/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "rate.h" #include "scb.h" #include "phy/phy_hal.h" #include "channel.h" #include "antsel.h" #include "stf.h" #include "ampdu.h" #include "mac80211_if.h" #include "ucode_loader.h" #include "main.h" #include "soc.h" /* * Indication for txflowcontrol that all priority bits in * TXQ_STOP_FOR_PRIOFC_MASK are to be considered. */ #define ALLPRIO -1 /* watchdog timer, in unit of ms */ #define TIMER_INTERVAL_WATCHDOG 1000 /* radio monitor timer, in unit of ms */ #define TIMER_INTERVAL_RADIOCHK 800 /* beacon interval, in unit of 1024TU */ #define BEACON_INTERVAL_DEFAULT 100 /* n-mode support capability */ /* 2x2 includes both 1x1 & 2x2 devices * reserved #define 2 for future when we want to separate 1x1 & 2x2 and * control it independently */ #define WL_11N_2x2 1 #define WL_11N_3x3 3 #define WL_11N_4x4 4 #define EDCF_ACI_MASK 0x60 #define EDCF_ACI_SHIFT 5 #define EDCF_ECWMIN_MASK 0x0f #define EDCF_ECWMAX_SHIFT 4 #define EDCF_AIFSN_MASK 0x0f #define EDCF_AIFSN_MAX 15 #define EDCF_ECWMAX_MASK 0xf0 #define EDCF_AC_BE_TXOP_STA 0x0000 #define EDCF_AC_BK_TXOP_STA 0x0000 #define EDCF_AC_VO_ACI_STA 0x62 #define EDCF_AC_VO_ECW_STA 0x32 #define EDCF_AC_VI_ACI_STA 0x42 #define EDCF_AC_VI_ECW_STA 0x43 #define EDCF_AC_BK_ECW_STA 0xA4 #define EDCF_AC_VI_TXOP_STA 0x005e #define EDCF_AC_VO_TXOP_STA 0x002f #define EDCF_AC_BE_ACI_STA 0x03 #define EDCF_AC_BE_ECW_STA 0xA4 #define EDCF_AC_BK_ACI_STA 0x27 #define EDCF_AC_VO_TXOP_AP 0x002f #define EDCF_TXOP2USEC(txop) ((txop) << 5) #define EDCF_ECW2CW(exp) ((1 << (exp)) - 1) #define APHY_SYMBOL_TIME 4 #define APHY_PREAMBLE_TIME 16 #define APHY_SIGNAL_TIME 4 #define APHY_SIFS_TIME 16 #define APHY_SERVICE_NBITS 16 #define APHY_TAIL_NBITS 6 #define BPHY_SIFS_TIME 10 #define BPHY_PLCP_SHORT_TIME 96 #define PREN_PREAMBLE 24 #define PREN_MM_EXT 12 #define PREN_PREAMBLE_EXT 4 #define DOT11_MAC_HDR_LEN 24 #define DOT11_ACK_LEN 10 #define DOT11_BA_LEN 4 #define DOT11_OFDM_SIGNAL_EXTENSION 6 #define DOT11_MIN_FRAG_LEN 256 #define DOT11_RTS_LEN 16 #define DOT11_CTS_LEN 10 #define DOT11_BA_BITMAP_LEN 128 #define DOT11_MIN_BEACON_PERIOD 1 #define DOT11_MAX_BEACON_PERIOD 0xFFFF #define DOT11_MAXNUMFRAGS 16 #define DOT11_MAX_FRAG_LEN 2346 #define BPHY_PLCP_TIME 192 #define RIFS_11N_TIME 2 /* length of the BCN template area */ #define BCN_TMPL_LEN 512 /* brcms_bss_info flag bit values */ #define BRCMS_BSS_HT 0x0020 /* BSS is HT (MIMO) capable */ /* chip rx buffer offset */ #define BRCMS_HWRXOFF 38 /* rfdisable delay timer 500 ms, runs of ALP clock */ #define RFDISABLE_DEFAULT 10000000 #define BRCMS_TEMPSENSE_PERIOD 10 /* 10 second timeout */ /* precedences numbers for wlc queues. These are twice as may levels as * 802.1D priorities. * Odd numbers are used for HI priority traffic at same precedence levels * These constants are used ONLY by wlc_prio2prec_map. Do not use them * elsewhere. */ #define _BRCMS_PREC_NONE 0 /* None = - */ #define _BRCMS_PREC_BK 2 /* BK - Background */ #define _BRCMS_PREC_BE 4 /* BE - Best-effort */ #define _BRCMS_PREC_EE 6 /* EE - Excellent-effort */ #define _BRCMS_PREC_CL 8 /* CL - Controlled Load */ #define _BRCMS_PREC_VI 10 /* Vi - Video */ #define _BRCMS_PREC_VO 12 /* Vo - Voice */ #define _BRCMS_PREC_NC 14 /* NC - Network Control */ /* synthpu_dly times in us */ #define SYNTHPU_DLY_APHY_US 3700 #define SYNTHPU_DLY_BPHY_US 1050 #define SYNTHPU_DLY_NPHY_US 2048 #define SYNTHPU_DLY_LPPHY_US 300 #define ANTCNT 10 /* vanilla M_MAX_ANTCNT val */ /* Per-AC retry limit register definitions; uses defs.h bitfield macros */ #define EDCF_SHORT_S 0 #define EDCF_SFB_S 4 #define EDCF_LONG_S 8 #define EDCF_LFB_S 12 #define EDCF_SHORT_M BITFIELD_MASK(4) #define EDCF_SFB_M BITFIELD_MASK(4) #define EDCF_LONG_M BITFIELD_MASK(4) #define EDCF_LFB_M BITFIELD_MASK(4) #define RETRY_SHORT_DEF 7 /* Default Short retry Limit */ #define RETRY_SHORT_MAX 255 /* Maximum Short retry Limit */ #define RETRY_LONG_DEF 4 /* Default Long retry count */ #define RETRY_SHORT_FB 3 /* Short count for fb rate */ #define RETRY_LONG_FB 2 /* Long count for fb rate */ #define APHY_CWMIN 15 #define PHY_CWMAX 1023 #define EDCF_AIFSN_MIN 1 #define FRAGNUM_MASK 0xF #define APHY_SLOT_TIME 9 #define BPHY_SLOT_TIME 20 #define WL_SPURAVOID_OFF 0 #define WL_SPURAVOID_ON1 1 #define WL_SPURAVOID_ON2 2 /* invalid core flags, use the saved coreflags */ #define BRCMS_USE_COREFLAGS 0xffffffff /* values for PLCPHdr_override */ #define BRCMS_PLCP_AUTO -1 #define BRCMS_PLCP_SHORT 0 #define BRCMS_PLCP_LONG 1 /* values for g_protection_override and n_protection_override */ #define BRCMS_PROTECTION_AUTO -1 #define BRCMS_PROTECTION_OFF 0 #define BRCMS_PROTECTION_ON 1 #define BRCMS_PROTECTION_MMHDR_ONLY 2 #define BRCMS_PROTECTION_CTS_ONLY 3 /* values for g_protection_control and n_protection_control */ #define BRCMS_PROTECTION_CTL_OFF 0 #define BRCMS_PROTECTION_CTL_LOCAL 1 #define BRCMS_PROTECTION_CTL_OVERLAP 2 /* values for n_protection */ #define BRCMS_N_PROTECTION_OFF 0 #define BRCMS_N_PROTECTION_OPTIONAL 1 #define BRCMS_N_PROTECTION_20IN40 2 #define BRCMS_N_PROTECTION_MIXEDMODE 3 /* values for band specific 40MHz capabilities */ #define BRCMS_N_BW_20ALL 0 #define BRCMS_N_BW_40ALL 1 #define BRCMS_N_BW_20IN2G_40IN5G 2 /* bitflags for SGI support (sgi_rx iovar) */ #define BRCMS_N_SGI_20 0x01 #define BRCMS_N_SGI_40 0x02 /* defines used by the nrate iovar */ /* MSC in use,indicates b0-6 holds an mcs */ #define NRATE_MCS_INUSE 0x00000080 /* rate/mcs value */ #define NRATE_RATE_MASK 0x0000007f /* stf mode mask: siso, cdd, stbc, sdm */ #define NRATE_STF_MASK 0x0000ff00 /* stf mode shift */ #define NRATE_STF_SHIFT 8 /* bit indicate to override mcs only */ #define NRATE_OVERRIDE_MCS_ONLY 0x40000000 #define NRATE_SGI_MASK 0x00800000 /* sgi mode */ #define NRATE_SGI_SHIFT 23 /* sgi mode */ #define NRATE_LDPC_CODING 0x00400000 /* adv coding in use */ #define NRATE_LDPC_SHIFT 22 /* ldpc shift */ #define NRATE_STF_SISO 0 /* stf mode SISO */ #define NRATE_STF_CDD 1 /* stf mode CDD */ #define NRATE_STF_STBC 2 /* stf mode STBC */ #define NRATE_STF_SDM 3 /* stf mode SDM */ #define MAX_DMA_SEGS 4 /* Max # of entries in Tx FIFO based on 4kb page size */ #define NTXD 256 /* Max # of entries in Rx FIFO based on 4kb page size */ #define NRXD 256 /* try to keep this # rbufs posted to the chip */ #define NRXBUFPOST 32 /* data msg txq hiwat mark */ #define BRCMS_DATAHIWAT 50 /* max # frames to process in brcms_c_recv() */ #define RXBND 8 /* max # tx status to process in wlc_txstatus() */ #define TXSBND 8 /* brcmu_format_flags() bit description structure */ struct brcms_c_bit_desc { u32 bit; const char *name; }; /* * The following table lists the buffer memory allocated to xmt fifos in HW. * the size is in units of 256bytes(one block), total size is HW dependent * ucode has default fifo partition, sw can overwrite if necessary * * This is documented in twiki under the topic UcodeTxFifo. Please ensure * the twiki is updated before making changes. */ /* Starting corerev for the fifo size table */ #define XMTFIFOTBL_STARTREV 20 struct d11init { __le16 addr; __le16 size; __le32 value; }; struct edcf_acparam { u8 ACI; u8 ECW; u16 TXOP; } __packed; const u8 prio2fifo[NUMPRIO] = { TX_AC_BE_FIFO, /* 0 BE AC_BE Best Effort */ TX_AC_BK_FIFO, /* 1 BK AC_BK Background */ TX_AC_BK_FIFO, /* 2 -- AC_BK Background */ TX_AC_BE_FIFO, /* 3 EE AC_BE Best Effort */ TX_AC_VI_FIFO, /* 4 CL AC_VI Video */ TX_AC_VI_FIFO, /* 5 VI AC_VI Video */ TX_AC_VO_FIFO, /* 6 VO AC_VO Voice */ TX_AC_VO_FIFO /* 7 NC AC_VO Voice */ }; /* debug/trace */ uint brcm_msg_level = #if defined(BCMDBG) LOG_ERROR_VAL; #else 0; #endif /* BCMDBG */ /* TX FIFO number to WME/802.1E Access Category */ static const u8 wme_fifo2ac[] = { IEEE80211_AC_BK, IEEE80211_AC_BE, IEEE80211_AC_VI, IEEE80211_AC_VO, IEEE80211_AC_BE, IEEE80211_AC_BE }; /* ieee80211 Access Category to TX FIFO number */ static const u8 wme_ac2fifo[] = { TX_AC_VO_FIFO, TX_AC_VI_FIFO, TX_AC_BE_FIFO, TX_AC_BK_FIFO }; /* 802.1D Priority to precedence queue mapping */ const u8 wlc_prio2prec_map[] = { _BRCMS_PREC_BE, /* 0 BE - Best-effort */ _BRCMS_PREC_BK, /* 1 BK - Background */ _BRCMS_PREC_NONE, /* 2 None = - */ _BRCMS_PREC_EE, /* 3 EE - Excellent-effort */ _BRCMS_PREC_CL, /* 4 CL - Controlled Load */ _BRCMS_PREC_VI, /* 5 Vi - Video */ _BRCMS_PREC_VO, /* 6 Vo - Voice */ _BRCMS_PREC_NC, /* 7 NC - Network Control */ }; static const u16 xmtfifo_sz[][NFIFO] = { /* corerev 20: 5120, 49152, 49152, 5376, 4352, 1280 */ {20, 192, 192, 21, 17, 5}, /* corerev 21: 2304, 14848, 5632, 3584, 3584, 1280 */ {9, 58, 22, 14, 14, 5}, /* corerev 22: 5120, 49152, 49152, 5376, 4352, 1280 */ {20, 192, 192, 21, 17, 5}, /* corerev 23: 5120, 49152, 49152, 5376, 4352, 1280 */ {20, 192, 192, 21, 17, 5}, /* corerev 24: 2304, 14848, 5632, 3584, 3584, 1280 */ {9, 58, 22, 14, 14, 5}, }; #ifdef BCMDBG static const char * const fifo_names[] = { "AC_BK", "AC_BE", "AC_VI", "AC_VO", "BCMC", "ATIM" }; #else static const char fifo_names[6][0]; #endif #ifdef BCMDBG /* pointer to most recently allocated wl/wlc */ static struct brcms_c_info *wlc_info_dbg = (struct brcms_c_info *) (NULL); #endif /* Find basic rate for a given rate */ static u8 brcms_basic_rate(struct brcms_c_info *wlc, u32 rspec) { if (is_mcs_rate(rspec)) return wlc->band->basic_rate[mcs_table[rspec & RSPEC_RATE_MASK] .leg_ofdm]; return wlc->band->basic_rate[rspec & RSPEC_RATE_MASK]; } static u16 frametype(u32 rspec, u8 mimoframe) { if (is_mcs_rate(rspec)) return mimoframe; return is_cck_rate(rspec) ? FT_CCK : FT_OFDM; } /* currently the best mechanism for determining SIFS is the band in use */ static u16 get_sifs(struct brcms_band *band) { return band->bandtype == BRCM_BAND_5G ? APHY_SIFS_TIME : BPHY_SIFS_TIME; } /* * Detect Card removed. * Even checking an sbconfig register read will not false trigger when the core * is in reset it breaks CF address mechanism. Accessing gphy phyversion will * cause SB error if aphy is in reset on 4306B0-DB. Need a simple accessible * reg with fixed 0/1 pattern (some platforms return all 0). * If clocks are present, call the sb routine which will figure out if the * device is removed. */ static bool brcms_deviceremoved(struct brcms_c_info *wlc) { u32 macctrl; if (!wlc->hw->clk) return ai_deviceremoved(wlc->hw->sih); macctrl = bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol)); return (macctrl & (MCTL_PSM_JMP_0 | MCTL_IHR_EN)) != MCTL_IHR_EN; } /* sum the individual fifo tx pending packet counts */ static s16 brcms_txpktpendtot(struct brcms_c_info *wlc) { return wlc->core->txpktpend[0] + wlc->core->txpktpend[1] + wlc->core->txpktpend[2] + wlc->core->txpktpend[3]; } static bool brcms_is_mband_unlocked(struct brcms_c_info *wlc) { return wlc->pub->_nbands > 1 && !wlc->bandlocked; } static int brcms_chspec_bw(u16 chanspec) { if (CHSPEC_IS40(chanspec)) return BRCMS_40_MHZ; if (CHSPEC_IS20(chanspec)) return BRCMS_20_MHZ; return BRCMS_10_MHZ; } static void brcms_c_bsscfg_mfree(struct brcms_bss_cfg *cfg) { if (cfg == NULL) return; kfree(cfg->current_bss); kfree(cfg); } static void brcms_c_detach_mfree(struct brcms_c_info *wlc) { if (wlc == NULL) return; brcms_c_bsscfg_mfree(wlc->bsscfg); kfree(wlc->pub); kfree(wlc->modulecb); kfree(wlc->default_bss); kfree(wlc->protection); kfree(wlc->stf); kfree(wlc->bandstate[0]); kfree(wlc->corestate->macstat_snapshot); kfree(wlc->corestate); kfree(wlc->hw->bandstate[0]); kfree(wlc->hw); /* free the wlc */ kfree(wlc); wlc = NULL; } static struct brcms_bss_cfg *brcms_c_bsscfg_malloc(uint unit) { struct brcms_bss_cfg *cfg; cfg = kzalloc(sizeof(struct brcms_bss_cfg), GFP_ATOMIC); if (cfg == NULL) goto fail; cfg->current_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC); if (cfg->current_bss == NULL) goto fail; return cfg; fail: brcms_c_bsscfg_mfree(cfg); return NULL; } static struct brcms_c_info * brcms_c_attach_malloc(uint unit, uint *err, uint devid) { struct brcms_c_info *wlc; wlc = kzalloc(sizeof(struct brcms_c_info), GFP_ATOMIC); if (wlc == NULL) { *err = 1002; goto fail; } /* allocate struct brcms_c_pub state structure */ wlc->pub = kzalloc(sizeof(struct brcms_pub), GFP_ATOMIC); if (wlc->pub == NULL) { *err = 1003; goto fail; } wlc->pub->wlc = wlc; /* allocate struct brcms_hardware state structure */ wlc->hw = kzalloc(sizeof(struct brcms_hardware), GFP_ATOMIC); if (wlc->hw == NULL) { *err = 1005; goto fail; } wlc->hw->wlc = wlc; wlc->hw->bandstate[0] = kzalloc(sizeof(struct brcms_hw_band) * MAXBANDS, GFP_ATOMIC); if (wlc->hw->bandstate[0] == NULL) { *err = 1006; goto fail; } else { int i; for (i = 1; i < MAXBANDS; i++) wlc->hw->bandstate[i] = (struct brcms_hw_band *) ((unsigned long)wlc->hw->bandstate[0] + (sizeof(struct brcms_hw_band) * i)); } wlc->modulecb = kzalloc(sizeof(struct modulecb) * BRCMS_MAXMODULES, GFP_ATOMIC); if (wlc->modulecb == NULL) { *err = 1009; goto fail; } wlc->default_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC); if (wlc->default_bss == NULL) { *err = 1010; goto fail; } wlc->bsscfg = brcms_c_bsscfg_malloc(unit); if (wlc->bsscfg == NULL) { *err = 1011; goto fail; } wlc->protection = kzalloc(sizeof(struct brcms_protection), GFP_ATOMIC); if (wlc->protection == NULL) { *err = 1016; goto fail; } wlc->stf = kzalloc(sizeof(struct brcms_stf), GFP_ATOMIC); if (wlc->stf == NULL) { *err = 1017; goto fail; } wlc->bandstate[0] = kzalloc(sizeof(struct brcms_band)*MAXBANDS, GFP_ATOMIC); if (wlc->bandstate[0] == NULL) { *err = 1025; goto fail; } else { int i; for (i = 1; i < MAXBANDS; i++) wlc->bandstate[i] = (struct brcms_band *) ((unsigned long)wlc->bandstate[0] + (sizeof(struct brcms_band)*i)); } wlc->corestate = kzalloc(sizeof(struct brcms_core), GFP_ATOMIC); if (wlc->corestate == NULL) { *err = 1026; goto fail; } wlc->corestate->macstat_snapshot = kzalloc(sizeof(struct macstat), GFP_ATOMIC); if (wlc->corestate->macstat_snapshot == NULL) { *err = 1027; goto fail; } return wlc; fail: brcms_c_detach_mfree(wlc); return NULL; } /* * Update the slot timing for standard 11b/g (20us slots) * or shortslot 11g (9us slots) * The PSM needs to be suspended for this call. */ static void brcms_b_update_slot_timing(struct brcms_hardware *wlc_hw, bool shortslot) { struct bcma_device *core = wlc_hw->d11core; if (shortslot) { /* 11g short slot: 11a timing */ bcma_write16(core, D11REGOFFS(ifs_slot), 0x0207); brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, APHY_SLOT_TIME); } else { /* 11g long slot: 11b timing */ bcma_write16(core, D11REGOFFS(ifs_slot), 0x0212); brcms_b_write_shm(wlc_hw, M_DOT11_SLOT, BPHY_SLOT_TIME); } } /* * calculate frame duration of a given rate and length, return * time in usec unit */ static uint brcms_c_calc_frame_time(struct brcms_c_info *wlc, u32 ratespec, u8 preamble_type, uint mac_len) { uint nsyms, dur = 0, Ndps, kNdps; uint rate = rspec2rate(ratespec); if (rate == 0) { wiphy_err(wlc->wiphy, "wl%d: WAR: using rate of 1 mbps\n", wlc->pub->unit); rate = BRCM_RATE_1M; } BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, len%d\n", wlc->pub->unit, ratespec, preamble_type, mac_len); if (is_mcs_rate(ratespec)) { uint mcs = ratespec & RSPEC_RATE_MASK; int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec); dur = PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT); if (preamble_type == BRCMS_MM_PREAMBLE) dur += PREN_MM_EXT; /* 1000Ndbps = kbps * 4 */ kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), rspec_issgi(ratespec)) * 4; if (rspec_stc(ratespec) == 0) nsyms = CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS) * 1000, kNdps); else /* STBC needs to have even number of symbols */ nsyms = 2 * CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS) * 1000, 2 * kNdps); dur += APHY_SYMBOL_TIME * nsyms; if (wlc->band->bandtype == BRCM_BAND_2G) dur += DOT11_OFDM_SIGNAL_EXTENSION; } else if (is_ofdm_rate(rate)) { dur = APHY_PREAMBLE_TIME; dur += APHY_SIGNAL_TIME; /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */ Ndps = rate * 2; /* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */ nsyms = CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS), Ndps); dur += APHY_SYMBOL_TIME * nsyms; if (wlc->band->bandtype == BRCM_BAND_2G) dur += DOT11_OFDM_SIGNAL_EXTENSION; } else { /* * calc # bits * 2 so factor of 2 in rate (1/2 mbps) * will divide out */ mac_len = mac_len * 8 * 2; /* calc ceiling of bits/rate = microseconds of air time */ dur = (mac_len + rate - 1) / rate; if (preamble_type & BRCMS_SHORT_PREAMBLE) dur += BPHY_PLCP_SHORT_TIME; else dur += BPHY_PLCP_TIME; } return dur; } static void brcms_c_write_inits(struct brcms_hardware *wlc_hw, const struct d11init *inits) { struct bcma_device *core = wlc_hw->d11core; int i; uint offset; u16 size; u32 value; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); for (i = 0; inits[i].addr != cpu_to_le16(0xffff); i++) { size = le16_to_cpu(inits[i].size); offset = le16_to_cpu(inits[i].addr); value = le32_to_cpu(inits[i].value); if (size == 