/* * Copyright (c) 2004 Sam Leffler, Errno Consulting * Copyright (c) 2004 Video54 Technologies, Inc. * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef RC_H #define RC_H #include "ath9k.h" /* * Interface definitions for transmit rate control modules for the * Atheros driver. * * A rate control module is responsible for choosing the transmit rate * for each data frame. Management+control frames are always sent at * a fixed rate. * * Only one module may be present at a time; the driver references * rate control interfaces by symbol name. If multiple modules are * to be supported we'll need to switch to a registration-based scheme * as is currently done, for example, for authentication modules. * * An instance of the rate control module is attached to each device * at attach time and detached when the device is destroyed. The module * may associate data with each device and each node (station). Both * sets of storage are opaque except for the size of the per-node storage * which must be provided when the module is attached. * * The rate control module is notified for each state transition and * station association/reassociation. Otherwise it is queried for a * rate for each outgoing frame and provided status from each transmitted * frame. Any ancillary processing is the responsibility of the module * (e.g. if periodic processing is required then the module should setup * it's own timer). * * In addition to the transmit rate for each frame the module must also * indicate the number of attempts to make at the specified rate. If this * number is != ATH_TXMAXTRY then an additional callback is made to setup * additional transmit state. The rate control code is assumed to write * this additional data directly to the transmit descriptor. */ struct ath_softc; #define TRUE 1 #define FALSE 0 #define ATH_RATE_MAX 30 enum ieee80211_fixed_rate_mode { IEEE80211_FIXED_RATE_NONE = 0, IEEE80211_FIXED_RATE_MCS = 1 /* HT rates */ }; /* * Use the hal os glue code to get ms time */ #define IEEE80211_RATE_IDX_ENTRY(val, idx) (((val&(0xff<<(idx*8)))>>(idx*8))) #define WLAN_PHY_HT_20_SS WLAN_RC_PHY_HT_20_SS #define WLAN_PHY_HT_20_DS WLAN_RC_PHY_HT_20_DS #define WLAN_PHY_HT_20_DS_HGI WLAN_RC_PHY_HT_20_DS_HGI #define WLAN_PHY_HT_40_SS WLAN_RC_PHY_HT_40_SS #define WLAN_PHY_HT_40_SS_HGI WLAN_RC_PHY_HT_40_SS_HGI #define WLAN_PHY_HT_40_DS WLAN_RC_PHY_HT_40_DS #define WLAN_PHY_HT_40_DS_HGI WLAN_RC_PHY_HT_40_DS_HGI #define WLAN_PHY_OFDM PHY_OFDM #define WLAN_PHY_CCK PHY_CCK #define TRUE_20 0x2 #define TRUE_40 0x4 #define TRUE_2040 (TRUE_20|TRUE_40) #define TRUE_ALL (TRUE_2040|TRUE) enum { WLAN_RC_PHY_HT_20_SS = 4, WLAN_RC_PHY_HT_20_DS, WLAN_RC_PHY_HT_40_SS, WLAN_RC_PHY_HT_40_DS, WLAN_RC_PHY_HT_20_SS_HGI, WLAN_RC_PHY_HT_20_DS_HGI, WLAN_RC_PHY_HT_40_SS_HGI, WLAN_RC_PHY_HT_40_DS_HGI, WLAN_RC_PHY_MAX }; #define WLAN_RC_PHY_DS(_phy) ((_phy == WLAN_RC_PHY_HT_20_DS) \ || (_phy == WLAN_RC_PHY_HT_40_DS) \ || (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \ || (_phy == WLAN_RC_PHY_HT_40_DS_HGI)) #define WLAN_RC_PHY_40(_phy) ((_phy == WLAN_RC_PHY_HT_40_SS) \ || (_phy == WLAN_RC_PHY_HT_40_DS) \ || (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \ || (_phy == WLAN_RC_PHY_HT_40_DS_HGI)) #define WLAN_RC_PHY_SGI(_phy) ((_phy == WLAN_RC_PHY_HT_20_SS_HGI) \ || (_phy == WLAN_RC_PHY_HT_20_DS_HGI) \ || (_phy == WLAN_RC_PHY_HT_40_SS_HGI) \ || (_phy == WLAN_RC_PHY_HT_40_DS_HGI)) #define WLAN_RC_PHY_HT(_phy) (_phy >= WLAN_RC_PHY_HT_20_SS) /* Returns the capflag mode */ #define WLAN_RC_CAP_MODE(capflag) (((capflag & WLAN_RC_HT_FLAG) ? \ (capflag & WLAN_RC_40_FLAG) ? TRUE_40 : TRUE_20 : TRUE)) /* Return TRUE if flag supports HT20 && client supports HT20 or * return TRUE if flag supports HT40 && client supports HT40. * This is used becos some rates overlap between HT20/HT40. */ #define WLAN_RC_PHY_HT_VALID(flag, capflag) (((flag & TRUE_20) && !