AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) | AR5K_REG_SM(2, AR5K_PHY_ADC_CTL_INBUFGAIN_ON) | AR5K_PHY_ADC_CTL_PWD_DAC_OFF | AR5K_PHY_ADC_CTL_PWD_ADC_OFF), AR5K_PHY_ADC_CTL); /* Disable barker RSSI threshold */ AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2); /* Set the mute mask */ ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); } /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B) ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH); /* Enable DCU double buffering */ if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B) AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_DCU_DBL_BUF_DIS); /* Set DAC/ADC delays */ if (ah->ah_version == AR5K_AR5212) { u32 scal; if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) scal = AR5K_PHY_SCAL_32MHZ_2417; else if (ath5k_eeprom_is_hb63(ah)) scal = AR5K_PHY_SCAL_32MHZ_HB63; else scal = AR5K_PHY_SCAL_32MHZ; ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); } /* Set fast ADC */ if ((ah->ah_radio == AR5K_RF5413) || (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { u32 fast_adc = true; if (channel->center_freq == 2462 || channel->center_freq == 2467) fast_adc = 0; /* Only update if needed */ if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc) ath5k_hw_reg_write(ah, fast_adc, AR5K_PHY_FAST_ADC); } /* Fix for first revision of the RF5112 RF chipset */ if (ah->ah_radio == AR5K_RF5112 && ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { u32 data; ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, AR5K_PHY_CCKTXCTL); if (channel->hw_value & CHANNEL_5GHZ) data = 0xffb81020; else data = 0xffb80d20; ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); } if (ah->ah_mac_srev < AR5K_SREV_AR5211) { u32 usec_reg; /* 5311 has different tx/rx latency masks * from 5211, since we deal 5311 the same * as 5211 when setting initvals, shift * values here to their proper locations */ usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211); ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 | AR5K_USEC_32 | AR5K_USEC_TX_LATENCY_5211 | AR5K_REG_SM(29, AR5K_USEC_RX_LATENCY_5210)), AR5K_USEC_5211); /* Clear QCU/DCU clock gating register */ ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT); /* Set DAC/ADC delays */ ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL); /* Enable PCU FIFO corruption ECO */ AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211, AR5K_DIAG_SW_ECO_ENABLE); } } static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 *ant, u8 ee_mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; s16 cck_ofdm_pwr_delta; /* Adjust power delta for channel 14 */ if (channel->center_freq == 2484) cck_ofdm_pwr_delta = ((ee->ee_cck_ofdm_power_delta - ee->ee_scaled_cck_delta) * 2) / 10; else cck_ofdm_pwr_delta = (ee->ee_cck_ofdm_power_delta * 2) / 10; /* Set CCK to OFDM power delta on tx power * adjustment register */ if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { if (channel->hw_value == CHANNEL_G) ath5k_hw_reg_write(ah, AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | AR5K_REG_SM((cck_ofdm_pwr_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), AR5K_PHY_TX_PWR_ADJ); else ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); } else { /* For older revs we scale power on sw during tx power * setup */ ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; ah->ah_txpower.txp_cck_ofdm_gainf_delta = ee->ee_cck_ofdm_gain_delta; } /* Set antenna idle switch table */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, AR5K_PHY_ANT_CTL_SWTABLE_IDLE, (ah->ah_antenna[ee_mode][0] | AR5K_PHY_ANT_CTL_TXRX_EN)); /* Set antenna switch table */ ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]], AR5K_PHY_ANT_SWITCH_TABLE_0); ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]], AR5K_PHY_ANT_SWITCH_TABLE_1); /* Noise floor threshold */ ath5k_hw_reg_write(ah, AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), AR5K_PHY_NFTHRES); if ((channel->hw_value & CHANNEL_TURBO) && (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) { /* Switch settling time (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_SWITCH, ee->ee_switch_settling_turbo[ee_mode]); /* Tx/Rx attenuation (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, AR5K_PHY_GAIN_TXRX_ATTEN, ee->ee_atn_tx_rx_turbo[ee_mode]); /* ADC/PGA desired size (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_ADC, ee->ee_adc_desired_size_turbo[ee_mode]); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_PGA, ee->ee_pga_desired_size_turbo[ee_mode]); /* Tx/Rx margin (Turbo) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, ee->ee_margin_tx_rx_turbo[ee_mode]); } else { /* Switch settling time */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, AR5K_PHY_SETTLING_SWITCH, ee->ee_switch_settling[ee_mode]); /* Tx/Rx