2) bcma_write16(core, offset, value); else if (size == 4) bcma_write32(core, offset, value); else break; } } static void brcms_c_write_mhf(struct brcms_hardware *wlc_hw, u16 *mhfs) { u8 idx; u16 addr[] = { M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4, M_HOST_FLAGS5 }; for (idx = 0; idx < MHFMAX; idx++) brcms_b_write_shm(wlc_hw, addr[idx], mhfs[idx]); } static void brcms_c_ucode_bsinit(struct brcms_hardware *wlc_hw) { struct wiphy *wiphy = wlc_hw->wlc->wiphy; struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; /* init microcode host flags */ brcms_c_write_mhf(wlc_hw, wlc_hw->band->mhfs); /* do band-specific ucode IHR, SHM, and SCR inits */ if (D11REV_IS(wlc_hw->corerev, 23)) { if (BRCMS_ISNPHY(wlc_hw->band)) brcms_c_write_inits(wlc_hw, ucode->d11n0bsinitvals16); else wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev" " %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } else { if (D11REV_IS(wlc_hw->corerev, 24)) { if (BRCMS_ISLCNPHY(wlc_hw->band)) brcms_c_write_inits(wlc_hw, ucode->d11lcn0bsinitvals24); else wiphy_err(wiphy, "%s: wl%d: unsupported phy in" " core rev %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } else { wiphy_err(wiphy, "%s: wl%d: unsupported corerev %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } } } static void brcms_b_core_ioctl(struct brcms_hardware *wlc_hw, u32 m, u32 v) { struct bcma_device *core = wlc_hw->d11core; u32 ioctl = bcma_aread32(core, BCMA_IOCTL) & ~m; bcma_awrite32(core, BCMA_IOCTL, ioctl | v); } static void brcms_b_core_phy_clk(struct brcms_hardware *wlc_hw, bool clk) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d: clk %d\n", wlc_hw->unit, clk); wlc_hw->phyclk = clk; if (OFF == clk) { /* clear gmode bit, put phy into reset */ brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC | SICF_GMODE), (SICF_PRST | SICF_FGC)); udelay(1); brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_PRST); udelay(1); } else { /* take phy out of reset */ brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_FGC); udelay(1); brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0); udelay(1); } } /* low-level band switch utility routine */ static void brcms_c_setxband(struct brcms_hardware *wlc_hw, uint bandunit) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit, bandunit); wlc_hw->band = wlc_hw->bandstate[bandunit]; /* * BMAC_NOTE: * until we eliminate need for wlc->band refs in low level code */ wlc_hw->wlc->band = wlc_hw->wlc->bandstate[bandunit]; /* set gmode core flag */ if (wlc_hw->sbclk && !wlc_hw->noreset) { u32 gmode = 0; if (bandunit == 0) gmode = SICF_GMODE; brcms_b_core_ioctl(wlc_hw, SICF_GMODE, gmode); } } /* switch to new band but leave it inactive */ static u32 brcms_c_setband_inact(struct brcms_c_info *wlc, uint bandunit) { struct brcms_hardware *wlc_hw = wlc->hw; u32 macintmask; u32 macctrl; BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit); macctrl = bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)); WARN_ON((macctrl & MCTL_EN_MAC) != 0); /* disable interrupts */ macintmask = brcms_intrsoff(wlc->wl); /* radio off */ wlc_phy_switch_radio(wlc_hw->band->pi, OFF); brcms_b_core_phy_clk(wlc_hw, OFF); brcms_c_setxband(wlc_hw, bandunit); return macintmask; } /* process an individual struct tx_status */ static bool brcms_c_dotxstatus(struct brcms_c_info *wlc, struct tx_status *txs) { struct sk_buff *p; uint queue; struct d11txh *txh; struct scb *scb = NULL; bool free_pdu; int tx_rts, tx_frame_count, tx_rts_count; uint totlen, supr_status; bool lastframe; struct ieee80211_hdr *h; u16 mcl; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *txrate; int i; /* discard intermediate indications for ucode with one legitimate case: * e.g. if "useRTS" is set. ucode did a successful rts/cts exchange, * but the subsequent tx of DATA failed. so it will start rts/cts * from the beginning (resetting the rts transmission count) */ if (!(txs->status & TX_STATUS_AMPDU) && (txs->status & TX_STATUS_INTERMEDIATE)) { wiphy_err(wlc->wiphy, "%s: INTERMEDIATE but not AMPDU\n", __func__); return false; } queue = txs->frameid & TXFID_QUEUE_MASK; if (queue >= NFIFO) { p = NULL; goto fatal; } p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED); if (p == NULL) goto fatal; txh = (struct d11txh *) (p->data); mcl = le16_to_cpu(txh->MacTxControlLow); if (txs->phyerr) { if (brcm_msg_level & LOG_ERROR_VAL) { wiphy_err(wlc->wiphy, "phyerr 0x%x, rate 0x%x\n", txs->phyerr, txh->MainRates); brcms_c_print_txdesc(txh); } brcms_c_print_txstatus(txs); } if (txs->frameid != le16_to_cpu(txh->TxFrameID)) goto fatal; tx_info = IEEE80211_SKB_CB(p); h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN); if (tx_info->control.sta) scb = &wlc->pri_scb; if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { brcms_c_ampdu_dotxstatus(wlc->ampdu, scb, p, txs); return false; } supr_status = txs->status & TX_STATUS_SUPR_MASK; if (supr_status == TX_STATUS_SUPR_BADCH) BCMMSG(wlc->wiphy, "%s: Pkt tx suppressed, possibly channel %d\n", __func__, CHSPEC_CHANNEL(wlc->default_bss->chanspec)); tx_rts = le16_to_cpu(txh->MacTxControlLow) & TXC_SENDRTS; tx_frame_count = (txs->status & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT; tx_rts_count = (txs->status & TX_STATUS_RTS_RTX_MASK) >> TX_STATUS_RTS_RTX_SHIFT; lastframe = !ieee80211_has_morefrags(h->frame_control); if (!lastframe) { wiphy_err(wlc->wiphy, "Not last frame!\n"); } else { /* * Set information to be consumed by Minstrel ht. * * The "fallback limit" is the number of tx attempts a given * MPDU is sent at the "primary" rate. Tx attempts beyond that * limit are sent at the "secondary" rate. * A 'short frame' does not exceed RTS treshold. */ u16 sfbl, /* Short Frame Rate Fallback Limit */ lfbl, /* Long Frame Rate Fallback Limit */ fbl; if (queue < IEEE80211_NUM_ACS) { sfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]], EDCF_SFB); lfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]], EDCF_LFB); } else { sfbl = wlc->SFBL; lfbl = wlc->LFBL; } txrate = tx_info->status.rates; if (txrate[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) fbl = lfbl; else fbl = sfbl; ieee80211_tx_info_clear_status(tx_info); if ((tx_frame_count > fbl) && (txrate[1].idx >= 0)) { /* * rate selection requested a fallback rate * and we used it */ txrate[0].count = fbl; txrate[1].count = tx_frame_count - fbl; } else { /* * rate selection did not request fallback rate, or * we didn't need it */ txrate[0].count = tx_frame_count; /* * rc80211_minstrel.c:minstrel_tx_status() expects * unused rates to be marked with idx = -1 */ txrate[1].idx = -1; txrate[1].count = 0; } /* clear the rest of the rates */ for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) { txrate[i].idx = -1; txrate[i].count = 0; } if (txs->status & TX_STATUS_ACK_RCV) tx_info->flags |= IEEE80211_TX_STAT_ACK; } totlen = p->len; free_pdu = true; brcms_c_txfifo_complete(wlc, queue, 1); if (lastframe) { /* remove PLCP & Broadcom tx descriptor header */ skb_pull(p, D11_PHY_HDR_LEN); skb_pull(p, D11_TXH_LEN); ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, p); } else { wiphy_err(wlc->wiphy, "%s: Not last frame => not calling " "tx_status\n", __func__); } return false; fatal: if (p) brcmu_pkt_buf_free_skb(p); return true; } /* process tx completion events in BMAC * Return true if more tx status need to be processed. false otherwise. */ static bool brcms_b_txstatus(struct brcms_hardware *wlc_hw, bool bound, bool *fatal) { bool morepending = false; struct brcms_c_info *wlc = wlc_hw->wlc; struct bcma_device *core; struct tx_status txstatus, *txs; u32 s1, s2; uint n = 0; /* * Param 'max_tx_num' indicates max. # tx status to process before * break out. */ uint max_tx_num = bound ? TXSBND : -1; BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit); txs = &txstatus; core = wlc_hw->d11core; *fatal = false; s1 = bcma_read32(core, D11REGOFFS(frmtxstatus)); while (!(*fatal) && (s1 & TXS_V)) { if (s1 == 0xffffffff) { wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit, __func__); return morepending; } s2 = bcma_read32(core, D11REGOFFS(frmtxstatus2)); txs->status = s1 & TXS_STATUS_MASK; txs->frameid = (s1 & TXS_FID_MASK) >> TXS_FID_SHIFT; txs->sequence = s2 & TXS_SEQ_MASK; txs->phyerr = (s2 & TXS_PTX_MASK) >> TXS_PTX_SHIFT; txs->lasttxtime = 0; *fatal = brcms_c_dotxstatus(wlc_hw->wlc, txs); /* !give others some time to run! */ if (++n >= max_tx_num) break; s1 = bcma_read32(core, D11REGOFFS(frmtxstatus)); } if (*fatal) return 0; if (n >= max_tx_num) morepending = true; if (!pktq_empty(&wlc->pkt_queue->q)) brcms_c_send_q(wlc); return morepending; } static void brcms_c_tbtt(struct brcms_c_info *wlc) { if (!wlc->bsscfg->BSS) /* * DirFrmQ is now valid...defer setting until end * of ATIM window */ wlc->qvalid |= MCMD_DIRFRMQVAL; } /* set initial host flags value */ static void brcms_c_mhfdef(struct brcms_c_info *wlc, u16 *mhfs, u16 mhf2_init) { struct brcms_hardware *wlc_hw = wlc->hw; memset(mhfs, 0, MHFMAX * sizeof(u16)); mhfs[MHF2] |= mhf2_init; /* prohibit use of slowclock on multifunction boards */ if (wlc_hw->boardflags & BFL_NOPLLDOWN) mhfs[MHF1] |= MHF1_FORCEFASTCLK; if (BRCMS_ISNPHY(wlc_hw->band) && NREV_LT(wlc_hw->band->phyrev, 2)) { mhfs[MHF2] |= MHF2_NPHY40MHZ_WAR; mhfs[MHF1] |= MHF1_IQSWAP_WAR; } } static uint dmareg(uint direction, uint fifonum) { if (direction == DMA_TX) return offsetof(struct d11regs, fifo64regs[fifonum].dmaxmt); return offsetof(struct d11regs, fifo64regs[fifonum].dmarcv); } static bool brcms_b_attach_dmapio(struct brcms_c_info *wlc, uint j, bool wme) { uint i; char name[8]; /* * ucode host flag 2 needed for pio mode, independent of band and fifo */ u16 pio_mhf2 = 0; struct brcms_hardware *wlc_hw = wlc->hw; uint unit = wlc_hw->unit; struct wiphy *wiphy = wlc->wiphy; /* name and offsets for dma_attach */ snprintf(name, sizeof(name), "wl%d", unit); if (wlc_hw->di[0] == NULL) { /* Init FIFOs */ int dma_attach_err = 0; /* * FIFO 0 * TX: TX_AC_BK_FIFO (TX AC Background data packets) * RX: RX_FIFO (RX data packets) */ wlc_hw->di[0] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core, (wme ? dmareg(DMA_TX, 0) : 0), dmareg(DMA_RX, 0), (wme ? NTXD : 0), NRXD, RXBUFSZ, -1, NRXBUFPOST, BRCMS_HWRXOFF, &brcm_msg_level); dma_attach_err |= (NULL == wlc_hw->di[0]); /* * FIFO 1 * TX: TX_AC_BE_FIFO (TX AC Best-Effort data packets) * (legacy) TX_DATA_FIFO (TX data packets) * RX: UNUSED */ wlc_hw->di[1] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core, dmareg(DMA_TX, 1), 0, NTXD, 0, 0, -1, 0, 0, &brcm_msg_level); dma_attach_err |= (NULL == wlc_hw->di[1]); /* * FIFO 2 * TX: TX_AC_VI_FIFO (TX AC Video data packets) * RX: UNUSED */ wlc_hw->di[2] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core, dmareg(DMA_TX, 2), 0, NTXD, 0, 0, -1, 0, 0, &brcm_msg_level); dma_attach_err |= (NULL == wlc_hw->di[2]); /* * FIFO 3 * TX: TX_AC_VO_FIFO (TX AC Voice data packets) * (legacy) TX_CTL_FIFO (TX control & mgmt packets) */ wlc_hw->di[3] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core, dmareg(DMA_TX, 3), 0, NTXD, 0, 0, -1, 0, 0, &brcm_msg_level); dma_attach_err |= (NULL == wlc_hw->di[3]); /* Cleaner to leave this as if with AP defined */ if (dma_attach_err) { wiphy_err(wiphy, "wl%d: wlc_attach: dma_attach failed" "\n", unit); return false; } /* get pointer to dma engine tx flow control variable */ for (i = 0; i < NFIFO; i++) if (wlc_hw->di[i]) wlc_hw->txavail[i] = (uint *) dma_getvar(wlc_hw->di[i], "&txavail"); } /* initial ucode host flags */ brcms_c_mhfdef(wlc, wlc_hw->band->mhfs, pio_mhf2); return true; } static void brcms_b_detach_dmapio(struct brcms_hardware *wlc_hw) { uint j; for (j = 0; j < NFIFO; j++) { if (wlc_hw->di[j]) { dma_detach(wlc_hw->di[j]); wlc_hw->di[j] = NULL; } } } /* * Initialize brcms_c_info default values ... * may get overrides later in this function * BMAC_NOTES, move low out and resolve the dangling ones */ static void brcms_b_info_init(struct brcms_hardware *wlc_hw) { struct brcms_c_info *wlc = wlc_hw->wlc; /* set default sw macintmask value */ wlc->defmacintmask = DEF_MACINTMASK; /* various 802.11g modes */ wlc_hw->shortslot = false; wlc_hw->SFBL = RETRY_SHORT_FB; wlc_hw->LFBL = RETRY_LONG_FB; /* default mac retry limits */ wlc_hw->SRL = RETRY_SHORT_DEF; wlc_hw->LRL = RETRY_LONG_DEF; wlc_hw->chanspec = ch20mhz_chspec(1); } static void brcms_b_wait_for_wake(struct brcms_hardware *wlc_hw) { /* delay before first read of ucode state */ udelay(40); /* wait until ucode is no longer asleep */ SPINWAIT((brcms_b_read_shm(wlc_hw, M_UCODE_DBGST) == DBGST_ASLEEP), wlc_hw->wlc->fastpwrup_dly); } /* control chip clock to save power, enable dynamic clock or force fast clock */ static void brcms_b_clkctl_clk(struct brcms_hardware *wlc_hw, uint mode) { if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) { /* new chips with PMU, CCS_FORCEHT will distribute the HT clock * on backplane, but mac core will still run on ALP(not HT) when * it enters powersave mode, which means the FCA bit may not be * set. Should wakeup mac if driver wants it to run on HT. */ if (wlc_hw->clk) { if (mode == CLK_FAST) { bcma_set32(wlc_hw->d11core, D11REGOFFS(clk_ctl_st), CCS_FORCEHT); udelay(64); SPINWAIT( ((bcma_read32(wlc_hw->d11core, D11REGOFFS(clk_ctl_st)) & CCS_HTAVAIL) == 0), PMU_MAX_TRANSITION_DLY); WARN_ON(!(bcma_read32(wlc_hw->d11core, D11REGOFFS(clk_ctl_st)) & CCS_HTAVAIL)); } else { if ((ai_get_pmurev(wlc_hw->sih) == 0) && (bcma_read32(wlc_hw->d11core, D11REGOFFS(clk_ctl_st)) & (CCS_FORCEHT | CCS_HTAREQ))) SPINWAIT( ((bcma_read32(wlc_hw->d11core, offsetof(struct d11regs, clk_ctl_st)) & CCS_HTAVAIL) == 0), PMU_MAX_TRANSITION_DLY); bcma_mask32(wlc_hw->d11core, D11REGOFFS(clk_ctl_st), ~CCS_FORCEHT); } } wlc_hw->forcefastclk = (mode == CLK_FAST); } else { /* old chips w/o PMU, force HT through cc, * then use FCA to verify mac is running fast clock */ wlc_hw->forcefastclk = ai_clkctl_cc(wlc_hw->sih, mode); /* check fast clock is available (if core is not in reset) */ if (wlc_hw->forcefastclk && wlc_hw->clk) WARN_ON(!(bcma_aread32(wlc_hw->d11core, BCMA_IOST) & SISF_FCLKA)); /* * keep the ucode wake bit on if forcefastclk is on since we * do not want ucode to put us back to slow clock when it dozes * for PM mode. Code below matches the wake override bit with * current forcefastclk state. Only setting bit in wake_override * instead of waking ucode immediately since old code had this * behavior. Older code set wlc->forcefastclk but only had the * wake happen if the wakup_ucode work (protected by an up * check) was executed just below. */ if (wlc_hw->forcefastclk) mboolset(wlc_hw->wake_override, BRCMS_WAKE_OVERRIDE_FORCEFAST); else mboolclr(wlc_hw->wake_override, BRCMS_WAKE_OVERRIDE_FORCEFAST); } } /* set or clear ucode host flag bits * it has an optimization for no-change write * it only writes through shared memory when the core has clock; * pre-CLK changes should use wlc_write_mhf to get around the optimization * * * bands values are: BRCM_BAND_AUTO <--- Current band only * BRCM_BAND_5G <--- 5G band only * BRCM_BAND_2G <--- 2G band only * BRCM_BAND_ALL <--- All bands */ void brcms_b_mhf(struct brcms_hardware *wlc_hw, u8 idx, u16 mask, u16 val, int bands) { u16 save; u16 addr[MHFMAX] = { M_HOST_FLAGS1, M_HOST_FLAGS2, M_HOST_FLAGS3, M_HOST_FLAGS4, M_HOST_FLAGS5 }; struct brcms_hw_band *band; if ((val & ~mask) || idx >= MHFMAX) return; /* error condition */ switch (bands) { /* Current band only or all bands, * then set the band to current band */ case BRCM_BAND_AUTO: case BRCM_BAND_ALL: band = wlc_hw->band; break; case BRCM_BAND_5G: band = wlc_hw->bandstate[BAND_5G_INDEX]; break; case BRCM_BAND_2G: band = wlc_hw->bandstate[BAND_2G_INDEX]; break; default: band = NULL; /* error condition */ } if (band) { save = band->mhfs[idx]; band->mhfs[idx] = (band->mhfs[idx] & ~mask) | val; /* optimization: only write through if changed, and * changed band is the current band */ if (wlc_hw->clk && (band->mhfs[idx] != save) && (band == wlc_hw->band)) brcms_b_write_shm(wlc_hw, addr[idx], (u16) band->mhfs[idx]); } if (bands == BRCM_BAND_ALL) { wlc_hw->bandstate[0]->mhfs[idx] = (wlc_hw->bandstate[0]->mhfs[idx] & ~mask) | val; wlc_hw->bandstate[1]->mhfs[idx] = (wlc_hw->bandstate[1]->mhfs[idx] & ~mask) | val; } } /* set the maccontrol register to desired reset state and * initialize the sw cache of the register */ static void brcms_c_mctrl_reset(struct brcms_hardware *wlc_hw) { /* IHR accesses are always enabled, PSM disabled, HPS off and WAKE on */ wlc_hw->maccontrol = 0; wlc_hw->suspended_fifos = 0; wlc_hw->wake_override = 0; wlc_hw->mute_override = 0; brcms_b_mctrl(wlc_hw, ~0, MCTL_IHR_EN | MCTL_WAKE); } /* * write the software state of maccontrol and * overrides to the maccontrol register */ static void brcms_c_mctrl_write(struct brcms_hardware *wlc_hw) { u32 maccontrol = wlc_hw->maccontrol; /* OR in the wake bit if overridden */ if (wlc_hw->wake_override) maccontrol |= MCTL_WAKE; /* set AP and INFRA