(capflag \ & WLAN_RC_40_FLAG)) || ((flag & TRUE_40) && \ (capflag & WLAN_RC_40_FLAG))) #define WLAN_RC_DS_FLAG (0x01) #define WLAN_RC_40_FLAG (0x02) #define WLAN_RC_SGI_FLAG (0x04) #define WLAN_RC_HT_FLAG (0x08) #define RATE_TABLE_SIZE 64 /** * struct ath_rate_table - Rate Control table * @valid: valid for use in rate control * @valid_single_stream: valid for use in rate control for * single stream operation * @phy: CCK/OFDM * @ratekbps: rate in Kbits per second * @user_ratekbps: user rate in Kbits per second * @ratecode: rate that goes into HW descriptors * @short_preamble: Mask for enabling short preamble in ratecode for CCK * @dot11rate: value that goes into supported * rates info element of MLME * @ctrl_rate: Index of next lower basic rate, used for duration computation * @max_4ms_framelen: maximum frame length(bytes) for tx duration * @probe_interval: interval for rate control to probe for other rates * @rssi_reduce_interval: interval for rate control to reduce rssi * @initial_ratemax: initial ratemax value used in ath_rc_sib_update() */ struct ath_rate_table { int rate_cnt; struct { int valid; int valid_single_stream; u8 phy; u32 ratekbps; u32 user_ratekbps; u8 ratecode; u8 short_preamble; u8 dot11rate; u8 ctrl_rate; int8_t rssi_ack_validmin; int8_t rssi_ack_deltamin; u8 base_index; u8 cw40index; u8 sgi_index; u8 ht_index; u32 max_4ms_framelen; } info[RATE_TABLE_SIZE]; u32 probe_interval; u32 rssi_reduce_interval; u8 initial_ratemax; }; #define ATH_RC_PROBE_ALLOWED 0x00000001 #define ATH_RC_MINRATE_LASTRATE 0x00000002 struct ath_rc_series { u8 rix; u8 tries; u8 flags; u32 max_4ms_framelen; }; /* rcs_flags definition */ #define ATH_RC_DS_FLAG 0x01 #define ATH_RC_CW40_FLAG 0x02 /* CW 40 */ #define ATH_RC_SGI_FLAG 0x04 /* Short Guard Interval */ #define ATH_RC_HT_FLAG 0x08 /* HT */ #define ATH_RC_RTSCTS_FLAG 0x10 /* RTS-CTS */ /* * State structures for new rate adaptation code */ #define MAX_TX_RATE_TBL 64 #define MAX_TX_RATE_PHY 48 struct ath_tx_ratectrl_state { int8_t rssi_thres; /* required rssi for this rate (dB) */ u8 per; /* recent estimate of packet error rate (%) */ }; struct ath_rateset { u8 rs_nrates; u8 rs_rates[ATH_RATE_MAX]; }; /* per-device state */ struct ath_rate_softc { /* phy tables that contain rate control data */ const void *hw_rate_table[ATH9K_MODE_MAX]; /* -1 or index of fixed rate */ int fixedrix; }; /** * struct ath_rate_node - Rate Control priv data * @state: RC state * @rssi_last: last ACK rssi * @rssi_last_lookup: last ACK rssi used for lookup * @rssi_last_prev: previous last ACK rssi * @rssi_last_prev2: 2nd previous last ACK rssi * @rssi_sum_cnt: count of rssi_sum for averaging * @rssi_sum_rate: rate that we are averaging * @rssi_sum: running sum of rssi for averaging * @probe_rate: rate we are probing at * @rssi_time: msec timestamp for last ack rssi * @rssi_down_time: msec timestamp for last down step * @probe_time: msec timestamp for last probe * @hw_maxretry_pktcnt: num of packets since we got HW max retry error * @max_valid_rate: maximum number of valid rate * @per_down_time: msec timestamp for last PER down step * @valid_phy_ratecnt: valid rate count * @rate_max_phy: phy index for the max rate * @probe_interval: interval for ratectrl to probe for other rates * @prev_data_rix: rate idx of last data frame * @ht_cap: HT capabilities * @single_stream: When TRUE, only single TX stream possible * @neg_rates: Negotatied rates * @neg_ht_rates: Negotiated HT rates */ /* per-node state */ struct ath_rate_node { int8_t rssi_last; int8_t rssi_last_lookup; int8_t rssi_last_prev; int8_t rssi_last_prev2; int32_t rssi_sum_cnt; int32_t rssi_sum_rate; int32_t rssi_sum; u8 rate_table_size; u8 probe_rate; u8 hw_maxretry_pktcnt; u8 max_valid_rate; u8 valid_rate_index[MAX_TX_RATE_TBL]; u8 ht_cap; u8 single_stream; u8 valid_phy_ratecnt[WLAN_RC_PHY_MAX]; u8 valid_phy_rateidx[WLAN_RC_PHY_MAX][MAX_TX_RATE_TBL]; u8 rc_phy_mode; u8 rate_max_phy; u32 rssi_time; u32 rssi_down_time; u32 probe_time; u32 per_down_time; u32 probe_interval; u32 prev_data_rix; struct ath_tx_ratectrl_state state[MAX_TX_RATE_TBL]; struct ath_rateset neg_rates; struct ath_rateset neg_ht_rates; struct ath_rate_softc *asc; struct ath_vap *avp; }; /* Driver data of ieee80211_tx_info */ struct ath_tx_info_priv { struct ath_rc_series rcs[4]; struct ath_tx_status tx; int n_frames; int n_bad_frames; u8 min_rate; }; /* * Attach/detach a rate control module. */ struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah); void ath_rate_detach(struct ath_rate_softc *asc); /* * Update/reset rate control state for 802.11 state transitions. * Important mostly as the analog to ath_rate_newassoc when operating * in station mode. */ void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv); void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp); /* * Return rate index for given Dot11 Rate. */ u8 ath_rate_findrateix(struct ath_softc *sc, u8 dot11_rate); /* Routines to register/unregister rate control algorithm */ int ath_rate_control_register(void); void ath_rate_control_unregister(void); #endif /* RC_H */