attenuation */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, AR5K_PHY_GAIN_TXRX_ATTEN, ee->ee_atn_tx_rx[ee_mode]); /* ADC/PGA desired size */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_ADC, ee->ee_adc_desired_size[ee_mode]); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_PHY_DESIRED_SIZE_PGA, ee->ee_pga_desired_size[ee_mode]); /* Tx/Rx margin */ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, ee->ee_margin_tx_rx[ee_mode]); } /* XPA delays */ ath5k_hw_reg_write(ah, (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); /* XLNA delay */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3, AR5K_PHY_RF_CTL3_TXE2XLNA_ON, ee->ee_tx_end2xlna_enable[ee_mode]); /* Thresh64 (ANI) */ AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF, AR5K_PHY_NF_THRESH62, ee->ee_thr_62[ee_mode]); /* False detect backoff for channels * that have spur noise. Write the new * cyclic power RSSI threshold. */ if (ath5k_hw_chan_has_spur_noise(ah, channel)) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, AR5K_INIT_CYCRSSI_THR1 + ee->ee_false_detect[ee_mode]); else AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, AR5K_INIT_CYCRSSI_THR1); /* I/Q correction * TODO: Per channel i/q infos ? */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) | ee->ee_q_cal[ee_mode]); /* Heavy clipping -disable for now */ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1) ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); return; } /* * Main reset function */ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, struct ieee80211_channel *channel, bool change_channel) { u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo; u32 phy_tst1; u8 mode, freq, ee_mode, ant[2]; int i, ret; ATH5K_TRACE(ah->ah_sc); s_ant = 0; ee_mode = 0; staid1_flags = 0; tsf_up = 0; tsf_lo = 0; freq = 0; mode = 0; /* * Save some registers before a reset */ /*DCU/Antenna selection not available on 5210*/ if (ah->ah_version != AR5K_AR5210) { switch (channel->hw_value & CHANNEL_MODES) { case CHANNEL_A: mode = AR5K_MODE_11A; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; case CHANNEL_G: mode = AR5K_MODE_11G; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11G; break; case CHANNEL_B: mode = AR5K_MODE_11B; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11B; break; case CHANNEL_T: mode = AR5K_MODE_11A_TURBO; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; case CHANNEL_TG: if (ah->ah_version == AR5K_AR5211) { ATH5K_ERR(ah->ah_sc, "TurboG mode not available on 5211"); return -EINVAL; } mode = AR5K_MODE_11G_TURBO; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11G; break; case CHANNEL_XR: if (ah->ah_version == AR5K_AR5211) { ATH5K_ERR(ah->ah_sc, "XR mode not available on 5211"); return -EINVAL; } mode = AR5K_MODE_XR; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; default: ATH5K_ERR(ah->ah_sc, "invalid channel: %d\n", channel->center_freq); return -EINVAL; } if (change_channel) { /* * Save frame sequence count * For revs. after Oahu, only save * seq num for DCU 0 (Global seq num) */ if (ah->ah_mac_srev < AR5K_SREV_AR5211) { for (i = 0; i < 10; i++) s_seq[i] = ath5k_hw_reg_read(ah, AR5K_QUEUE_DCU_SEQNUM(i)); } else { s_seq[0] = ath5k_hw_reg_read(ah, AR5K_QUEUE_DCU_SEQNUM(0)); } /* TSF accelerates on AR5211 durring reset * As a workaround save it here and restore * it later so that it's back in time after * reset. This way it'll get re-synced on the * next beacon without breaking ad-hoc. * * On AR5212 TSF is almost preserved across a * reset so it stays back in time anyway and * we don't have to save/restore it. * * XXX: Since this breaks power saving we have * to disable power saving until we receive the * next beacon, so we can resync beacon timers */ if (ah->ah_version == AR5K_AR5211) { tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32); tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32); } } /* Save default antenna */ s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); if (ah->ah_version == AR5K_AR5212) { /* Restore normal 32/40MHz clock operation * to avoid register access delay on certain * PHY registers */ ath5k_hw_set_sleep_clock(ah, false); /* Since we are going to write rf buffer * check if we have any pending gain_F * optimization settings */ if (change_channel && ah->ah_rf_banks != NULL) ath5k_hw_gainf_calibrate(ah); } } /*GPIOs*/ s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE; s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); /* AR5K_STA_ID1 flags, only preserve antenna * settings and ack/cts rate mode */ staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & (AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_DESC_ANTENNA | AR5K_STA_ID1_RTS_DEF_ANTENNA | AR5K_STA_ID1_ACKCTS_6MB | AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_SELFGEN_DEF_ANT); /* Wakeup the device */ ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false); if (ret) return ret; /* * Initialize operating mode */ ah->ah_op_mode = op_mode; /* PHY access enable */ if (ah->ah_mac_srev >= AR5K_SREV_AR5211) ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); else ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40, AR5K_PHY(0)); /* Write initial settings */ ret = ath5k_hw_write_initvals(ah, mode, change_channel); if (ret) return ret; /* * 5211/5212 Specific */ if (ah->ah_version != AR5K_AR5210) { /* * Write initial RF gain settings * This should work for both 5111/5112 */ ret = ath5k_hw_rfgain_init(ah, freq); if (ret) return ret; mdelay(1); /* * Tweak initval settings for revised * chipsets and add some more config * bits */ ath5k_hw_tweak_initval_settings(ah, channel); /* * Set TX power (FIXME) */ ret = ath5k_hw_txpower(ah, channel, ee_mode, AR5K_TUNE_DEFAULT_TXPOWER); if (ret) return ret; /* Write rate duration table only on AR5212 and if * virtual interface has already been brought up * XXX: rethink this after new mode changes to * mac80211 are integrated */ if (ah->ah_version == AR5K_AR5212 && ah->ah_sc->vif != NULL) ath5k_hw_write_rate_duration(ah, mode); /* * Write RF buffer */ ret = ath5k_hw_rfregs_init(ah, channel, mode); if (ret) return ret; /* Write OFDM timings on 5212*/ if (ah->ah_version == AR5K_AR5212 && channel->hw_value & CHANNEL_OFDM) { ret = ath5k_hw_write_ofdm_timings(ah, channel); if (ret) return ret; } /*Enable/disable 802.11b mode on 5111 (enable 2111 frequency converter + CCK)*/ if (ah->ah_radio == AR5K_RF5111) { if (mode == AR5K_MODE_11B) AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); else AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); } /* * In case a fixed antenna was set as default * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE * registers. */ if (s_ant != 0) { if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */ ant[0] = ant[1] = AR5K_ANT_FIXED_A; else /* 2 - Aux */ ant[0] = ant[1] = AR5K_ANT_FIXED_B; } else { ant[0] = AR5K_ANT_FIXED_A; ant[1] = AR5K_ANT_FIXED_B; } /* Commit values from EEPROM */ ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode); } else { /* * For 5210 we do all initialization using * initvals, so we don't have to modify * any settings (5210 also only supports * a/aturbo modes) */ mdelay(1); /* Disable phy and wait */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); mdelay(1); } /* * Restore saved values */ /*DCU/Antenna selection not available on 5210*/ if (ah->ah_version != AR5K_AR5210) { if (change_channel) { if (ah->ah_mac_srev < AR5K_SREV_AR5211) { for (i = 0; i < 10; i++) ath5k_hw_reg_write(ah, s_seq[i], AR5K_QUEUE_DCU_SEQNUM(i)); } else { ath5k_hw_reg_write(ah, s_seq[0], AR5K_QUEUE_DCU_SEQNUM(0)); } if (ah->ah_version == AR5K_AR5211) { ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32); ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32); } } ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA); } /* Ledstate */ AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); /* Gpio settings */ ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); /* Restore sta_id flags and preserve our mac address*/ ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id), AR5K_STA_ID0); ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id), AR5K_STA_ID1); /* * Configure PCU */ /* Restore bssid and bssid mask */ /* XXX: add ah->aid once mac80211 gives this to us */ ath5k_hw_set_associd(ah, ah->ah_bssid, 0); /* Set PCU config */ ath5k_hw_set_opmode(ah); /* Clear any pending interrupts * PISR/SISR Not available on 5210 */ if (ah->ah_version != AR5K_AR5210) ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR); /* Set RSSI/BRSSI thresholds * * Note: If we decide to set this value * dynamicaly, have in mind that when AR5K_RSSI_THR * register is read it might return 0x40 if we haven't * wrote anything to it plus BMISS RSSI threshold is zeroed. * So doing a save/restore procedure here isn't the right * choice. Instead store it on ath5k_hw */ ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S), AR5K_RSSI_THR); /* MIC QoS support */ if (ah->ah_mac_srev >= AR5K_SREV_AR2413) { ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL); ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL); } /* QoS NOACK Policy */ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) | AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) | AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET), AR5K_QOS_NOACK); } /* * Configure PHY */ /* Set channel on PHY */ ret = ath5k_hw_channel(ah, channel); if (ret) return ret; /* * Enable the PHY and wait until completion * This includes BaseBand and Synthesizer * activation. */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); /* * On 5211+ read activation -> rx delay * and use it. * * TODO: Half/quarter rate support */ if (ah->ah_version != AR5K_AR5210) { u32 delay; delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & AR5K_PHY_RX_DELAY_M; delay = (channel->hw_value & CHANNEL_CCK) ? ((delay << 2) / 22) : (delay / 10); udelay(100 + (2 * delay)); } else { mdelay(1); } /* * Perform ADC test to see if baseband is ready * Set tx hold and check adc test register */ phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); for (i = 0; i <= 20; i++) { if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) break; udelay(200); } ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); /* * Start automatic gain control calibration * * During AGC calibration RX path is re-routed to * a power detector so we don't receive anything. * * This method is used to calibrate some static offsets * used together with on-the fly I/Q calibration (the * one performed via ath5k_hw_phy_calibrate), that doesn't * interrupt rx path. * * While rx path is re-routed to the power detector we also * start a noise floor calibration, to measure the * card's noise floor (the noise we measure when we are not * transmiting or receiving anything). * * If we are in a noisy environment AGC calibration may time * out and/or noise floor calibration might timeout. */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); /* At the same time start I/Q calibration for QAM constellation * -no need for CCK- */ ah->ah_calibration = false; if (!(mode == AR5K_MODE_11B)) { ah->ah_calibration = true; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); } /* Wait for gain calibration to finish (we check for I/Q calibration * during ath5k_phy_calibrate) */ if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL, 0, false)) { ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n", channel->center_freq); } /* * If we run NF calibration before AGC, it always times out. * Binary HAL starts NF and AGC calibration at the same time * and only waits for AGC to finish. Also if AGC or NF cal. * times out, reset doesn't fail on binary HAL. I believe * that's wrong because since rx path is routed to a detector, * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211 * enables noise floor calibration after offset calibration and if noise * floor calibration fails, reset fails. I believe that's * a better approach, we just need to find a polling interval * that suits best, even if reset continues we need to make * sure that rx path is ready. */ ath5k_hw_noise_floor_calibration(ah, channel->center_freq); /* * Configure QCUs/DCUs */ /* TODO: HW Compression support for data queues */ /* TODO: Burst prefetch for data queues */ /* * Reset queues and start beacon timers at the end of the reset routine * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping * Note: If we want we can assign multiple qcus on one dcu. */ for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) { ret = ath5k_hw_reset_tx_queue(ah, i); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to reset TX queue #%d\n", i); return ret; } } /* * Configure DMA/Interrupts */ /* * Set Rx/Tx DMA Configuration * * Set standard DMA size (128). Note that * a DMA size of 512 causes rx overruns and tx errors * on pci-e cards (tested on 5424 but since rx overruns * also occur on 5416/5418 with madwifi we set 128 * for all PCI-E cards to be safe). * * XXX: need to check 5210 for this * TODO: Check out tx triger level, it's always 64 on dumps but I * guess we can tweak it and see how it goes ;-) */ if (ah->ah_version != AR5K_AR5210) { AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B); AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B); } /* Pre-enable interrupts on 5211/5212*/ if (ah->ah_version != AR5K_AR5210) ath5k_hw_set_imr(ah, ah->ah_imr); /* * Setup RFKill interrupt if rfkill flag is set on eeprom. * TODO: Use gpio pin and polarity infos from eeprom * TODO: Handle this in ath5k_intr because it'll result * a nasty interrupt storm. */ #if 0 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) { ath5k_hw_set_gpio_input(ah, 0); ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0); if (ah->ah_gpio[0] == 0) ath5k_hw_set_gpio_intr(ah, 0, 1); else ath5k_hw_set_gpio_intr(ah, 0, 0); } #endif /* Enable 32KHz clock function for AR5212+ chips * Set clocks to 32KHz operation and use an * external 32KHz crystal when sleeping if one * exists */ if (ah->ah_version == AR5K_AR5212) ath5k_hw_set_sleep_clock(ah, true); /* * Disable beacons and reset the register */ AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE | AR5K_BEACON_RESET_TSF); return 0; } #undef _ATH5K_RESET