bits for mute if needed */ if (wlc_hw->mute_override) { maccontrol &= ~(MCTL_AP); maccontrol |= MCTL_INFRA; } bcma_write32(wlc_hw->d11core, D11REGOFFS(maccontrol), maccontrol); } /* set or clear maccontrol bits */ void brcms_b_mctrl(struct brcms_hardware *wlc_hw, u32 mask, u32 val) { u32 maccontrol; u32 new_maccontrol; if (val & ~mask) return; /* error condition */ maccontrol = wlc_hw->maccontrol; new_maccontrol = (maccontrol & ~mask) | val; /* if the new maccontrol value is the same as the old, nothing to do */ if (new_maccontrol == maccontrol) return; /* something changed, cache the new value */ wlc_hw->maccontrol = new_maccontrol; /* write the new values with overrides applied */ brcms_c_mctrl_write(wlc_hw); } void brcms_c_ucode_wake_override_set(struct brcms_hardware *wlc_hw, u32 override_bit) { if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) { mboolset(wlc_hw->wake_override, override_bit); return; } mboolset(wlc_hw->wake_override, override_bit); brcms_c_mctrl_write(wlc_hw); brcms_b_wait_for_wake(wlc_hw); } void brcms_c_ucode_wake_override_clear(struct brcms_hardware *wlc_hw, u32 override_bit) { mboolclr(wlc_hw->wake_override, override_bit); if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) return; brcms_c_mctrl_write(wlc_hw); } /* When driver needs ucode to stop beaconing, it has to make sure that * MCTL_AP is clear and MCTL_INFRA is set * Mode MCTL_AP MCTL_INFRA * AP 1 1 * STA 0 1 <--- This will ensure no beacons * IBSS 0 0 */ static void brcms_c_ucode_mute_override_set(struct brcms_hardware *wlc_hw) { wlc_hw->mute_override = 1; /* if maccontrol already has AP == 0 and INFRA == 1 without this * override, then there is no change to write */ if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA) return; brcms_c_mctrl_write(wlc_hw); } /* Clear the override on AP and INFRA bits */ static void brcms_c_ucode_mute_override_clear(struct brcms_hardware *wlc_hw) { if (wlc_hw->mute_override == 0) return; wlc_hw->mute_override = 0; /* if maccontrol already has AP == 0 and INFRA == 1 without this * override, then there is no change to write */ if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA) return; brcms_c_mctrl_write(wlc_hw); } /* * Write a MAC address to the given match reg offset in the RXE match engine. */ static void brcms_b_set_addrmatch(struct brcms_hardware *wlc_hw, int match_reg_offset, const u8 *addr) { struct bcma_device *core = wlc_hw->d11core; u16 mac_l; u16 mac_m; u16 mac_h; BCMMSG(wlc_hw->wlc->wiphy, "wl%d: brcms_b_set_addrmatch\n", wlc_hw->unit); mac_l = addr[0] | (addr[1] << 8); mac_m = addr[2] | (addr[3] << 8); mac_h = addr[4] | (addr[5] << 8); /* enter the MAC addr into the RXE match registers */ bcma_write16(core, D11REGOFFS(rcm_ctl), RCM_INC_DATA | match_reg_offset); bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_l); bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_m); bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_h); } void brcms_b_write_template_ram(struct brcms_hardware *wlc_hw, int offset, int len, void *buf) { struct bcma_device *core = wlc_hw->d11core; u32 word; __le32 word_le; __be32 word_be; bool be_bit; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); bcma_write32(core, D11REGOFFS(tplatewrptr), offset); /* if MCTL_BIGEND bit set in mac control register, * the chip swaps data in fifo, as well as data in * template ram */ be_bit = (bcma_read32(core, D11REGOFFS(maccontrol)) & MCTL_BIGEND) != 0; while (len > 0) { memcpy(&word, buf, sizeof(u32)); if (be_bit) { word_be = cpu_to_be32(word); word = *(u32 *)&word_be; } else { word_le = cpu_to_le32(word); word = *(u32 *)&word_le; } bcma_write32(core, D11REGOFFS(tplatewrdata), word); buf = (u8 *) buf + sizeof(u32); len -= sizeof(u32); } } static void brcms_b_set_cwmin(struct brcms_hardware *wlc_hw, u16 newmin) { wlc_hw->band->CWmin = newmin; bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_CWMIN); (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmin); } static void brcms_b_set_cwmax(struct brcms_hardware *wlc_hw, u16 newmax) { wlc_hw->band->CWmax = newmax; bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_CWMAX); (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmax); } void brcms_b_bw_set(struct brcms_hardware *wlc_hw, u16 bw) { bool fastclk; /* request FAST clock if not on */ fastclk = wlc_hw->forcefastclk; if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_FAST); wlc_phy_bw_state_set(wlc_hw->band->pi, bw); brcms_b_phy_reset(wlc_hw); wlc_phy_init(wlc_hw->band->pi, wlc_phy_chanspec_get(wlc_hw->band->pi)); /* restore the clk */ if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_DYNAMIC); } static void brcms_b_upd_synthpu(struct brcms_hardware *wlc_hw) { u16 v; struct brcms_c_info *wlc = wlc_hw->wlc; /* update SYNTHPU_DLY */ if (BRCMS_ISLCNPHY(wlc->band)) v = SYNTHPU_DLY_LPPHY_US; else if (BRCMS_ISNPHY(wlc->band) && (NREV_GE(wlc->band->phyrev, 3))) v = SYNTHPU_DLY_NPHY_US; else v = SYNTHPU_DLY_BPHY_US; brcms_b_write_shm(wlc_hw, M_SYNTHPU_DLY, v); } static void brcms_c_ucode_txant_set(struct brcms_hardware *wlc_hw) { u16 phyctl; u16 phytxant = wlc_hw->bmac_phytxant; u16 mask = PHY_TXC_ANT_MASK; /* set the Probe Response frame phy control word */ phyctl = brcms_b_read_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS); phyctl = (phyctl & ~mask) | phytxant; brcms_b_write_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS, phyctl); /* set the Response (ACK/CTS) frame phy control word */ phyctl = brcms_b_read_shm(wlc_hw, M_RSP_PCTLWD); phyctl = (phyctl & ~mask) | phytxant; brcms_b_write_shm(wlc_hw, M_RSP_PCTLWD, phyctl); } static u16 brcms_b_ofdm_ratetable_offset(struct brcms_hardware *wlc_hw, u8 rate) { uint i; u8 plcp_rate = 0; struct plcp_signal_rate_lookup { u8 rate; u8 signal_rate; }; /* OFDM RATE sub-field of PLCP SIGNAL field, per 802.11 sec 17.3.4.1 */ const struct plcp_signal_rate_lookup rate_lookup[] = { {BRCM_RATE_6M, 0xB}, {BRCM_RATE_9M, 0xF}, {BRCM_RATE_12M, 0xA}, {BRCM_RATE_18M, 0xE}, {BRCM_RATE_24M, 0x9}, {BRCM_RATE_36M, 0xD}, {BRCM_RATE_48M, 0x8}, {BRCM_RATE_54M, 0xC} }; for (i = 0; i < ARRAY_SIZE(rate_lookup); i++) { if (rate == rate_lookup[i].rate) { plcp_rate = rate_lookup[i].signal_rate; break; } } /* Find the SHM pointer to the rate table entry by looking in the * Direct-map Table */ return 2 * brcms_b_read_shm(wlc_hw, M_RT_DIRMAP_A + (plcp_rate * 2)); } static void brcms_upd_ofdm_pctl1_table(struct brcms_hardware *wlc_hw) { u8 rate; u8 rates[8] = { BRCM_RATE_6M, BRCM_RATE_9M, BRCM_RATE_12M, BRCM_RATE_18M, BRCM_RATE_24M, BRCM_RATE_36M, BRCM_RATE_48M, BRCM_RATE_54M }; u16 entry_ptr; u16 pctl1; uint i; if (!BRCMS_PHY_11N_CAP(wlc_hw->band)) return; /* walk the phy rate table and update the entries */ for (i = 0; i < ARRAY_SIZE(rates); i++) { rate = rates[i]; entry_ptr = brcms_b_ofdm_ratetable_offset(wlc_hw, rate); /* read the SHM Rate Table entry OFDM PCTL1 values */ pctl1 = brcms_b_read_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS); /* modify the value */ pctl1 &= ~PHY_TXC1_MODE_MASK; pctl1 |= (wlc_hw->hw_stf_ss_opmode << PHY_TXC1_MODE_SHIFT); /* Update the SHM Rate Table entry OFDM PCTL1 values */ brcms_b_write_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS, pctl1); } } /* band-specific init */ static void brcms_b_bsinit(struct brcms_c_info *wlc, u16 chanspec) { struct brcms_hardware *wlc_hw = wlc->hw; BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit, wlc_hw->band->bandunit); brcms_c_ucode_bsinit(wlc_hw); wlc_phy_init(wlc_hw->band->pi, chanspec); brcms_c_ucode_txant_set(wlc_hw); /* * cwmin is band-specific, update hardware * with value for current band */ brcms_b_set_cwmin(wlc_hw, wlc_hw->band->CWmin); brcms_b_set_cwmax(wlc_hw, wlc_hw->band->CWmax); brcms_b_update_slot_timing(wlc_hw, wlc_hw->band->bandtype == BRCM_BAND_5G ? true : wlc_hw->shortslot); /* write phytype and phyvers */ brcms_b_write_shm(wlc_hw, M_PHYTYPE, (u16) wlc_hw->band->phytype); brcms_b_write_shm(wlc_hw, M_PHYVER, (u16) wlc_hw->band->phyrev); /* * initialize the txphyctl1 rate table since * shmem is shared between bands */ brcms_upd_ofdm_pctl1_table(wlc_hw); brcms_b_upd_synthpu(wlc_hw); } /* Perform a soft reset of the PHY PLL */ void brcms_b_core_phypll_reset(struct brcms_hardware *wlc_hw) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_addr), ~0, 0); udelay(1); ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 0x4, 0); udelay(1); ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 0x4, 4); udelay(1); ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data), 0x4, 0); udelay(1); } /* light way to turn on phy clock without reset for NPHY only * refer to brcms_b_core_phy_clk for full version */ void brcms_b_phyclk_fgc(struct brcms_hardware *wlc_hw, bool clk) { /* support(necessary for NPHY and HYPHY) only */ if (!BRCMS_ISNPHY(wlc_hw->band)) return; if (ON == clk) brcms_b_core_ioctl(wlc_hw, SICF_FGC, SICF_FGC); else brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0); } void brcms_b_macphyclk_set(struct brcms_hardware *wlc_hw, bool clk) { if (ON == clk) brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, SICF_MPCLKE); else brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, 0); } void brcms_b_phy_reset(struct brcms_hardware *wlc_hw) { struct brcms_phy_pub *pih = wlc_hw->band->pi; u32 phy_bw_clkbits; bool phy_in_reset = false; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); if (pih == NULL) return; phy_bw_clkbits = wlc_phy_clk_bwbits(wlc_hw->band->pi); /* Specific reset sequence required for NPHY rev 3 and 4 */ if (BRCMS_ISNPHY(wlc_hw->band) && NREV_GE(wlc_hw->band->phyrev, 3) && NREV_LE(wlc_hw->band->phyrev, 4)) { /* Set the PHY bandwidth */ brcms_b_core_ioctl(wlc_hw, SICF_BWMASK, phy_bw_clkbits); udelay(1); /* Perform a soft reset of the PHY PLL */ brcms_b_core_phypll_reset(wlc_hw); /* reset the PHY */ brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_PCLKE), (SICF_PRST | SICF_PCLKE)); phy_in_reset = true; } else { brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_PCLKE | SICF_BWMASK), (SICF_PRST | SICF_PCLKE | phy_bw_clkbits)); } udelay(2); brcms_b_core_phy_clk(wlc_hw, ON); if (pih) wlc_phy_anacore(pih, ON); } /* switch to and initialize new band */ static void brcms_b_setband(struct brcms_hardware *wlc_hw, uint bandunit, u16 chanspec) { struct brcms_c_info *wlc = wlc_hw->wlc; u32 macintmask; /* Enable the d11 core before accessing it */ if (!bcma_core_is_enabled(wlc_hw->d11core)) { bcma_core_enable(wlc_hw->d11core, 0); brcms_c_mctrl_reset(wlc_hw); } macintmask = brcms_c_setband_inact(wlc, bandunit); if (!wlc_hw->up) return; brcms_b_core_phy_clk(wlc_hw, ON); /* band-specific initializations */ brcms_b_bsinit(wlc, chanspec); /* * If there are any pending software interrupt bits, * then replace these with a harmless nonzero value * so brcms_c_dpc() will re-enable interrupts when done. */ if (wlc->macintstatus) wlc->macintstatus = MI_DMAINT; /* restore macintmask */ brcms_intrsrestore(wlc->wl, macintmask); /* ucode should still be suspended.. */ WARN_ON((bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)) & MCTL_EN_MAC) != 0); } static bool brcms_c_isgoodchip(struct brcms_hardware *wlc_hw) { /* reject unsupported corerev */ if (!CONF_HAS(D11CONF, wlc_hw->corerev)) { wiphy_err(wlc_hw->wlc->wiphy, "unsupported core rev %d\n", wlc_hw->corerev); return false; } return true; } /* Validate some board info parameters */ static bool brcms_c_validboardtype(struct brcms_hardware *wlc_hw) { uint boardrev = wlc_hw->boardrev; /* 4 bits each for board type, major, minor, and tiny version */ uint brt = (boardrev & 0xf000) >> 12; uint b0 = (boardrev & 0xf00) >> 8; uint b1 = (boardrev & 0xf0) >> 4; uint b2 = boardrev & 0xf; /* voards from other vendors are always considered valid */ if (ai_get_boardvendor(wlc_hw->sih) != PCI_VENDOR_ID_BROADCOM) return true; /* do some boardrev sanity checks when boardvendor is Broadcom */ if (boardrev == 0) return false; if (boardrev <= 0xff) return true; if ((brt > 2) || (brt == 0) || (b0 > 9) || (b0 == 0) || (b1 > 9) || (b2 > 9)) return false; return true; } static char *brcms_c_get_macaddr(struct brcms_hardware *wlc_hw) { enum brcms_srom_id var_id = BRCMS_SROM_MACADDR; char *macaddr; /* If macaddr exists, use it (Sromrev4, CIS, ...). */ macaddr = getvar(wlc_hw->sih, var_id); if (macaddr != NULL) return macaddr; if (wlc_hw->_nbands > 1) var_id = BRCMS_SROM_ET1MACADDR; else var_id = BRCMS_SROM_IL0MACADDR; macaddr = getvar(wlc_hw->sih, var_id); if (macaddr == NULL) wiphy_err(wlc_hw->wlc->wiphy, "wl%d: wlc_get_macaddr: macaddr " "getvar(%d) not found\n", wlc_hw->unit, var_id); return macaddr; } /* power both the pll and external oscillator on/off */ static void brcms_b_xtal(struct brcms_hardware *wlc_hw, bool want) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d: want %d\n", wlc_hw->unit, want); /* * dont power down if plldown is false or * we must poll hw radio disable */ if (!want && wlc_hw->pllreq) return; if (wlc_hw->sih) ai_clkctl_xtal(wlc_hw->sih, XTAL | PLL, want); wlc_hw->sbclk = want; if (!wlc_hw->sbclk) { wlc_hw->clk = false; if (wlc_hw->band && wlc_hw->band->pi) wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); } } /* * Return true if radio is disabled, otherwise false. * hw radio disable signal is an external pin, users activate it asynchronously * this function could be called when driver is down and w/o clock * it operates on different registers depending on corerev and boardflag. */ static bool brcms_b_radio_read_hwdisabled(struct brcms_hardware *wlc_hw) { bool v, clk, xtal; u32 flags = 0; xtal = wlc_hw->sbclk; if (!xtal) brcms_b_xtal(wlc_hw, ON); /* may need to take core out of reset first */ clk = wlc_hw->clk; if (!clk) { /* * mac no longer enables phyclk automatically when driver * accesses phyreg throughput mac. This can be skipped since * only mac reg is accessed below */ flags |= SICF_PCLKE; /* * TODO: test suspend/resume * * AI chip doesn't restore bar0win2 on * hibernation/resume, need sw fixup */ bcma_core_enable(wlc_hw->d11core, flags); brcms_c_mctrl_reset(wlc_hw); } v = ((bcma_read32(wlc_hw->d11core, D11REGOFFS(phydebug)) & PDBG_RFD) != 0); /* put core back into reset */ if (!clk) bcma_core_disable(wlc_hw->d11core, 0); if (!xtal) brcms_b_xtal(wlc_hw, OFF); return v; } static bool wlc_dma_rxreset(struct brcms_hardware *wlc_hw, uint fifo) { struct dma_pub *di = wlc_hw->di[fifo]; return dma_rxreset(di); } /* d11 core reset * ensure fask clock during reset * reset dma * reset d11(out of reset) * reset phy(out of reset) * clear software macintstatus for fresh new start * one testing hack wlc_hw->noreset will bypass the d11/phy reset */ void brcms_b_corereset(struct brcms_hardware *wlc_hw, u32 flags) { uint i; bool fastclk; if (flags == BRCMS_USE_COREFLAGS) flags = (wlc_hw->band->pi ? wlc_hw->band->core_flags : 0); BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); /* request FAST clock if not on */ fastclk = wlc_hw->forcefastclk; if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_FAST); /* reset the dma engines except first time thru */ if (bcma_core_is_enabled(wlc_hw->d11core)) { for (i = 0; i < NFIFO; i++) if ((wlc_hw->di[i]) && (!dma_txreset(wlc_hw->di[i]))) wiphy_err(wlc_hw->wlc->wiphy, "wl%d: %s: " "dma_txreset[%d]: cannot stop dma\n", wlc_hw->unit, __func__, i); if ((wlc_hw->di[RX_FIFO]) && (!wlc_dma_rxreset(wlc_hw, RX_FIFO))) wiphy_err(wlc_hw->wlc->wiphy, "wl%d: %s: dma_rxreset" "[%d]: cannot stop dma\n", wlc_hw->unit, __func__, RX_FIFO); } /* if noreset, just stop the psm and return */ if (wlc_hw->noreset) { wlc_hw->wlc->macintstatus = 0; /* skip wl_dpc after down */ brcms_b_mctrl(wlc_hw, MCTL_PSM_RUN | MCTL_EN_MAC, 0); return; } /* * mac no longer enables phyclk automatically when driver accesses * phyreg throughput mac, AND phy_reset is skipped at early stage when * band->pi is invalid. need to enable PHY CLK */ flags |= SICF_PCLKE; /* * reset the core * In chips with PMU, the fastclk request goes through d11 core * reg 0x1e0, which is cleared by the core_reset. have to re-request it. * * This adds some delay and we can optimize it by also requesting * fastclk through chipcommon during this period if necessary. But * that has to work coordinate with other driver like mips/arm since * they may touch chipcommon as well. */ wlc_hw->clk = false; bcma_core_enable(wlc_hw->d11core, flags); wlc_hw->clk = true; if (wlc_hw->band && wlc_hw->band->pi) wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, true); brcms_c_mctrl_reset(wlc_hw); if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) brcms_b_clkctl_clk(wlc_hw, CLK_FAST); brcms_b_phy_reset(wlc_hw); /* turn on PHY_PLL */ brcms_b_core_phypll_ctl(wlc_hw, true); /* clear sw intstatus */ wlc_hw->wlc->macintstatus = 0; /* restore the clk setting */ if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_DYNAMIC); } /* txfifo sizes needs to be modified(increased) since the newer cores * have more memory. */ static void brcms_b_corerev_fifofixup(struct brcms_hardware *wlc_hw) { struct bcma_device *core = wlc_hw->d11core; u16 fifo_nu; u16 txfifo_startblk = TXFIFO_START_BLK, txfifo_endblk; u16 txfifo_def, txfifo_def1; u16 txfifo_cmd; /* tx fifos start at TXFIFO_START_BLK from the Base address */ txfifo_startblk = TXFIFO_START_BLK; /* sequence of operations: reset fifo, set fifo size, reset fifo */ for (fifo_nu = 0; fifo_nu < NFIFO; fifo_nu++) { txfifo_endblk = txfifo_startblk + wlc_hw->xmtfifo_sz[fifo_nu]; txfifo_def = (txfifo_startblk & 0xff) | (((txfifo_endblk - 1) & 0xff) << TXFIFO_FIFOTOP_SHIFT); txfifo_def1 = ((txfifo_startblk >> 8) & 0x1) | ((((txfifo_endblk - 1) >> 8) & 0x1) << TXFIFO_FIFOTOP_SHIFT); txfifo_cmd = TXFIFOCMD_RESET_MASK | (fifo_nu << TXFIFOCMD_FIFOSEL_SHIFT); bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd); bcma_write16(core, D11REGOFFS(xmtfifodef), txfifo_def); bcma_write16(core, D11REGOFFS(xmtfifodef1), txfifo_def1); bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd); txfifo_startblk += wlc_hw->xmtfifo_sz[fifo_nu]; } /* * need to propagate to shm location to be in sync since ucode/hw won't * do this */ brcms_b_write_shm(wlc_hw, M_FIFOSIZE0, wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]); brcms_b_write_shm(wlc_hw, M_FIFOSIZE1, wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]); brcms_b_write_shm(wlc_hw, M_FIFOSIZE2, ((wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO] << 8) | wlc_hw-> xmtfifo_sz[TX_AC_BK_FIFO])); brcms_b_write_shm(wlc_hw, M_FIFOSIZE3, ((wlc_hw->xmtfifo_sz[TX_ATIM_FIFO] << 8) | wlc_hw-> xmtfifo_sz[TX_BCMC_FIFO])); } /* This function is used for changing the tsf frac register * If spur avoidance mode is off, the mac freq will be 80/120/160Mhz * If spur avoidance mode is on1, the mac freq will be 82/123/164Mhz * If spur avoidance mode is on2, the mac freq will be 84/126/168Mhz * HTPHY Formula is 2^26/freq(MHz) e.g. * For spuron2 - 126MHz -> 2^26/126 = 532610.0 * - 532610 = 0x82082 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x2082 * For spuron: 123MHz -> 2^26/123 = 545600.5 * - 545601 = 0x85341 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x5341 * For spur off: 120MHz -> 2^26/120 = 559240.5 * - 559241 = 0x88889 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x8889 */ void brcms_b_switch_macfreq(struct brcms_hardware *wlc_hw, u8 spurmode) { struct bcma_device *core = wlc_hw->d11core; if ((ai_get_chip_id(wlc_hw->sih) == BCM43224_CHIP_ID) || (ai_get_chip_id(wlc_hw->sih) == BCM43225_CHIP_ID)) { if (spurmode == WL_SPURAVOID_ON2) { /* 126Mhz */ bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x2082); bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); } else if (spurmode == WL_SPURAVOID_ON1) { /* 123Mhz */ bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x5341); bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); } else { /* 120Mhz */ bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x8889); bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8); } } else if (BRCMS_ISLCNPHY(wlc_hw->band)) { if (spurmode == WL_SPURAVOID_ON1) { /* 82Mhz */ bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x7CE0); bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC); } else { /* 80Mhz */ bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0xCCCD); bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC); } } } /* Initialize GPIOs that are controlled by D11 core */ static void brcms_c_gpio_init(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; u32 gc, gm; /* use GPIO select 0 to get all gpio signals from the gpio out reg */ brcms_b_mctrl(wlc_hw, MCTL_GPOUT_SEL_MASK, 0); /* * Common GPIO setup: * G0 = LED 0 = WLAN Activity * G1 = LED 1 = WLAN 2.4 GHz Radio State * G2 = LED 2 = WLAN 5 GHz Radio State * G4 = radio disable input (HI enabled, LO disabled) */ gc = gm = 0; /* Allocate GPIOs for mimo antenna diversity feature */ if (wlc_hw->antsel_type == ANTSEL_2x3) { /* Enable antenna diversity, use 2x3 mode */ brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN, MHF3_ANTSEL_EN, BRCM_BAND_ALL); brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, MHF3_ANTSEL_MODE, BRCM_BAND_ALL); /* init superswitch control */ wlc_phy_antsel_init(wlc_hw->band->pi, false); } else if (wlc_hw->antsel_type == ANTSEL_2x4) { gm |= gc |= (BOARD_GPIO_12 | BOARD_GPIO_13); /* * The board itself is powered by these GPIOs * (when not sending pattern) so set them high */ bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_oe), (BOARD_GPIO_12 | BOARD_GPIO_13)); bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_out), (BOARD_GPIO_12 | BOARD_GPIO_13)); /* Enable antenna diversity, use 2x4 mode */ brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN, MHF3_ANTSEL_EN, BRCM_BAND_ALL); brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, 0, BRCM_BAND_ALL); /* Configure the desired clock to be 4Mhz */ brcms_b_write_shm(wlc_hw, M_ANTSEL_CLKDIV, ANTSEL_CLKDIV_4MHZ); } /* * gpio 9 controls the PA. ucode is responsible * for wiggling out and oe */ if (wlc_hw->boardflags & BFL_PACTRL) gm |= gc |= BOARD_GPIO_PACTRL; /* apply to gpiocontrol register */ ai_gpiocontrol(wlc_hw->sih, gm, gc, GPIO_DRV_PRIORITY); } static void brcms_ucode_write(struct brcms_hardware *wlc_hw, const __le32 ucode[], const size_t nbytes) { struct bcma_device *core = wlc_hw->d11core; uint i; uint count; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); count = (nbytes / sizeof(u32)); bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_AUTO_INC | OBJADDR_UCM_SEL); (void)bcma_read32(core, D11REGOFFS(objaddr)); for (i = 0; i < count; i++) bcma_write32(core, D11REGOFFS(objdata), le32_to_cpu(ucode[i])); } static void brcms_ucode_download(struct brcms_hardware *wlc_hw) { struct brcms_c_info *wlc; struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; wlc = wlc_hw->wlc; if (wlc_hw->ucode_loaded) return; if (D11REV_IS(wlc_hw->corerev, 23)) { if (BRCMS_ISNPHY(wlc_hw->band)) { brcms_ucode_write(wlc_hw, ucode->bcm43xx_16_mimo, ucode->bcm43xx_16_mimosz); wlc_hw->ucode_loaded = true; } else wiphy_err(wlc->wiphy, "%s: wl%d: unsupported phy in " "corerev %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } else if (D11REV_IS(wlc_hw->corerev, 24)) { if (BRCMS_ISLCNPHY(wlc_hw->band)) { brcms_ucode_write(wlc_hw, ucode->bcm43xx_24_lcn, ucode->bcm43xx_24_lcnsz); wlc_hw->ucode_loaded = true; } else { wiphy_err(wlc->wiphy, "%s: wl%d: unsupported phy in " "corerev %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } } } void brcms_b_txant_set(struct brcms_hardware *wlc_hw, u16 phytxant) { /* update sw state */ wlc_hw->bmac_phytxant = phytxant; /* push to ucode if up */ if (!wlc_hw->up) return; brcms_c_ucode_txant_set(wlc_hw); } u16 brcms_b_get_txant(struct brcms_hardware *wlc_hw) { return (u16) wlc_hw->wlc->stf->txant; } void brcms_b_antsel_type_set(struct brcms_hardware *wlc_hw, u8 antsel_type) { wlc_hw->antsel_type = antsel_type; /* Update the antsel type for phy module to use */ wlc_phy_antsel_type_set(wlc_hw->band->pi, antsel_type); } static void brcms_b_fifoerrors(struct brcms_hardware *wlc_hw) { bool fatal = false; uint unit; uint intstatus, idx; struct bcma_device *core = wlc_hw->d11core; struct wiphy *wiphy = wlc_hw->wlc->wiphy; unit = wlc_hw->unit; for (idx = 0; idx < NFIFO; idx++) { /* read intstatus register and ignore any non-error bits */ intstatus = bcma_read32(core, D11REGOFFS(intctrlregs[idx].intstatus)) & I_ERRORS; if (!intstatus) continue; BCMMSG(wlc_hw->wlc->wiphy, "wl%d: intstatus%d 0x%x\n", unit, idx, intstatus); if (intstatus & I_RO) { wiphy_err(wiphy, "wl%d: fifo %d: receive fifo " "overflow\n", unit, idx); fatal = true; } if (intstatus & I_PC) { wiphy_err(wiphy, "wl%d: fifo %d: descriptor error\n", unit, idx); fatal = true; } if (intstatus & I_PD) { wiphy_err(wiphy, "wl%d: fifo %d: data error\n", unit, idx); fatal = true; } if (intstatus & I_DE) { wiphy_err(wiphy, "wl%d: fifo %d: descriptor protocol " "error\n", unit, idx); fatal = true; } if (intstatus & I_RU) wiphy_err(wiphy, "wl%d: fifo %d: receive descriptor " "underflow\n", idx, unit); if (intstatus & I_XU) { wiphy_err(wiphy, "wl%d: fifo %d: transmit fifo " "underflow\n", idx, unit); fatal = true; } if (fatal) { brcms_fatal_error(wlc_hw->wlc->wl); /* big hammer */ break; } else bcma_write32(core, D11REGOFFS(intctrlregs[idx].intstatus), intstatus); } } void brcms_c_intrson(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; wlc->macintmask = wlc->defmacintmask; bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask); } u32 brcms_c_intrsoff(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; u32 macintmask; if (!wlc_hw->clk) return 0; macintmask = wlc->macintmask; /* isr can still happen */ bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), 0); (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(macintmask)); udelay(1); /* ensure int line is no longer driven */ wlc->macintmask = 0; /* return previous macintmask; resolve race between us and our isr */ return wlc->macintstatus ? 0 : macintmask; } void brcms_c_intrsrestore(struct brcms_c_info *wlc, u32 macintmask) { struct brcms_hardware *wlc_hw = wlc->hw; if (!wlc_hw->clk) return; wlc->macintmask = macintmask; bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask); } /* assumes that the d11 MAC is enabled */ static void brcms_b_tx_fifo_suspend(struct brcms_hardware *wlc_hw, uint tx_fifo) { u8 fifo = 1 << tx_fifo; /* Two clients of this code, 11h Quiet period and scanning. */ /* only suspend if not already suspended */ if ((wlc_hw->suspended_fifos & fifo) == fifo) return; /* force the core awake only if not already */ if (wlc_hw->suspended_fifos == 0) brcms_c_ucode_wake_override_set(wlc_hw, BRCMS_WAKE_OVERRIDE_TXFIFO); wlc_hw->suspended_fifos |= fifo; if (wlc_hw->di[tx_fifo]) { /* * Suspending AMPDU transmissions in the middle can cause * underflow which may result in mismatch between ucode and * driver so suspend the mac before suspending the FIFO */ if (BRCMS_PHY_11N_CAP(wlc_hw->band)) brcms_c_suspend_mac_and_wait(wlc_hw->wlc); dma_txsuspend(wlc_hw->di[tx_fifo]); if (BRCMS_PHY_11N_CAP(wlc_hw->band)) brcms_c_enable_mac(wlc_hw->wlc); } } static void brcms_b_tx_fifo_resume(struct brcms_hardware *wlc_hw, uint tx_fifo) { /* BMAC_NOTE: BRCMS_TX_FIFO_ENAB is done in brcms_c_dpc() for DMA case * but need to be done here for PIO otherwise the watchdog will catch * the inconsistency and fire */ /* Two clients of this code, 11h Quiet period and scanning. */ if (wlc_hw->di[tx_fifo]) dma_txresume(wlc_hw->di[tx_fifo]); /* allow core to sleep again */ if (wlc_hw->suspended_fifos == 0) return; else { wlc_hw->suspended_fifos &= ~(1 << tx_fifo); if (wlc_hw->suspended_fifos == 0) brcms_c_ucode_wake_override_clear(wlc_hw, BRCMS_WAKE_OVERRIDE_TXFIFO); } } /* precondition: requires the mac core to be enabled */ static void brcms_b_mute(struct brcms_hardware *wlc_hw, bool mute_tx) { static const u8 null_ether_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; if (mute_tx) { /* suspend tx fifos */ brcms_b_tx_fifo_suspend(wlc_hw, TX_DATA_FIFO); brcms_b_tx_fifo_suspend(wlc_hw, TX_CTL_FIFO); brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_BK_FIFO); brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_VI_FIFO); /* zero the address match register so we do not send ACKs */ brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, null_ether_addr); } else { /* resume tx fifos */ brcms_b_tx_fifo_resume(wlc_hw, TX_DATA_FIFO); brcms_b_tx_fifo_resume(wlc_hw, TX_CTL_FIFO); brcms_b_tx_fifo_resume(wlc_hw, TX_AC_BK_FIFO); brcms_b_tx_fifo_resume(wlc_hw, TX_AC_VI_FIFO); /* Restore address */ brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET, wlc_hw->etheraddr); } wlc_phy_mute_upd(wlc_hw->band->pi, mute_tx, 0); if (mute_tx) brcms_c_ucode_mute_override_set(wlc_hw); else brcms_c_ucode_mute_override_clear(wlc_hw); } void brcms_c_mute(struct brcms_c_info *wlc, bool mute_tx) { brcms_b_mute(wlc->hw, mute_tx); } /* * Read and clear macintmask and macintstatus and intstatus registers. * This routine should be called with interrupts off * Return: * -1 if brcms_deviceremoved(wlc) evaluates to true; * 0 if the interrupt is not for us, or we are in some special cases; * device interrupt status bits otherwise. */ static inline u32 wlc_intstatus(struct brcms_c_info *wlc, bool in_isr) { struct brcms_hardware *wlc_hw = wlc->hw; struct bcma_device *core = wlc_hw->d11core; u32 macintstatus; /* macintstatus includes a DMA interrupt summary bit */ macintstatus = bcma_read32(core, D11REGOFFS(macintstatus)); BCMMSG(wlc->wiphy, "wl%d: macintstatus: 0x%x\n", wlc_hw->unit, macintstatus); /* detect cardbus removed, in power down(suspend) and in reset */ if (brcms_deviceremoved(wlc)) return -1; /* brcms_deviceremoved() succeeds even when the core is still resetting, * handle that case here. */ if (macintstatus == 0xffffffff) return 0; /* defer unsolicited interrupts */ macintstatus &= (in_isr ? wlc->macintmask : wlc->defmacintmask); /* if not for us */ if (macintstatus == 0) return 0; /* interrupts are already turned off for CFE build * Caution: For CFE Turning off the interrupts again has some undesired * consequences */ /* turn off the interrupts */ bcma_write32(core, D11REGOFFS(macintmask), 0); (void)bcma_read32(core, D11REGOFFS(macintmask)); wlc->macintmask = 0; /* clear device interrupts */ bcma_write32(core, D11REGOFFS(macintstatus), macintstatus); /* MI_DMAINT is indication of non-zero intstatus */ if (macintstatus & MI_DMAINT) /* * only fifo interrupt enabled is I_RI in * RX_FIFO. If MI_DMAINT is set, assume it * is set and clear the interrupt. */ bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intstatus), DEF_RXINTMASK); return macintstatus; } /* Update wlc->macintstatus and wlc->intstatus[]. */ /* Return true if they are updated successfully. false otherwise */ bool brcms_c_intrsupd(struct brcms_c_info *wlc) { u32 macintstatus; /* read and clear macintstatus and intstatus registers */ macintstatus = wlc_intstatus(wlc, false); /* device is removed */ if (macintstatus == 0xffffffff) return false; /* update interrupt status in software */ wlc->macintstatus |= macintstatus; return true; } /* * First-level interrupt processing. * Return true if this was our interrupt, false otherwise. * *wantdpc will be set to true if further brcms_c_dpc() processing is required, * false otherwise. */ bool brcms_c_isr(struct brcms_c_info *wlc, bool *wantdpc) { struct brcms_hardware *wlc_hw = wlc->hw; u32 macintstatus; *wantdpc = false; if (!wlc_hw->up || !wlc->macintmask) return false; /* read and clear macintstatus and intstatus registers */ macintstatus = wlc_intstatus(wlc, true); if (macintstatus == 0xffffffff) wiphy_err(wlc->wiphy, "DEVICEREMOVED detected in the ISR code" " path\n"); /* it is not for us */ if (macintstatus == 0) return false; *wantdpc = true; /* save interrupt status bits */ wlc->macintstatus = macintstatus; return true; } void brcms_c_suspend_mac_and_wait(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; struct bcma_device *core = wlc_hw->d11core; u32 mc, mi; struct wiphy *wiphy = wlc->wiphy; BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit, wlc_hw->band->bandunit); /* * Track overlapping suspend requests */ wlc_hw->mac_suspend_depth++; if (wlc_hw->mac_suspend_depth > 1) return; /* force the core awake */ brcms_c_ucode_wake_override_set(wlc_hw, BRCMS_WAKE_OVERRIDE_MACSUSPEND); mc = bcma_read32(core, D11REGOFFS(maccontrol)); if (mc == 0xffffffff) { wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit, __func__); brcms_down(wlc->wl); return; } WARN_ON(mc & MCTL_PSM_JMP_0); WARN_ON(!(mc & MCTL_PSM_RUN)); WARN_ON(!(mc & MCTL_EN_MAC)); mi = bcma_read32(core, D11REGOFFS(macintstatus)); if (mi == 0xffffffff) { wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit, __func__); brcms_down(wlc->wl); return; } WARN_ON(mi & MI_MACSSPNDD); brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, 0); SPINWAIT(!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD), BRCMS_MAX_MAC_SUSPEND); if (!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD)) { wiphy_err(wiphy, "wl%d: wlc_suspend_mac_and_wait: waited %d uS" " and MI_MACSSPNDD is still not on.\n", wlc_hw->unit, BRCMS_MAX_MAC_SUSPEND); wiphy_err(wiphy, "wl%d: psmdebug 0x%08x, phydebug 0x%08x, " "psm_brc 0x%04x\n", wlc_hw->unit, bcma_read32(core, D11REGOFFS(psmdebug)), bcma_read32(core, D11REGOFFS(phydebug)), bcma_read16(core, D11REGOFFS(psm_brc))); } mc = bcma_read32(core, D11REGOFFS(maccontrol)); if (mc == 0xffffffff) { wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit, __func__); brcms_down(wlc->wl); return; } WARN_ON(mc & MCTL_PSM_JMP_0); WARN_ON(!(mc & MCTL_PSM_RUN)); WARN_ON(mc & MCTL_EN_MAC); } void brcms_c_enable_mac(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; struct bcma_device *core = wlc_hw->d11core; u32 mc, mi; BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit, wlc->band->bandunit); /* * Track overlapping suspend requests */ wlc_hw->mac_suspend_depth--; if (wlc_hw->mac_suspend_depth > 0) return; mc = bcma_read32(core, D11REGOFFS(maccontrol)); WARN_ON(mc & MCTL_PSM_JMP_0); WARN_ON(mc & MCTL_EN_MAC); WARN_ON(!(mc & MCTL_PSM_RUN)); brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, MCTL_EN_MAC); bcma_write32(core, D11REGOFFS(macintstatus), MI_MACSSPNDD); mc = bcma_read32(core, D11REGOFFS(maccontrol)); WARN_ON(mc & MCTL_PSM_JMP_0); WARN_ON(!(mc & MCTL_EN_MAC)); WARN_ON(!(mc & MCTL_PSM_RUN)); mi = bcma_read32(core, D11REGOFFS(macintstatus)); WARN_ON(mi & MI_MACSSPNDD); brcms_c_ucode_wake_override_clear(wlc_hw, BRCMS_WAKE_OVERRIDE_MACSUSPEND); } void brcms_b_band_stf_ss_set(struct brcms_hardware *wlc_hw, u8 stf_mode) { wlc_hw->hw_stf_ss_opmode = stf_mode; if (wlc_hw->clk) brcms_upd_ofdm_pctl1_table(wlc_hw); } static bool brcms_b_validate_chip_access(struct brcms_hardware *wlc_hw) { struct bcma_device *core = wlc_hw->d11core; u32 w, val; struct wiphy *wiphy = wlc_hw->wlc->wiphy; BCMMSG(wiphy, "wl%d\n", wlc_hw->unit); /* Validate dchip register access */ bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); w = bcma_read32(core, D11REGOFFS(objdata)); /* Can we write and read back a 32bit register? */ bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); bcma_write32(core, D11REGOFFS(objdata), (u32) 0xaa5555aa); bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); val = bcma_read32(core, D11REGOFFS(objdata)); if (val != (u32) 0xaa5555aa) { wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, " "expected 0xaa5555aa\n", wlc_hw->unit, val); return false; } bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); bcma_write32(core, D11REGOFFS(objdata), (u32) 0x55aaaa55); bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); val = bcma_read32(core, D11REGOFFS(objdata)); if (val != (u32) 0x55aaaa55) { wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, " "expected 0x55aaaa55\n", wlc_hw->unit, val); return false; } bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0); (void)bcma_read32(core, D11REGOFFS(objaddr)); bcma_write32(core, D11REGOFFS(objdata), w); /* clear CFPStart */ bcma_write32(core, D11REGOFFS(tsf_cfpstart), 0); w = bcma_read32(core, D11REGOFFS(maccontrol)); if ((w != (MCTL_IHR_EN | MCTL_WAKE)) && (w != (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE))) { wiphy_err(wiphy, "wl%d: validate_chip_access: maccontrol = " "0x%x, expected 0x%x or 0x%x\n", wlc_hw->unit, w, (MCTL_IHR_EN | MCTL_WAKE), (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE)); return false; } return true; } #define PHYPLL_WAIT_US 100000 void brcms_b_core_phypll_ctl(struct brcms_hardware *wlc_hw, bool on) { struct bcma_device *core = wlc_hw->d11core; u32 tmp; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); tmp = 0; if (on) { if ((ai_get_chip_id(wlc_hw->sih) == BCM4313_CHIP_ID)) { bcma_set32(core, D11REGOFFS(clk_ctl_st), CCS_ERSRC_REQ_HT | CCS_ERSRC_REQ_D11PLL | CCS_ERSRC_REQ_PHYPLL); SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) & CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT, PHYPLL_WAIT_US); tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st)); if ((tmp & CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT) wiphy_err(wlc_hw->wlc->wiphy, "%s: turn on PHY" " PLL failed\n", __func__); } else { bcma_set32(core, D11REGOFFS(clk_ctl_st), tmp | CCS_ERSRC_REQ_D11PLL | CCS_ERSRC_REQ_PHYPLL); SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) & (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL)) != (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL), PHYPLL_WAIT_US); tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st)); if ((tmp & (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL)) != (CCS_ERSRC_AVAIL_D11PLL | CCS_ERSRC_AVAIL_PHYPLL)) wiphy_err(wlc_hw->wlc->wiphy, "%s: turn on " "PHY PLL failed\n", __func__); } } else { /* * Since the PLL may be shared, other cores can still * be requesting it; so we'll deassert the request but * not wait for status to comply. */ bcma_mask32(core, D11REGOFFS(clk_ctl_st), ~CCS_ERSRC_REQ_PHYPLL); (void)bcma_read32(core, D11REGOFFS(clk_ctl_st)); } } static void brcms_c_coredisable(struct brcms_hardware *wlc_hw) { bool dev_gone; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); dev_gone = brcms_deviceremoved(wlc_hw->wlc); if (dev_gone) return; if (wlc_hw->noreset) return; /* radio off */ wlc_phy_switch_radio(wlc_hw->band->pi, OFF); /* turn off analog core */ wlc_phy_anacore(wlc_hw->band->pi, OFF); /* turn off PHYPLL to save power */ brcms_b_core_phypll_ctl(wlc_hw, false); wlc_hw->clk = false; bcma_core_disable(wlc_hw->d11core, 0); wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); } static void brcms_c_flushqueues(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; uint i; /* free any posted tx packets */ for (i = 0; i < NFIFO; i++) if (wlc_hw->di[i]) { dma_txreclaim(wlc_hw->di[i], DMA_RANGE_ALL); wlc->core->txpktpend[i] = 0; BCMMSG(wlc->wiphy, "pktpend fifo %d clrd\n", i); } /* free any posted rx packets */ dma_rxreclaim(wlc_hw->di[RX_FIFO]); } static u16 brcms_b_read_objmem(struct brcms_hardware *wlc_hw, uint offset, u32 sel) { struct bcma_device *core = wlc_hw->d11core; u16 objoff = D11REGOFFS(objdata); bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2)); (void)bcma_read32(core, D11REGOFFS(objaddr)); if (offset & 2) objoff += 2; return bcma_read16(core, objoff); ; } static void brcms_b_write_objmem(struct brcms_hardware *wlc_hw, uint offset, u16 v, u32 sel) { struct bcma_device *core = wlc_hw->d11core; u16 objoff = D11REGOFFS(objdata); bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2)); (void)bcma_read32(core, D11REGOFFS(objaddr)); if (offset & 2) objoff += 2; bcma_write16(core, objoff, v); } /* * Read a single u16 from shared memory. * SHM 'offset' needs to be an even address */ u16 brcms_b_read_shm(struct brcms_hardware *wlc_hw, uint offset) { return brcms_b_read_objmem(wlc_hw, offset, OBJADDR_SHM_SEL); } /* * Write a single u16 to shared memory. * SHM 'offset' needs to be an even address */ void brcms_b_write_shm(struct brcms_hardware *wlc_hw, uint offset, u16 v) { brcms_b_write_objmem(wlc_hw, offset, v, OBJADDR_SHM_SEL); } /* * Copy a buffer to shared memory of specified type . * SHM 'offset' needs to be an even address and * Buffer length 'len' must be an even number of bytes * 'sel' selects the type of memory */ void brcms_b_copyto_objmem(struct brcms_hardware *wlc_hw, uint offset, const void *buf, int len, u32 sel) { u16 v; const u8 *p = (const u8 *)buf; int i; if (len <= 0 || (offset & 1) || (len & 1)) return; for (i = 0; i < len; i += 2) { v = p[i] | (p[i + 1] << 8); brcms_b_write_objmem(wlc_hw, offset + i, v, sel); } } /* * Copy a piece of shared memory of specified type to a buffer . * SHM 'offset' needs to be an even address and * Buffer length 'len' must be an even number of bytes * 'sel' selects the type of memory */ void brcms_b_copyfrom_objmem(struct brcms_hardware *wlc_hw, uint offset, void *buf, int len, u32 sel) { u16 v; u8 *p = (u8 *) buf; int i; if (len <= 0 || (offset & 1) || (len & 1)) return; for (i = 0; i < len; i += 2) { v = brcms_b_read_objmem(wlc_hw, offset + i, sel); p[i] = v & 0xFF; p[i + 1] = (v >> 8) & 0xFF; } } /* Copy a buffer to shared memory. * SHM 'offset' needs to be an even address and * Buffer length 'len' must be an even number of bytes */ static void brcms_c_copyto_shm(struct brcms_c_info *wlc, uint offset, const void *buf, int len) { brcms_b_copyto_objmem(wlc->hw, offset, buf, len, OBJADDR_SHM_SEL); } static void brcms_b_retrylimit_upd(struct brcms_hardware *wlc_hw, u16 SRL, u16 LRL) { wlc_hw->SRL = SRL; wlc_hw->LRL = LRL; /* write retry limit to SCR, shouldn't need to suspend */ if (wlc_hw->up) { bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_SRC_LMT); (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->SRL); bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_LRC_LMT); (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr)); bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->LRL); } } static void brcms_b_pllreq(struct brcms_hardware *wlc_hw, bool set, u32 req_bit) { if (set) { if (mboolisset(wlc_hw->pllreq, req_bit)) return; mboolset(wlc_hw->pllreq, req_bit); if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) { if (!wlc_hw->sbclk) brcms_b_xtal(wlc_hw, ON); } } else { if (!mboolisset(wlc_hw->pllreq, req_bit)) return; mboolclr(wlc_hw->pllreq, req_bit); if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) { if (wlc_hw->sbclk) brcms_b_xtal(wlc_hw, OFF); } } } static void brcms_b_antsel_set(struct brcms_hardware *wlc_hw, u32 antsel_avail) { wlc_hw->antsel_avail = antsel_avail; } /* * conditions under which the PM bit should be set in outgoing frames * and STAY_AWAKE is meaningful */ static bool brcms_c_ps_allowed(struct brcms_c_info *wlc) { struct brcms_bss_cfg *cfg = wlc->bsscfg; /* disallow PS when one of the following global conditions meets */ if (!wlc->pub->associated) return false; /* disallow PS when one of these meets when not scanning */ if (wlc->filter_flags & FIF_PROMISC_IN_BSS) return false; if (cfg->associated) { /* * disallow PS when one of the following * bsscfg specific conditions meets */ if (!cfg->BSS) return false; return false; } return true; } static void brcms_c_statsupd(struct brcms_c_info *wlc) { int i; struct macstat macstats; #ifdef BCMDBG u16 delta; u16 rxf0ovfl; u16 txfunfl[NFIFO]; #endif /* BCMDBG */ /* if driver down, make no sense to update stats */ if (!wlc->pub->up) return; #ifdef BCMDBG /* save last rx fifo 0 overflow count */ rxf0ovfl = wlc->core->macstat_snapshot->rxf0ovfl; /* save last tx fifo underflow count */ for (i = 0; i < NFIFO; i++) txfunfl[i] = wlc->core->macstat_snapshot->txfunfl[i]; #endif /* BCMDBG */ /* Read mac stats from contiguous shared memory */ brcms_b_copyfrom_objmem(wlc->hw, M_UCODE_MACSTAT, &macstats, sizeof(struct macstat), OBJADDR_SHM_SEL); #ifdef BCMDBG /* check for rx fifo 0 overflow */ delta = (u16) (wlc->core->macstat_snapshot->rxf0ovfl - rxf0ovfl); if (delta) wiphy_err(wlc->wiphy, "wl%d: %u rx fifo 0 overflows!\n", wlc->pub->unit, delta); /* check for tx fifo underflows */ for (i = 0; i < NFIFO; i++) { delta = (u16) (wlc->core->macstat_snapshot->txfunfl[i] - txfunfl[i]); if (delta) wiphy_err(wlc->wiphy, "wl%d: %u tx fifo %d underflows!" "\n", wlc->pub->unit, delta, i); } #endif /* BCMDBG */ /* merge counters from dma module */ for (i = 0; i < NFIFO; i++) { if (wlc->hw->di[i]) dma_counterreset(wlc->hw->di[i]); } } static void brcms_b_reset(struct brcms_hardware *wlc_hw) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); /* reset the core */ if (!brcms_deviceremoved(wlc_hw->wlc)) brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); /* purge the dma rings */ brcms_c_flushqueues(wlc_hw->wlc); } void brcms_c_reset(struct brcms_c_info *wlc) { BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* slurp up hw mac counters before core reset */ brcms_c_statsupd(wlc); /* reset our snapshot of macstat counters */ memset((char *)wlc->core->macstat_snapshot, 0, sizeof(struct macstat)); brcms_b_reset(wlc->hw); } /* Return the channel the driver should initialize during brcms_c_init. * the channel may have to be changed from the currently configured channel * if other configurations are in conflict (bandlocked, 11n mode disabled, * invalid channel for current country, etc.) */ static u16 brcms_c_init_chanspec(struct brcms_c_info *wlc) { u16 chanspec = 1 | WL_CHANSPEC_BW_20 | WL_CHANSPEC_CTL_SB_NONE | WL_CHANSPEC_BAND_2G; return chanspec; } void brcms_c_init_scb(struct scb *scb) { int i; memset(scb, 0, sizeof(struct scb)); scb->flags = SCB_WMECAP | SCB_HTCAP; for (i = 0; i < NUMPRIO; i++) { scb->seqnum[i] = 0; scb->seqctl[i] = 0xFFFF; } scb->seqctl_nonqos = 0xFFFF; scb->magic = SCB_MAGIC; } /* d11 core init * reset PSM * download ucode/PCM * let ucode run to suspended * download ucode inits * config other core registers * init dma */ static void brcms_b_coreinit(struct brcms_c_info *wlc) { struct brcms_hardware *wlc_hw = wlc->hw; struct bcma_device *core = wlc_hw->d11core; u32 sflags; u32 bcnint_us; uint i = 0; bool fifosz_fixup = false; int err = 0; u16 buf[NFIFO]; struct wiphy *wiphy = wlc->wiphy; struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode; BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit); /* reset PSM */ brcms_b_mctrl(wlc_hw, ~0, (MCTL_IHR_EN | MCTL_PSM_JMP_0 | MCTL_WAKE)); brcms_ucode_download(wlc_hw); /* * FIFOSZ fixup. driver wants to controls the fifo allocation. */ fifosz_fixup = true; /* let the PSM run to the suspended state, set mode to BSS STA */ bcma_write32(core, D11REGOFFS(macintstatus), -1); brcms_b_mctrl(wlc_hw, ~0, (MCTL_IHR_EN | MCTL_INFRA | MCTL_PSM_RUN | MCTL_WAKE)); /* wait for ucode to self-suspend after auto-init */ SPINWAIT(((bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD) == 0), 1000 * 1000); if ((bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD) == 0) wiphy_err(wiphy, "wl%d: wlc_coreinit: ucode did not self-" "suspend!\n", wlc_hw->unit); brcms_c_gpio_init(wlc); sflags = bcma_aread32(core, BCMA_IOST); if (D11REV_IS(wlc_hw->corerev, 23)) { if (BRCMS_ISNPHY(wlc_hw->band)) brcms_c_write_inits(wlc_hw, ucode->d11n0initvals16); else wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev" " %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } else if (D11REV_IS(wlc_hw->corerev, 24)) { if (BRCMS_ISLCNPHY(wlc_hw->band)) brcms_c_write_inits(wlc_hw, ucode->d11lcn0initvals24); else wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev" " %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } else { wiphy_err(wiphy, "%s: wl%d: unsupported corerev %d\n", __func__, wlc_hw->unit, wlc_hw->corerev); } /* For old ucode, txfifo sizes needs to be modified(increased) */ if (fifosz_fixup == true) brcms_b_corerev_fifofixup(wlc_hw); /* check txfifo allocations match between ucode and driver */ buf[TX_AC_BE_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE0); if (buf[TX_AC_BE_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]) { i = TX_AC_BE_FIFO; err = -1; } buf[TX_AC_VI_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE1); if (buf[TX_AC_VI_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]) { i = TX_AC_VI_FIFO; err = -1; } buf[TX_AC_BK_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE2); buf[TX_AC_VO_FIFO] = (buf[TX_AC_BK_FIFO] >> 8) & 0xff; buf[TX_AC_BK_FIFO] &= 0xff; if (buf[TX_AC_BK_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BK_FIFO]) { i = TX_AC_BK_FIFO; err = -1; } if (buf[TX_AC_VO_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO]) { i = TX_AC_VO_FIFO; err = -1; } buf[TX_BCMC_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE3); buf[TX_ATIM_FIFO] = (buf[TX_BCMC_FIFO] >> 8) & 0xff; buf[TX_BCMC_FIFO] &= 0xff; if (buf[TX_BCMC_FIFO] != wlc_hw->xmtfifo_sz[TX_BCMC_FIFO]) { i = TX_BCMC_FIFO; err = -1; } if (buf[TX_ATIM_FIFO] != wlc_hw->xmtfifo_sz[TX_ATIM_FIFO]) { i = TX_ATIM_FIFO; err = -1; } if (err != 0) wiphy_err(wiphy, "wlc_coreinit: txfifo mismatch: ucode size %d" " driver size %d index %d\n", buf[i], wlc_hw->xmtfifo_sz[i], i); /* make sure we can still talk to the mac */ WARN_ON(bcma_read32(core, D11REGOFFS(maccontrol)) == 0xffffffff); /* band-specific inits done by wlc_bsinit() */ /* Set up frame burst size and antenna swap threshold init values */ brcms_b_write_shm(wlc_hw, M_MBURST_SIZE, MAXTXFRAMEBURST); brcms_b_write_shm(wlc_hw, M_MAX_ANTCNT, ANTCNT); /* enable one rx interrupt per received frame */ bcma_write32(core, D11REGOFFS(intrcvlazy[0]), (1 << IRL_FC_SHIFT)); /* set the station mode (BSS STA) */ brcms_b_mctrl(wlc_hw, (MCTL_INFRA | MCTL_DISCARD_PMQ | MCTL_AP), (MCTL_INFRA | MCTL_DISCARD_PMQ)); /* set up Beacon interval */ bcnint_us = 0x8000 << 10; bcma_write32(core, D11REGOFFS(tsf_cfprep), (bcnint_us << CFPREP_CBI_SHIFT)); bcma_write32(core, D11REGOFFS(tsf_cfpstart), bcnint_us); bcma_write32(core, D11REGOFFS(macintstatus), MI_GP1); /* write interrupt mask */ bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intmask), DEF_RXINTMASK); /* allow the MAC to control the PHY clock (dynamic on/off) */ brcms_b_macphyclk_set(wlc_hw, ON); /* program dynamic clock control fast powerup delay register */ wlc->fastpwrup_dly = ai_clkctl_fast_pwrup_delay(wlc_hw->sih); bcma_write16(core, D11REGOFFS(scc_fastpwrup_dly), wlc->fastpwrup_dly); /* tell the ucode the corerev */ brcms_b_write_shm(wlc_hw, M_MACHW_VER, (u16) wlc_hw->corerev); /* tell the ucode MAC capabilities */ brcms_b_write_shm(wlc_hw, M_MACHW_CAP_L, (u16) (wlc_hw->machwcap & 0xffff)); brcms_b_write_shm(wlc_hw, M_MACHW_CAP_H, (u16) ((wlc_hw-> machwcap >> 16) & 0xffff)); /* write retry limits to SCR, this done after PSM init */ bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_SRC_LMT); (void)bcma_read32(core, D11REGOFFS(objaddr)); bcma_write32(core, D11REGOFFS(objdata), wlc_hw->SRL); bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SCR_SEL | S_DOT11_LRC_LMT); (void)bcma_read32(core, D11REGOFFS(objaddr)); bcma_write32(core, D11REGOFFS(objdata), wlc_hw->LRL); /* write rate fallback retry limits */ brcms_b_write_shm(wlc_hw, M_SFRMTXCNTFBRTHSD, wlc_hw->SFBL); brcms_b_write_shm(wlc_hw, M_LFRMTXCNTFBRTHSD, wlc_hw->LFBL); bcma_mask16(core, D11REGOFFS(ifs_ctl), 0x0FFF); bcma_write16(core, D11REGOFFS(ifs_aifsn), EDCF_AIFSN_MIN); /* init the tx dma engines */ for (i = 0; i < NFIFO; i++) { if (wlc_hw->di[i]) dma_txinit(wlc_hw->di[i]); } /* init the rx dma engine(s) and post receive buffers */ dma_rxinit(wlc_hw->di[RX_FIFO]); dma_rxfill(wlc_hw->di[RX_FIFO]); } void static brcms_b_init(struct brcms_hardware *wlc_hw, u16 chanspec) { u32 macintmask; bool fastclk; struct brcms_c_info *wlc = wlc_hw->wlc; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); /* request FAST clock if not on */ fastclk = wlc_hw->forcefastclk; if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_FAST); /* disable interrupts */ macintmask = brcms_intrsoff(wlc->wl); /* set up the specified band and chanspec */ brcms_c_setxband(wlc_hw, chspec_bandunit(chanspec)); wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec); /* do one-time phy inits and calibration */ wlc_phy_cal_init(wlc_hw->band->pi); /* core-specific initialization */ brcms_b_coreinit(wlc); /* band-specific inits */ brcms_b_bsinit(wlc, chanspec); /* restore macintmask */ brcms_intrsrestore(wlc->wl, macintmask); /* seed wake_override with BRCMS_WAKE_OVERRIDE_MACSUSPEND since the mac * is suspended and brcms_c_enable_mac() will clear this override bit. */ mboolset(wlc_hw->wake_override, BRCMS_WAKE_OVERRIDE_MACSUSPEND); /* * initialize mac_suspend_depth to 1 to match ucode * initial suspended state */ wlc_hw->mac_suspend_depth = 1; /* restore the clk */ if (!fastclk) brcms_b_clkctl_clk(wlc_hw, CLK_DYNAMIC); } static void brcms_c_set_phy_chanspec(struct brcms_c_info *wlc, u16 chanspec) { /* Save our copy of the chanspec */ wlc->chanspec = chanspec; /* Set the chanspec and power limits for this locale */ brcms_c_channel_set_chanspec(wlc->cmi, chanspec, BRCMS_TXPWR_MAX); if (wlc->stf->ss_algosel_auto) brcms_c_stf_ss_algo_channel_get(wlc, &wlc->stf->ss_algo_channel, chanspec); brcms_c_stf_ss_update(wlc, wlc->band); } static void brcms_default_rateset(struct brcms_c_info *wlc, struct brcms_c_rateset *rs) { brcms_c_rateset_default(rs, NULL, wlc->band->phytype, wlc->band->bandtype, false, BRCMS_RATE_MASK_FULL, (bool) (wlc->pub->_n_enab & SUPPORT_11N), brcms_chspec_bw(wlc->default_bss->chanspec), wlc->stf->txstreams); } /* derive wlc->band->basic_rate[] table from 'rateset' */ static void brcms_c_rate_lookup_init(struct brcms_c_info *wlc, struct brcms_c_rateset *rateset) { u8 rate; u8 mandatory; u8 cck_basic = 0; u8 ofdm_basic = 0; u8 *br = wlc->band->basic_rate; uint i; /* incoming rates are in 500kbps units as in 802.11 Supported Rates */ memset(br, 0, BRCM_MAXRATE + 1); /* For each basic rate in the rates list, make an entry in the * best basic lookup. */ for (i = 0; i < rateset->count; i++) { /* only make an entry for a basic rate */ if (!(rateset->rates[i] & BRCMS_RATE_FLAG)) continue; /* mask off basic bit */ rate = (rateset->rates[i] & BRCMS_RATE_MASK); if (rate > BRCM_MAXRATE) { wiphy_err(wlc->wiphy, "brcms_c_rate_lookup_init: " "invalid rate 0x%X in rate set\n", rateset->rates[i]); continue; } br[rate] = rate; } /* The rate lookup table now has non-zero entries for each * basic rate, equal to the basic rate: br[basicN] = basicN * * To look up the best basic rate corresponding to any * particular rate, code can use the basic_rate table * like this * * basic_rate = wlc->band->basic_rate[tx_rate] * * Make sure there is a best basic rate entry for * every rate by walking up the table from low rates * to high, filling in holes in the lookup table */ for (i = 0; i < wlc->band->hw_rateset.count; i++) { rate = wlc->band->hw_rateset.rates[i]; if (br[rate] != 0) { /* This rate is a basic rate. * Keep track of the best basic rate so far by * modulation type. */ if (is_ofdm_rate(rate)) ofdm_basic = rate; else cck_basic = rate; continue; } /* This rate is not a basic rate so figure out the * best basic rate less than this rate and fill in * the hole in the table */ br[rate] = is_ofdm_rate(rate) ? ofdm_basic : cck_basic; if (br[rate] != 0) continue; if (is_ofdm_rate(rate)) { /* * In 11g and 11a, the OFDM mandatory rates * are 6, 12, and 24 Mbps */ if (rate >= BRCM_RATE_24M) mandatory = BRCM_RATE_24M; else if (rate >= BRCM_RATE_12M) mandatory = BRCM_RATE_12M; else mandatory = BRCM_RATE_6M; } else { /* In 11b, all CCK rates are mandatory 1 - 11 Mbps */ mandatory = rate; } br[rate] = mandatory; } } static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc, u16 chanspec) { struct brcms_c_rateset default_rateset; uint parkband; uint i, band_order[2]; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* * We might have been bandlocked during down and the chip * power-cycled (hibernate). Figure out the right band to park on */ if (wlc->bandlocked || wlc->pub->_nbands == 1) { /* updated in brcms_c_bandlock() */ parkband = wlc->band->bandunit; band_order[0] = band_order[1] = parkband; } else { /* park on the band of the specified chanspec */ parkband = chspec_bandunit(chanspec); /* order so that parkband initialize last */ band_order[0] = parkband ^ 1; band_order[1] = parkband; } /* make each band operational, software state init */ for (i = 0; i < wlc->pub->_nbands; i++) { uint j = band_order[i]; wlc->band = wlc->bandstate[j]; brcms_default_rateset(wlc, &default_rateset); /* fill in hw_rate */ brcms_c_rateset_filter(&default_rateset, &wlc->band->hw_rateset, false, BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK, (bool) (wlc->pub->_n_enab & SUPPORT_11N)); /* init basic rate lookup */ brcms_c_rate_lookup_init(wlc, &default_rateset); } /* sync up phy/radio chanspec */ brcms_c_set_phy_chanspec(wlc, chanspec); } /* * Set or clear filtering related maccontrol bits based on * specified filter flags */ void brcms_c_mac_promisc(struct brcms_c_info *wlc, uint filter_flags) { u32 promisc_bits = 0; wlc->filter_flags = filter_flags; if (filter_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) promisc_bits |= MCTL_PROMISC; if (filter_flags & FIF_BCN_PRBRESP_PROMISC) promisc_bits |= MCTL_BCNS_PROMISC; if (filter_flags & FIF_FCSFAIL) promisc_bits |= MCTL_KEEPBADFCS; if (filter_flags & (FIF_CONTROL | FIF_PSPOLL)) promisc_bits |= MCTL_KEEPCONTROL; brcms_b_mctrl(wlc->hw, MCTL_PROMISC | MCTL_BCNS_PROMISC | MCTL_KEEPCONTROL | MCTL_KEEPBADFCS, promisc_bits); } /* * ucode, hwmac update * Channel dependent updates for ucode and hw */ static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc) { /* enable or disable any active IBSSs depending on whether or not * we are on the home channel */ if (wlc->home_chanspec == wlc_phy_chanspec_get(wlc->band->pi)) { if (wlc->pub->associated) { /* * BMAC_NOTE: This is something that should be fixed * in ucode inits. I think that the ucode inits set * up the bcn templates and shm values with a bogus * beacon. This should not be done in the inits. If * ucode needs to set up a beacon for testing, the * test routines should write it down, not expect the * inits to populate a bogus beacon. */ if (BRCMS_PHY_11N_CAP(wlc->band)) brcms_b_write_shm(wlc->hw, M_BCN_TXTSF_OFFSET, 0); } } else { /* disable an active IBSS if we are not on the home channel */ } } static void brcms_c_write_rate_shm(struct brcms_c_info *wlc, u8 rate, u8 basic_rate) { u8 phy_rate, index; u8 basic_phy_rate, basic_index; u16 dir_table, basic_table; u16 basic_ptr; /* Shared memory address for the table we are reading */ dir_table = is_ofdm_rate(basic_rate) ? M_RT_DIRMAP_A : M_RT_DIRMAP_B; /* Shared memory address for the table we are writing */ basic_table = is_ofdm_rate(rate) ? M_RT_BBRSMAP_A : M_RT_BBRSMAP_B; /* * for a given rate, the LS-nibble of the PLCP SIGNAL field is * the index into the rate table. */ phy_rate = rate_info[rate] & BRCMS_RATE_MASK; basic_phy_rate = rate_info[basic_rate] & BRCMS_RATE_MASK; index = phy_rate & 0xf; basic_index = basic_phy_rate & 0xf; /* Find the SHM pointer to the ACK rate entry by looking in the * Direct-map Table */ basic_ptr = brcms_b_read_shm(wlc->hw, (dir_table + basic_index * 2)); /* Update the SHM BSS-basic-rate-set mapping table with the pointer * to the correct basic rate for the given incoming rate */ brcms_b_write_shm(wlc->hw, (basic_table + index * 2), basic_ptr); } static const struct brcms_c_rateset * brcms_c_rateset_get_hwrs(struct brcms_c_info *wlc) { const struct brcms_c_rateset *rs_dflt; if (BRCMS_PHY_11N_CAP(wlc->band)) { if (wlc->band->bandtype == BRCM_BAND_5G) rs_dflt = &ofdm_mimo_rates; else rs_dflt = &cck_ofdm_mimo_rates; } else if (wlc->band->gmode) rs_dflt = &cck_ofdm_rates; else rs_dflt = &cck_rates; return rs_dflt; } static void brcms_c_set_ratetable(struct brcms_c_info *wlc) { const struct brcms_c_rateset *rs_dflt; struct brcms_c_rateset rs; u8 rate, basic_rate; uint i; rs_dflt = brcms_c_rateset_get_hwrs(wlc); brcms_c_rateset_copy(rs_dflt, &rs); brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams); /* walk the phy rate table and update SHM basic rate lookup table */ for (i = 0; i < rs.count; i++) { rate = rs.rates[i] & BRCMS_RATE_MASK; /* for a given rate brcms_basic_rate returns the rate at * which a response ACK/CTS should be sent. */ basic_rate = brcms_basic_rate(wlc, rate); if (basic_rate == 0) /* This should only happen if we are using a * restricted rateset. */ basic_rate = rs.rates[0] & BRCMS_RATE_MASK; brcms_c_write_rate_shm(wlc, rate, basic_rate); } } /* band-specific init */ static void brcms_c_bsinit(struct brcms_c_info *wlc) { BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc->pub->unit, wlc->band->bandunit); /* write ucode ACK/CTS rate table */ brcms_c_set_ratetable(wlc); /* update some band specific mac configuration */ brcms_c_ucode_mac_upd(wlc); /* init antenna selection */ brcms_c_antsel_init(wlc->asi); } /* formula: IDLE_BUSY_RATIO_X_16 = (100-duty_cycle)/duty_cycle*16 */ static int brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle, bool isOFDM, bool writeToShm) { int idle_busy_ratio_x_16 = 0; uint offset = isOFDM ? M_TX_IDLE_BUSY_RATIO_X_16_OFDM : M_TX_IDLE_BUSY_RATIO_X_16_CCK; if (duty_cycle > 100 || duty_cycle < 0) { wiphy_err(wlc->wiphy, "wl%d: duty cycle value off limit\n", wlc->pub->unit); return -EINVAL; } if (duty_cycle) idle_busy_ratio_x_16 = (100 - duty_cycle) * 16 / duty_cycle; /* Only write to shared memory when wl is up */ if (writeToShm) brcms_b_write_shm(wlc->hw, offset, (u16) idle_busy_ratio_x_16); if (isOFDM) wlc->tx_duty_cycle_ofdm = (u16) duty_cycle; else wlc->tx_duty_cycle_cck = (u16) duty_cycle; return 0; } /* * Initialize the base precedence map for dequeueing * from txq based on WME settings */ static void brcms_c_tx_prec_map_init(struct brcms_c_info *wlc) { wlc->tx_prec_map = BRCMS_PREC_BMP_ALL; memset(wlc->fifo2prec_map, 0, NFIFO * sizeof(u16)); wlc->fifo2prec_map[TX_AC_BK_FIFO] = BRCMS_PREC_BMP_AC_BK; wlc->fifo2prec_map[TX_AC_BE_FIFO] = BRCMS_PREC_BMP_AC_BE; wlc->fifo2prec_map[TX_AC_VI_FIFO] = BRCMS_PREC_BMP_AC_VI; wlc->fifo2prec_map[TX_AC_VO_FIFO] = BRCMS_PREC_BMP_AC_VO; } static void brcms_c_txflowcontrol_signal(struct brcms_c_info *wlc, struct brcms_txq_info *qi, bool on, int prio) { /* transmit flowcontrol is not yet implemented */ } static void brcms_c_txflowcontrol_reset(struct brcms_c_info *wlc) { struct brcms_txq_info *qi; for (qi = wlc->tx_queues; qi != NULL; qi = qi->next) { if (qi->stopped) { brcms_c_txflowcontrol_signal(wlc, qi, OFF, ALLPRIO); qi->stopped = 0; } } } /* push sw hps and wake state through hardware */ static void brcms_c_set_ps_ctrl(struct brcms_c_info *wlc) { u32 v1, v2; bool hps; bool awake_before; hps = brcms_c_ps_allowed(wlc); BCMMSG(wlc->wiphy, "wl%d: hps %d\n", wlc->pub->unit, hps); v1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol)); v2 = MCTL_WAKE; if (hps) v2 |= MCTL_HPS; brcms_b_mctrl(wlc->hw, MCTL_WAKE | MCTL_HPS, v2); awake_before = ((v1 & MCTL_WAKE) || ((v1 & MCTL_HPS) == 0)); if (!awake_before) brcms_b_wait_for_wake(wlc->hw); } /* * Write this BSS config's MAC address to core. * Updates RXE match engine. */ static int brcms_c_set_mac(struct brcms_bss_cfg *bsscfg) { int err = 0; struct brcms_c_info *wlc = bsscfg->wlc; /* enter the MAC addr into the RXE match registers */ brcms_c_set_addrmatch(wlc, RCM_MAC_OFFSET, bsscfg->cur_etheraddr); brcms_c_ampdu_macaddr_upd(wlc); return err; } /* Write the BSS config's BSSID address to core (set_bssid in d11procs.tcl). * Updates RXE match engine. */ static void brcms_c_set_bssid(struct brcms_bss_cfg *bsscfg) { /* we need to update BSSID in RXE match registers */ brcms_c_set_addrmatch(bsscfg->wlc, RCM_BSSID_OFFSET, bsscfg->BSSID); } static void brcms_b_set_shortslot(struct brcms_hardware *wlc_hw, bool shortslot) { wlc_hw->shortslot = shortslot; if (wlc_hw->band->bandtype == BRCM_BAND_2G && wlc_hw->up) { brcms_c_suspend_mac_and_wait(wlc_hw->wlc); brcms_b_update_slot_timing(wlc_hw, shortslot); brcms_c_enable_mac(wlc_hw->wlc); } } /* * Suspend the the MAC and update the slot timing * for standard 11b/g (20us slots) or shortslot 11g (9us slots). */ static void brcms_c_switch_shortslot(struct brcms_c_info *wlc, bool shortslot) { /* use the override if it is set */ if (wlc->shortslot_override != BRCMS_SHORTSLOT_AUTO) shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON); if (wlc->shortslot == shortslot) return; wlc->shortslot = shortslot; brcms_b_set_shortslot(wlc->hw, shortslot); } static void brcms_c_set_home_chanspec(struct brcms_c_info *wlc, u16 chanspec) { if (wlc->home_chanspec != chanspec) { wlc->home_chanspec = chanspec; if (wlc->bsscfg->associated) wlc->bsscfg->current_bss->chanspec = chanspec; } } void brcms_b_set_chanspec(struct brcms_hardware *wlc_hw, u16 chanspec, bool mute_tx, struct txpwr_limits *txpwr) { uint bandunit; BCMMSG(wlc_hw->wlc->wiphy, "wl%d: 0x%x\n", wlc_hw->unit, chanspec); wlc_hw->chanspec = chanspec; /* Switch bands if necessary */ if (wlc_hw->_nbands > 1) { bandunit = chspec_bandunit(chanspec); if (wlc_hw->band->bandunit != bandunit) { /* brcms_b_setband disables other bandunit, * use light band switch if not up yet */ if (wlc_hw->up) { wlc_phy_chanspec_radio_set(wlc_hw-> bandstate[bandunit]-> pi, chanspec); brcms_b_setband(wlc_hw, bandunit, chanspec); } else { brcms_c_setxband(wlc_hw, bandunit); } } } wlc_phy_initcal_enable(wlc_hw->band->pi, !mute_tx); if (!wlc_hw->up) { if (wlc_hw->clk) wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, chanspec); wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec); } else { wlc_phy_chanspec_set(wlc_hw->band->pi, chanspec); wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, chanspec); /* Update muting of the channel */ brcms_b_mute(wlc_hw, mute_tx); } } /* switch to and initialize new band */ static void brcms_c_setband(struct brcms_c_info *wlc, uint bandunit) { wlc->band = wlc->bandstate[bandunit]; if (!wlc->pub->up) return; /* wait for at least one beacon before entering sleeping state */ brcms_c_set_ps_ctrl(wlc); /* band-specific initializations */ brcms_c_bsinit(wlc); } static void brcms_c_set_chanspec(struct brcms_c_info *wlc, u16 chanspec) { uint bandunit; bool switchband = false; u16 old_chanspec = wlc->chanspec; if (!brcms_c_valid_chanspec_db(wlc->cmi, chanspec)) { wiphy_err(wlc->wiphy, "wl%d: %s: Bad channel %d\n", wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec)); return; } /* Switch bands if necessary */ if (wlc->pub->_nbands > 1) { bandunit = chspec_bandunit(chanspec); if (wlc->band->bandunit != bandunit || wlc->bandinit_pending) { switchband = true; if (wlc->bandlocked) { wiphy_err(wlc->wiphy, "wl%d: %s: chspec %d " "band is locked!\n", wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec)); return; } /* * should the setband call come after the * brcms_b_chanspec() ? if the setband updates * (brcms_c_bsinit) use low level calls to inspect and * set state, the state inspected may be from the wrong * band, or the following brcms_b_set_chanspec() may * undo the work. */ brcms_c_setband(wlc, bandunit); } } /* sync up phy/radio chanspec */ brcms_c_set_phy_chanspec(wlc, chanspec); /* init antenna selection */ if (brcms_chspec_bw(old_chanspec) != brcms_chspec_bw(chanspec)) { brcms_c_antsel_init(wlc->asi); /* Fix the hardware rateset based on bw. * Mainly add MCS32 for 40Mhz, remove MCS 32 for 20Mhz */ brcms_c_rateset_bw_mcs_filter(&wlc->band->hw_rateset, wlc->band->mimo_cap_40 ? brcms_chspec_bw(chanspec) : 0); } /* update some mac configuration since chanspec changed */ brcms_c_ucode_mac_upd(wlc); } /* * This function changes the phytxctl for beacon based on current * beacon ratespec AND txant setting as per this table: * ratespec CCK ant = wlc->stf->txant * OFDM ant = 3 */ void brcms_c_beacon_phytxctl_txant_upd(struct brcms_c_info *wlc, u32 bcn_rspec) { u16 phyctl; u16 phytxant = wlc->stf->phytxant; u16 mask = PHY_TXC_ANT_MASK; /* for non-siso rates or default setting, use the available chains */ if (BRCMS_PHY_11N_CAP(wlc->band)) phytxant = brcms_c_stf_phytxchain_sel(wlc, bcn_rspec); phyctl = brcms_b_read_shm(wlc->hw, M_BCN_PCTLWD); phyctl = (phyctl & ~mask) | phytxant; brcms_b_write_shm(wlc->hw, M_BCN_PCTLWD, phyctl); } /* * centralized protection config change function to simplify debugging, no * consistency checking this should be called only on changes to avoid overhead * in periodic function */ void brcms_c_protection_upd(struct brcms_c_info *wlc, uint idx, int val) { BCMMSG(wlc->wiphy, "idx %d, val %d\n", idx, val); switch (idx) { case BRCMS_PROT_G_SPEC: wlc->protection->_g = (bool) val; break; case BRCMS_PROT_G_OVR: wlc->protection->g_override = (s8) val; break; case BRCMS_PROT_G_USER: wlc->protection->gmode_user = (u8) val; break; case BRCMS_PROT_OVERLAP: wlc->protection->overlap = (s8) val; break; case BRCMS_PROT_N_USER: wlc->protection->nmode_user = (s8) val; break; case BRCMS_PROT_N_CFG: wlc->protection->n_cfg = (s8) val; break; case BRCMS_PROT_N_CFG_OVR: wlc->protection->n_cfg_override = (s8) val; break; case BRCMS_PROT_N_NONGF: wlc->protection->nongf = (bool) val; break; case BRCMS_PROT_N_NONGF_OVR: wlc->protection->nongf_override = (s8) val; break; case BRCMS_PROT_N_PAM_OVR: wlc->protection->n_pam_override = (s8) val; break; case BRCMS_PROT_N_OBSS: wlc->protection->n_obss = (bool) val; break; default: break; } } static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val) { if (wlc->pub->up) { brcms_c_update_beacon(wlc); brcms_c_update_probe_resp(wlc, true); } } static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val) { wlc->stf->ldpc = val; if (wlc->pub->up) { brcms_c_update_beacon(wlc); brcms_c_update_probe_resp(wlc, true); wlc_phy_ldpc_override_set(wlc->band->pi, (val ? true : false)); } } void brcms_c_wme_setparams(struct brcms_c_info *wlc, u16 aci, const struct ieee80211_tx_queue_params *params, bool suspend) { int i; struct shm_acparams acp_shm; u16 *shm_entry; /* Only apply params if the core is out of reset and has clocks */ if (!wlc->clk) { wiphy_err(wlc->wiphy, "wl%d: %s : no-clock\n", wlc->pub->unit, __func__); return; } memset((char *)&acp_shm, 0, sizeof(struct shm_acparams)); /* fill in shm ac params struct */ acp_shm.txop = params->txop; /* convert from units of 32us to us for ucode */ wlc->edcf_txop[aci & 0x3] = acp_shm.txop = EDCF_TXOP2USEC(acp_shm.txop); acp_shm.aifs = (params->aifs & EDCF_AIFSN_MASK); if (aci == IEEE80211_AC_VI && acp_shm.txop == 0 && acp_shm.aifs < EDCF_AIFSN_MAX) acp_shm.aifs++; if (acp_shm.aifs < EDCF_AIFSN_MIN || acp_shm.aifs > EDCF_AIFSN_MAX) { wiphy_err(wlc->wiphy, "wl%d: edcf_setparams: bad " "aifs %d\n", wlc->pub->unit, acp_shm.aifs); } else { acp_shm.cwmin = params->cw_min; acp_shm.cwmax = params->cw_max; acp_shm.cwcur = acp_shm.cwmin; acp_shm.bslots = bcma_read16(wlc->hw->d11core, D11REGOFFS(tsf_random)) & acp_shm.cwcur; acp_shm.reggap = acp_shm.bslots + acp_shm.aifs; /* Indicate the new params to the ucode */ acp_shm.status = brcms_b_read_shm(wlc->hw, (M_EDCF_QINFO + wme_ac2fifo[aci] * M_EDCF_QLEN + M_EDCF_STATUS_OFF)); acp_shm.status |= WME_STATUS_NEWAC; /* Fill in shm acparam table */ shm_entry = (u16 *) &acp_shm; for (i = 0; i < (int)sizeof(struct shm_acparams); i += 2) brcms_b_write_shm(wlc->hw, M_EDCF_QINFO + wme_ac2fifo[aci] * M_EDCF_QLEN + i, *shm_entry++); } if (suspend) { brcms_c_suspend_mac_and_wait(wlc); brcms_c_enable_mac(wlc); } } static void brcms_c_edcf_setparams(struct brcms_c_info *wlc, bool suspend) { u16 aci; int i_ac; struct ieee80211_tx_queue_params txq_pars; static const struct edcf_acparam default_edcf_acparams[] = { {EDCF_AC_BE_ACI_STA, EDCF_AC_BE_ECW_STA, EDCF_AC_BE_TXOP_STA}, {EDCF_AC_BK_ACI_STA, EDCF_AC_BK_ECW_STA, EDCF_AC_BK_TXOP_STA}, {EDCF_AC_VI_ACI_STA, EDCF_AC_VI_ECW_STA, EDCF_AC_VI_TXOP_STA}, {EDCF_AC_VO_ACI_STA, EDCF_AC_VO_ECW_STA, EDCF_AC_VO_TXOP_STA} }; /* ucode needs these parameters during its initialization */ const struct edcf_acparam *edcf_acp = &default_edcf_acparams[0]; for (i_ac = 0; i_ac < IEEE80211_NUM_ACS; i_ac++, edcf_acp++) { /* find out which ac this set of params applies to */ aci = (edcf_acp->ACI & EDCF_ACI_MASK) >> EDCF_ACI_SHIFT; /* fill in shm ac params struct */ txq_pars.txop = edcf_acp->TXOP; txq_pars.aifs = edcf_acp->ACI; /* CWmin = 2^(ECWmin) - 1 */ txq_pars.cw_min = EDCF_ECW2CW(edcf_acp->ECW & EDCF_ECWMIN_MASK); /* CWmax = 2^(ECWmax) - 1 */ txq_pars.cw_max = EDCF_ECW2CW((edcf_acp->ECW & EDCF_ECWMAX_MASK) >> EDCF_ECWMAX_SHIFT); brcms_c_wme_setparams(wlc, aci, &txq_pars, suspend); } if (suspend) { brcms_c_suspend_mac_and_wait(wlc); brcms_c_enable_mac(wlc); } } static void brcms_c_radio_monitor_start(struct brcms_c_info *wlc) { /* Don't start the timer if HWRADIO feature is disabled */ if (wlc->radio_monitor) return; wlc->radio_monitor = true; brcms_b_pllreq(wlc->hw, true, BRCMS_PLLREQ_RADIO_MON); brcms_add_timer(wlc->radio_timer, TIMER_INTERVAL_RADIOCHK, true); } static bool brcms_c_radio_monitor_stop(struct brcms_c_info *wlc) { if (!wlc->radio_monitor) return true; wlc->radio_monitor = false; brcms_b_pllreq(wlc->hw, false, BRCMS_PLLREQ_RADIO_MON); return brcms_del_timer(wlc->radio_timer); } /* read hwdisable state and propagate to wlc flag */ static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc) { if (wlc->pub->hw_off) return; if (brcms_b_radio_read_hwdisabled(wlc->hw)) mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE); else mboolclr(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE); } /* update hwradio status and return it */ bool brcms_c_check_radio_disabled(struct brcms_c_info *wlc) { brcms_c_radio_hwdisable_upd(wlc); return mboolisset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE) ? true : false; } /* periodical query hw radio button while driver is "down" */ static void brcms_c_radio_timer(void *arg) { struct brcms_c_info *wlc = (struct brcms_c_info *) arg; if (brcms_deviceremoved(wlc)) { wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit, __func__); brcms_down(wlc->wl); return; } brcms_c_radio_hwdisable_upd(wlc); } /* common low-level watchdog code */ static void brcms_b_watchdog(void *arg) { struct brcms_c_info *wlc = (struct brcms_c_info *) arg; struct brcms_hardware *wlc_hw = wlc->hw; BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit); if (!wlc_hw->up) return; /* increment second count */ wlc_hw->now++; /* Check for FIFO error interrupts */ brcms_b_fifoerrors(wlc_hw); /* make sure RX dma has buffers */ dma_rxfill(wlc->hw->di[RX_FIFO]); wlc_phy_watchdog(wlc_hw->band->pi); } /* common watchdog code */ static void brcms_c_watchdog(void *arg) { struct brcms_c_info *wlc = (struct brcms_c_info *) arg; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); if (!wlc->pub->up) return; if (brcms_deviceremoved(wlc)) { wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit, __func__); brcms_down(wlc->wl); return; } /* increment second count */ wlc->pub->now++; brcms_c_radio_hwdisable_upd(wlc); /* if radio is disable, driver may be down, quit here */ if (wlc->pub->radio_disabled) return; brcms_b_watchdog(wlc); /* * occasionally sample mac stat counters to * detect 16-bit counter wrap */ if ((wlc->pub->now % SW_TIMER_MAC_STAT_UPD) == 0) brcms_c_statsupd(wlc); if (BRCMS_ISNPHY(wlc->band) && ((wlc->pub->now - wlc->tempsense_lasttime) >= BRCMS_TEMPSENSE_PERIOD)) { wlc->tempsense_lasttime = wlc->pub->now; brcms_c_tempsense_upd(wlc); } } static void brcms_c_watchdog_by_timer(void *arg) { brcms_c_watchdog(arg); } static bool brcms_c_timers_init(struct brcms_c_info *wlc, int unit) { wlc->wdtimer = brcms_init_timer(wlc->wl, brcms_c_watchdog_by_timer, wlc, "watchdog"); if (!wlc->wdtimer) { wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for wdtimer " "failed\n", unit); goto fail; } wlc->radio_timer = brcms_init_timer(wlc->wl, brcms_c_radio_timer, wlc, "radio"); if (!wlc->radio_timer) { wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for radio_timer " "failed\n", unit); goto fail; } return true; fail: return false; } /* * Initialize brcms_c_info default values ... * may get overrides later in this function */ static void brcms_c_info_init(struct brcms_c_info *wlc, int unit) { int i; /* Save our copy of the chanspec */ wlc->chanspec = ch20mhz_chspec(1); /* various 802.11g modes */ wlc->shortslot = false; wlc->shortslot_override = BRCMS_SHORTSLOT_AUTO; brcms_c_protection_upd(wlc, BRCMS_PROT_G_OVR, BRCMS_PROTECTION_AUTO); brcms_c_protection_upd(wlc, BRCMS_PROT_G_SPEC, false); brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG_OVR, BRCMS_PROTECTION_AUTO); brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG, BRCMS_N_PROTECTION_OFF); brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF_OVR, BRCMS_PROTECTION_AUTO); brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF, false); brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, AUTO); brcms_c_protection_upd(wlc, BRCMS_PROT_OVERLAP, BRCMS_PROTECTION_CTL_OVERLAP); /* 802.11g draft 4.0 NonERP elt advertisement */ wlc->include_legacy_erp = true; wlc->stf->ant_rx_ovr = ANT_RX_DIV_DEF; wlc->stf->txant = ANT_TX_DEF; wlc->prb_resp_timeout = BRCMS_PRB_RESP_TIMEOUT; wlc->usr_fragthresh = DOT11_DEFAULT_FRAG_LEN; for (i = 0; i < NFIFO; i++) wlc->fragthresh[i] = DOT11_DEFAULT_FRAG_LEN; wlc->RTSThresh = DOT11_DEFAULT_RTS_LEN; /* default rate fallback retry limits */ wlc->SFBL = RETRY_SHORT_FB; wlc->LFBL = RETRY_LONG_FB; /* default mac retry limits */ wlc->SRL = RETRY_SHORT_DEF; wlc->LRL = RETRY_LONG_DEF; /* WME QoS mode is Auto by default */ wlc->pub->_ampdu = AMPDU_AGG_HOST; wlc->pub->bcmerror = 0; } static uint brcms_c_attach_module(struct brcms_c_info *wlc) { uint err = 0; uint unit; unit = wlc->pub->unit; wlc->asi = brcms_c_antsel_attach(wlc); if (wlc->asi == NULL) { wiphy_err(wlc->wiphy, "wl%d: attach: antsel_attach " "failed\n", unit); err = 44; goto fail; } wlc->ampdu = brcms_c_ampdu_attach(wlc); if (wlc->ampdu == NULL) { wiphy_err(wlc->wiphy, "wl%d: attach: ampdu_attach " "failed\n", unit); err = 50; goto fail; } if ((brcms_c_stf_attach(wlc) != 0)) { wiphy_err(wlc->wiphy, "wl%d: attach: stf_attach " "failed\n", unit); err = 68; goto fail; } fail: return err; } struct brcms_pub *brcms_c_pub(struct brcms_c_info *wlc) { return wlc->pub; } /* low level attach * run backplane attach, init nvram * run phy attach * initialize software state for each core and band * put the whole chip in reset(driver down state), no clock */ static int brcms_b_attach(struct brcms_c_info *wlc, struct bcma_device *core, uint unit, bool piomode) { struct brcms_hardware *wlc_hw; char *macaddr = NULL; uint err = 0; uint j; bool wme = false; struct shared_phy_params sha_params; struct wiphy *wiphy = wlc->wiphy; struct pci_dev *pcidev = core->bus->host_pci; BCMMSG(wlc->wiphy, "wl%d: vendor 0x%x device 0x%x\n", unit, pcidev->vendor, pcidev->device); wme = true; wlc_hw = wlc->hw; wlc_hw->wlc = wlc; wlc_hw->unit = unit; wlc_hw->band = wlc_hw->bandstate[0]; wlc_hw->_piomode = piomode; /* populate struct brcms_hardware with default values */ brcms_b_info_init(wlc_hw); /* * Do the hardware portion of the attach. Also initialize software * state that depends on the particular hardware we are running. */ wlc_hw->sih = ai_attach(core->bus); if (wlc_hw->sih == NULL) { wiphy_err(wiphy, "wl%d: brcms_b_attach: si_attach failed\n", unit); err = 11; goto fail; } /* verify again the device is supported */ if (!brcms_c_chipmatch(pcidev->vendor, pcidev->device)) { wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported " "vendor/device (0x%x/0x%x)\n", unit, pcidev->vendor, pcidev->device); err = 12; goto fail; } wlc_hw->vendorid = pcidev->vendor; wlc_hw->deviceid = pcidev->device; wlc_hw->d11core = core; wlc_hw->corerev = core->id.rev; /* validate chip, chiprev and corerev */ if (!brcms_c_isgoodchip(wlc_hw)) { err = 13; goto fail; } /* initialize power control registers */ ai_clkctl_init(wlc_hw->sih); /* request fastclock and force fastclock for the rest of attach * bring the d11 core out of reset. * For PMU chips, the first wlc_clkctl_clk is no-op since core-clk * is still false; But it will be called again inside wlc_corereset, * after d11 is out of reset. */ brcms_b_clkctl_clk(wlc_hw, CLK_FAST); brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); if (!brcms_b_validate_chip_access(wlc_hw)) { wiphy_err(wiphy, "wl%d: brcms_b_attach: validate_chip_access " "failed\n", unit); err = 14; goto fail; } /* get the board rev, used just below */ j = getintvar(wlc_hw->sih, BRCMS_SROM_BOARDREV); /* promote srom boardrev of 0xFF to 1 */ if (j == BOARDREV_PROMOTABLE) j = BOARDREV_PROMOTED; wlc_hw->boardrev = (u16) j; if (!brcms_c_validboardtype(wlc_hw)) { wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported Broadcom " "board type (0x%x)" " or revision level (0x%x)\n", unit, ai_get_boardtype(wlc_hw->sih), wlc_hw->boardrev); err = 15; goto fail; } wlc_hw->sromrev = (u8) getintvar(wlc_hw->sih, BRCMS_SROM_REV); wlc_hw->boardflags = (u32) getintvar(wlc_hw->sih, BRCMS_SROM_BOARDFLAGS); wlc_hw->boardflags2 = (u32) getintvar(wlc_hw->sih, BRCMS_SROM_BOARDFLAGS2); if (wlc_hw->boardflags & BFL_NOPLLDOWN) brcms_b_pllreq(wlc_hw, true, BRCMS_PLLREQ_SHARED); /* check device id(srom, nvram etc.) to set bands */ if (wlc_hw->deviceid == BCM43224_D11N_ID || wlc_hw->deviceid == BCM43224_D11N_ID_VEN1) /* Dualband boards */ wlc_hw->_nbands = 2; else wlc_hw->_nbands = 1; if ((ai_get_chip_id(wlc_hw->sih) == BCM43225_CHIP_ID)) wlc_hw->_nbands = 1; /* BMAC_NOTE: remove init of pub values when brcms_c_attach() * unconditionally does the init of these values */ wlc->vendorid = wlc_hw->vendorid; wlc->deviceid = wlc_hw->deviceid; wlc->pub->sih = wlc_hw->sih; wlc->pub->corerev = wlc_hw->corerev; wlc->pub->sromrev = wlc_hw->sromrev; wlc->pub->boardrev = wlc_hw->boardrev; wlc->pub->boardflags = wlc_hw->boardflags; wlc->pub->boardflags2 = wlc_hw->boardflags2; wlc->pub->_nbands = wlc_hw->_nbands; wlc_hw->physhim = wlc_phy_shim_attach(wlc_hw, wlc->wl, wlc); if (wlc_hw->physhim == NULL) { wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_shim_attach " "failed\n", unit); err = 25; goto fail; } /* pass all the parameters to wlc_phy_shared_attach in one struct */ sha_params.sih = wlc_hw->sih; sha_params.physhim = wlc_hw->physhim; sha_params.unit = unit; sha_params.corerev = wlc_hw->corerev; sha_params.vid = wlc_hw->vendorid; sha_params.did = wlc_hw->deviceid; sha_params.chip = ai_get_chip_id(wlc_hw->sih); sha_params.chiprev = ai_get_chiprev(wlc_hw->sih); sha_params.chippkg = ai_get_chippkg(wlc_hw->sih); sha_params.sromrev = wlc_hw->sromrev; sha_params.boardtype = ai_get_boardtype(wlc_hw->sih); sha_params.boardrev = wlc_hw->boardrev; sha_params.boardflags = wlc_hw->boardflags; sha_params.boardflags2 = wlc_hw->boardflags2; /* alloc and save pointer to shared phy state area */ wlc_hw->phy_sh = wlc_phy_shared_attach(&sha_params); if (!wlc_hw->phy_sh) { err = 16; goto fail; } /* initialize software state for each core and band */ for (j = 0; j < wlc_hw->_nbands; j++) { /* * band0 is always 2.4Ghz * band1, if present, is 5Ghz */ brcms_c_setxband(wlc_hw, j); wlc_hw->band->bandunit = j; wlc_hw->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G; wlc->band->bandunit = j; wlc->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G; wlc->core->coreidx = core->core_index; wlc_hw->machwcap = bcma_read32(core, D11REGOFFS(machwcap)); wlc_hw->machwcap_backup = wlc_hw->machwcap; /* init tx fifo size */ wlc_hw->xmtfifo_sz = xmtfifo_sz[(wlc_hw->corerev - XMTFIFOTBL_STARTREV)]; /* Get a phy for this band */ wlc_hw->band->pi = wlc_phy_attach(wlc_hw->phy_sh, core, wlc_hw->band->bandtype, wlc->wiphy); if (wlc_hw->band->pi == NULL) { wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_" "attach failed\n", unit); err = 17; goto fail; } wlc_phy_machwcap_set(wlc_hw->band->pi, wlc_hw->machwcap); wlc_phy_get_phyversion(wlc_hw->band->pi, &wlc_hw->band->phytype, &wlc_hw->band->phyrev, &wlc_hw->band->radioid, &wlc_hw->band->radiorev); wlc_hw->band->abgphy_encore = wlc_phy_get_encore(wlc_hw->band->pi); wlc->band->abgphy_encore = wlc_phy_get_encore(wlc_hw->band->pi); wlc_hw->band->core_flags = wlc_phy_get_coreflags(wlc_hw->band->pi); /* verify good phy_type & supported phy revision */ if (BRCMS_ISNPHY(wlc_hw->band)) { if (NCONF_HAS(wlc_hw->band->phyrev)) goto good_phy; else goto bad_phy; } else if (BRCMS_ISLCNPHY(wlc_hw->band)) { if (LCNCONF_HAS(wlc_hw->band->phyrev)) goto good_phy; else goto bad_phy; } else { bad_phy: wiphy_err(wiphy, "wl%d: brcms_b_attach: unsupported " "phy type/rev (%d/%d)\n", unit, wlc_hw->band->phytype, wlc_hw->band->phyrev); err = 18; goto fail; } good_phy: /* * BMAC_NOTE: wlc->band->pi should not be set below and should * be done in the high level attach. However we can not make * that change until all low level access is changed to * wlc_hw->band->pi. Instead do the wlc->band->pi init below, * keeping wlc_hw->band->pi as well for incremental update of * low level fns, and cut over low only init when all fns * updated. */ wlc->band->pi = wlc_hw->band->pi; wlc->band->phytype = wlc_hw->band->phytype; wlc->band->phyrev = wlc_hw->band->phyrev; wlc->band->radioid = wlc_hw->band->radioid; wlc->band->radiorev = wlc_hw->band->radiorev; /* default contention windows size limits */ wlc_hw->band->CWmin = APHY_CWMIN; wlc_hw->band->CWmax = PHY_CWMAX; if (!brcms_b_attach_dmapio(wlc, j, wme)) { err = 19; goto fail; } } /* disable core to match driver "down" state */ brcms_c_coredisable(wlc_hw); /* Match driver "down" state */ ai_pci_down(wlc_hw->sih); /* turn off pll and xtal to match driver "down" state */ brcms_b_xtal(wlc_hw, OFF); /* ******************************************************************* * The hardware is in the DOWN state at this point. D11 core * or cores are in reset with clocks off, and the board PLLs * are off if possible. * * Beyond this point, wlc->sbclk == false and chip registers * should not be touched. ********************************************************************* */ /* init etheraddr state variables */ macaddr = brcms_c_get_macaddr(wlc_hw); if (macaddr == NULL) { wiphy_err(wiphy, "wl%d: brcms_b_attach: macaddr not found\n", unit); err = 21; goto fail; } if (!mac_pton(macaddr, wlc_hw->etheraddr) || is_broadcast_ether_addr(wlc_hw->etheraddr) || is_zero_ether_addr(wlc_hw->etheraddr)) { wiphy_err(wiphy, "wl%d: brcms_b_attach: bad macaddr %s\n", unit, macaddr); err = 22; goto fail; } BCMMSG(wlc->wiphy, "deviceid 0x%x nbands %d board 0x%x macaddr: %s\n", wlc_hw->deviceid, wlc_hw->_nbands, ai_get_boardtype(wlc_hw->sih), macaddr); return err; fail: wiphy_err(wiphy, "wl%d: brcms_b_attach: failed with err %d\n", unit, err); return err; } static void brcms_c_attach_antgain_init(struct brcms_c_info *wlc) { uint unit; unit = wlc->pub->unit; if ((wlc->band->antgain == -1) && (wlc->pub->sromrev == 1)) { /* default antenna gain for srom rev 1 is 2 dBm (8 qdbm) */ wlc->band->antgain = 8; } else if (wlc->band->antgain == -1) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in" " srom, using 2dB\n", unit, __func__); wlc->band->antgain = 8; } else { s8 gain, fract; /* Older sroms specified gain in whole dbm only. In order * be able to specify qdbm granularity and remain backward * compatible the whole dbms are now encoded in only * low 6 bits and remaining qdbms are encoded in the hi 2 bits. * 6 bit signed number ranges from -32 - 31. * * Examples: * 0x1 = 1 db, * 0xc1 = 1.75 db (1 + 3 quarters), * 0x3f = -1 (-1 + 0 quarters), * 0x7f = -.75 (-1 + 1 quarters) = -3 qdbm. * 0xbf = -.50 (-1 + 2 quarters) = -2 qdbm. */ gain = wlc->band->antgain & 0x3f; gain <<= 2; /* Sign extend */ gain >>= 2; fract = (wlc->band->antgain & 0xc0) >> 6; wlc->band->antgain = 4 * gain + fract; } } static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc) { int aa; uint unit; int bandtype; struct si_pub *sih = wlc->hw->sih; unit = wlc->pub->unit; bandtype = wlc->band->bandtype; /* get antennas available */ if (bandtype == BRCM_BAND_5G) aa = (s8) getintvar(sih, BRCMS_SROM_AA5G); else aa = (s8) getintvar(sih, BRCMS_SROM_AA2G); if ((aa < 1) || (aa > 15)) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in" " srom (0x%x), using 3\n", unit, __func__, aa); aa = 3; } /* reset the defaults if we have a single antenna */ if (aa == 1) { wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_0; wlc->stf->txant = ANT_TX_FORCE_0; } else if (aa == 2) { wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_1; wlc->stf->txant = ANT_TX_FORCE_1; } else { } /* Compute Antenna Gain */ if (bandtype == BRCM_BAND_5G) wlc->band->antgain = (s8) getintvar(sih, BRCMS_SROM_AG1); else wlc->band->antgain = (s8) getintvar(sih, BRCMS_SROM_AG0); brcms_c_attach_antgain_init(wlc); return true; } static void brcms_c_bss_default_init(struct brcms_c_info *wlc) { u16 chanspec; struct brcms_band *band; struct brcms_bss_info *bi = wlc->default_bss; /* init default and target BSS with some sane initial values */ memset((char *)(bi), 0, sizeof(struct brcms_bss_info)); bi->beacon_period = BEACON_INTERVAL_DEFAULT; /* fill the default channel as the first valid channel * starting from the 2G channels */ chanspec = ch20mhz_chspec(1); wlc->home_chanspec = bi->chanspec = chanspec; /* find the band of our default channel */ band = wlc->band; if (wlc->pub->_nbands > 1 && band->bandunit != chspec_bandunit(chanspec)) band = wlc->bandstate[OTHERBANDUNIT(wlc)]; /* init bss rates to the band specific default rate set */ brcms_c_rateset_default(&bi->rateset, NULL, band->phytype, band->bandtype, false, BRCMS_RATE_MASK_FULL, (bool) (wlc->pub->_n_enab & SUPPORT_11N), brcms_chspec_bw(chanspec), wlc->stf->txstreams); if (wlc->pub->_n_enab & SUPPORT_11N) bi->flags |= BRCMS_BSS_HT; } static struct brcms_txq_info *brcms_c_txq_alloc(struct brcms_c_info *wlc) { struct brcms_txq_info *qi, *p; qi = kzalloc(sizeof(struct brcms_txq_info), GFP_ATOMIC); if (qi != NULL) { /* * Have enough room for control packets along with HI watermark * Also, add room to txq for total psq packets if all the SCBs * leave PS mode. The watermark for flowcontrol to OS packets * will remain the same */ brcmu_pktq_init(&qi->q, BRCMS_PREC_COUNT, 2 * BRCMS_DATAHIWAT + PKTQ_LEN_DEFAULT); /* add this queue to the the global list */ p = wlc->tx_queues; if (p == NULL) { wlc->tx_queues = qi; } else { while (p->next != NULL) p = p->next; p->next = qi; } } return qi; } static void brcms_c_txq_free(struct brcms_c_info *wlc, struct brcms_txq_info *qi) { struct brcms_txq_info *p; if (qi == NULL) return; /* remove the queue from the linked list */ p = wlc->tx_queues; if (p == qi) wlc->tx_queues = p->next; else { while (p != NULL && p->next != qi) p = p->next; if (p != NULL) p->next = p->next->next; } kfree(qi); } static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap) { uint i; struct brcms_band *band; for (i = 0; i < wlc->pub->_nbands; i++) { band = wlc->bandstate[i]; if (band->bandtype == BRCM_BAND_5G) { if ((bwcap == BRCMS_N_BW_40ALL) || (bwcap == BRCMS_N_BW_20IN2G_40IN5G)) band->mimo_cap_40 = true; else band->mimo_cap_40 = false; } else { if (bwcap == BRCMS_N_BW_40ALL) band->mimo_cap_40 = true; else band->mimo_cap_40 = false; } } } static void brcms_c_timers_deinit(struct brcms_c_info *wlc) { /* free timer state */ if (wlc->wdtimer) { brcms_free_timer(wlc->wdtimer); wlc->wdtimer = NULL; } if (wlc->radio_timer) { brcms_free_timer(wlc->radio_timer); wlc->radio_timer = NULL; } } static void brcms_c_detach_module(struct brcms_c_info *wlc) { if (wlc->asi) { brcms_c_antsel_detach(wlc->asi); wlc->asi = NULL; } if (wlc->ampdu) { brcms_c_ampdu_detach(wlc->ampdu); wlc->ampdu = NULL; } brcms_c_stf_detach(wlc); } /* * low level detach */ static int brcms_b_detach(struct brcms_c_info *wlc) { uint i; struct brcms_hw_band *band; struct brcms_hardware *wlc_hw = wlc->hw; int callbacks; callbacks = 0; if (wlc_hw->sih) { /* * detach interrupt sync mechanism since interrupt is disabled * and per-port interrupt object may has been freed. this must * be done before sb core switch */ ai_pci_sleep(wlc_hw->sih); } brcms_b_detach_dmapio(wlc_hw); band = wlc_hw->band; for (i = 0; i < wlc_hw->_nbands; i++) { if (band->pi) { /* Detach this band's phy */ wlc_phy_detach(band->pi); band->pi = NULL; } band = wlc_hw->bandstate[OTHERBANDUNIT(wlc)]; } /* Free shared phy state */ kfree(wlc_hw->phy_sh); wlc_phy_shim_detach(wlc_hw->physhim); if (wlc_hw->sih) { ai_detach(wlc_hw->sih); wlc_hw->sih = NULL; } return callbacks; } /* * Return a count of the number of driver callbacks still pending. * * General policy is that brcms_c_detach can only dealloc/free software states. * It can NOT touch hardware registers since the d11core may be in reset and * clock may not be available. * One exception is sb register access, which is possible if crystal is turned * on after "down" state, driver should avoid software timer with the exception * of radio_monitor. */ uint brcms_c_detach(struct brcms_c_info *wlc) { uint callbacks = 0; if (wlc == NULL) return 0; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); callbacks += brcms_b_detach(wlc); /* delete software timers */ if (!brcms_c_radio_monitor_stop(wlc)) callbacks++; brcms_c_channel_mgr_detach(wlc->cmi); brcms_c_timers_deinit(wlc); brcms_c_detach_module(wlc); while (wlc->tx_queues != NULL) brcms_c_txq_free(wlc, wlc->tx_queues); brcms_c_detach_mfree(wlc); return callbacks; } /* update state that depends on the current value of "ap" */ static void brcms_c_ap_upd(struct brcms_c_info *wlc) { /* STA-BSS; short capable */ wlc->PLCPHdr_override = BRCMS_PLCP_SHORT; } /* Initialize just the hardware when coming out of POR or S3/S5 system states */ static void brcms_b_hw_up(struct brcms_hardware *wlc_hw) { if (wlc_hw->wlc->pub->hw_up) return; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); /* * Enable pll and xtal, initialize the power control registers, * and force fastclock for the remainder of brcms_c_up(). */ brcms_b_xtal(wlc_hw, ON); ai_clkctl_init(wlc_hw->sih); brcms_b_clkctl_clk(wlc_hw, CLK_FAST); ai_pci_fixcfg(wlc_hw->sih); /* * TODO: test suspend/resume * * AI chip doesn't restore bar0win2 on * hibernation/resume, need sw fixup */ /* * Inform phy that a POR reset has occurred so * it does a complete phy init */ wlc_phy_por_inform(wlc_hw->band->pi); wlc_hw->ucode_loaded = false; wlc_hw->wlc->pub->hw_up = true; if ((wlc_hw->boardflags & BFL_FEM) && (ai_get_chip_id(wlc_hw->sih) == BCM4313_CHIP_ID)) { if (! (wlc_hw->boardrev >= 0x1250 && (wlc_hw->boardflags & BFL_FEM_BT))) ai_epa_4313war(wlc_hw->sih); } } static int brcms_b_up_prep(struct brcms_hardware *wlc_hw) { uint coremask; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); /* * Enable pll and xtal, initialize the power control registers, * and force fastclock for the remainder of brcms_c_up(). */ brcms_b_xtal(wlc_hw, ON); ai_clkctl_init(wlc_hw->sih); brcms_b_clkctl_clk(wlc_hw, CLK_FAST); /* * Configure pci/pcmcia here instead of in brcms_c_attach() * to allow mfg hotswap: down, hotswap (chip power cycle), up. */ coremask = (1 << wlc_hw->wlc->core->coreidx); ai_pci_setup(wlc_hw->sih, coremask); /* * Need to read the hwradio status here to cover the case where the * system is loaded with the hw radio disabled. We do not want to * bring the driver up in this case. */ if (brcms_b_radio_read_hwdisabled(wlc_hw)) { /* put SB PCI in down state again */ ai_pci_down(wlc_hw->sih); brcms_b_xtal(wlc_hw, OFF); return -ENOMEDIUM; } ai_pci_up(wlc_hw->sih); /* reset the d11 core */ brcms_b_corereset(wlc_hw, BRCMS_USE_COREFLAGS); return 0; } static int brcms_b_up_finish(struct brcms_hardware *wlc_hw) { BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); wlc_hw->up = true; wlc_phy_hw_state_upd(wlc_hw->band->pi, true); /* FULLY enable dynamic power control and d11 core interrupt */ brcms_b_clkctl_clk(wlc_hw, CLK_DYNAMIC); brcms_intrson(wlc_hw->wlc->wl); return 0; } /* * Write WME tunable parameters for retransmit/max rate * from wlc struct to ucode */ static void brcms_c_wme_retries_write(struct brcms_c_info *wlc) { int ac; /* Need clock to do this */ if (!wlc->clk) return; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) brcms_b_write_shm(wlc->hw, M_AC_TXLMT_ADDR(ac), wlc->wme_retries[ac]); } /* make interface operational */ int brcms_c_up(struct brcms_c_info *wlc) { BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* HW is turned off so don't try to access it */ if (wlc->pub->hw_off || brcms_deviceremoved(wlc)) return -ENOMEDIUM; if (!wlc->pub->hw_up) { brcms_b_hw_up(wlc->hw); wlc->pub->hw_up = true; } if ((wlc->pub->boardflags & BFL_FEM) && (ai_get_chip_id(wlc->hw->sih) == BCM4313_CHIP_ID)) { if (wlc->pub->boardrev >= 0x1250 && (wlc->pub->boardflags & BFL_FEM_BT)) brcms_b_mhf(wlc->hw, MHF5, MHF5_4313_GPIOCTRL, MHF5_4313_GPIOCTRL, BRCM_BAND_ALL); else brcms_b_mhf(wlc->hw, MHF4, MHF4_EXTPA_ENABLE, MHF4_EXTPA_ENABLE, BRCM_BAND_ALL); } /* * Need to read the hwradio status here to cover the case where the * system is loaded with the hw radio disabled. We do not want to bring * the driver up in this case. If radio is disabled, abort up, lower * power, start radio timer and return 0(for NDIS) don't call * radio_update to avoid looping brcms_c_up. * * brcms_b_up_prep() returns either 0 or -BCME_RADIOOFF only */ if (!wlc->pub->radio_disabled) { int status = brcms_b_up_prep(wlc->hw); if (status == -ENOMEDIUM) { if (!mboolisset (wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE)) { struct brcms_bss_cfg *bsscfg = wlc->bsscfg; mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE); if (bsscfg->enable && bsscfg->BSS) wiphy_err(wlc->wiphy, "wl%d: up" ": rfdisable -> " "bsscfg_disable()\n", wlc->pub->unit); } } } if (wlc->pub->radio_disabled) { brcms_c_radio_monitor_start(wlc); return 0; } /* brcms_b_up_prep has done brcms_c_corereset(). so clk is on, set it */ wlc->clk = true; brcms_c_radio_monitor_stop(wlc); /* Set EDCF hostflags */ brcms_b_mhf(wlc->hw, MHF1, MHF1_EDCF, MHF1_EDCF, BRCM_BAND_ALL); brcms_init(wlc->wl); wlc->pub->up = true; if (wlc->bandinit_pending) { brcms_c_suspend_mac_and_wait(wlc); brcms_c_set_chanspec(wlc, wlc->default_bss->chanspec); wlc->bandinit_pending = false; brcms_c_enable_mac(wlc); } brcms_b_up_finish(wlc->hw); /* Program the TX wme params with the current settings */ brcms_c_wme_retries_write(wlc); /* start one second watchdog timer */ brcms_add_timer(wlc->wdtimer, TIMER_INTERVAL_WATCHDOG, true); wlc->WDarmed = true; /* ensure antenna config is up to date */ brcms_c_stf_phy_txant_upd(wlc); /* ensure LDPC config is in sync */ brcms_c_ht_update_ldpc(wlc, wlc->stf->ldpc); return 0; } static uint brcms_c_down_del_timer(struct brcms_c_info *wlc) { uint callbacks = 0; return callbacks; } static int brcms_b_bmac_down_prep(struct brcms_hardware *wlc_hw) { bool dev_gone; uint callbacks = 0; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); if (!wlc_hw->up) return callbacks; dev_gone = brcms_deviceremoved(wlc_hw->wlc); /* disable interrupts */ if (dev_gone) wlc_hw->wlc->macintmask = 0; else { /* now disable interrupts */ brcms_intrsoff(wlc_hw->wlc->wl); /* ensure we're running on the pll clock again */ brcms_b_clkctl_clk(wlc_hw, CLK_FAST); } /* down phy at the last of this stage */ callbacks += wlc_phy_down(wlc_hw->band->pi); return callbacks; } static int brcms_b_down_finish(struct brcms_hardware *wlc_hw) { uint callbacks = 0; bool dev_gone; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); if (!wlc_hw->up) return callbacks; wlc_hw->up = false; wlc_phy_hw_state_upd(wlc_hw->band->pi, false); dev_gone = brcms_deviceremoved(wlc_hw->wlc); if (dev_gone) { wlc_hw->sbclk = false; wlc_hw->clk = false; wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false); /* reclaim any posted packets */ brcms_c_flushqueues(wlc_hw->wlc); } else { /* Reset and disable the core */ if (bcma_core_is_enabled(wlc_hw->d11core)) { if (bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)) & MCTL_EN_MAC) brcms_c_suspend_mac_and_wait(wlc_hw->wlc); callbacks += brcms_reset(wlc_hw->wlc->wl); brcms_c_coredisable(wlc_hw); } /* turn off primary xtal and pll */ if (!wlc_hw->noreset) { ai_pci_down(wlc_hw->sih); brcms_b_xtal(wlc_hw, OFF); } } return callbacks; } /* * Mark the interface nonoperational, stop the software mechanisms, * disable the hardware, free any transient buffer state. * Return a count of the number of driver callbacks still pending. */ uint brcms_c_down(struct brcms_c_info *wlc) { uint callbacks = 0; int i; bool dev_gone = false; struct brcms_txq_info *qi; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* check if we are already in the going down path */ if (wlc->going_down) { wiphy_err(wlc->wiphy, "wl%d: %s: Driver going down so return" "\n", wlc->pub->unit, __func__); return 0; } if (!wlc->pub->up) return callbacks; wlc->going_down = true; callbacks += brcms_b_bmac_down_prep(wlc->hw); dev_gone = brcms_deviceremoved(wlc); /* Call any registered down handlers */ for (i = 0; i < BRCMS_MAXMODULES; i++) { if (wlc->modulecb[i].down_fn) callbacks += wlc->modulecb[i].down_fn(wlc->modulecb[i].hdl); } /* cancel the watchdog timer */ if (wlc->WDarmed) { if (!brcms_del_timer(wlc->wdtimer)) callbacks++; wlc->WDarmed = false; } /* cancel all other timers */ callbacks += brcms_c_down_del_timer(wlc); wlc->pub->up = false; wlc_phy_mute_upd(wlc->band->pi, false, PHY_MUTE_ALL); /* clear txq flow control */ brcms_c_txflowcontrol_reset(wlc); /* flush tx queues */ for (qi = wlc->tx_queues; qi != NULL; qi = qi->next) brcmu_pktq_flush(&qi->q, true, NULL, NULL); callbacks += brcms_b_down_finish(wlc->hw); /* brcms_b_down_finish has done brcms_c_coredisable(). so clk is off */ wlc->clk = false; wlc->going_down = false; return callbacks; } /* Set the current gmode configuration */ int brcms_c_set_gmode(struct brcms_c_info *wlc, u8 gmode, bool config) { int ret = 0; uint i; struct brcms_c_rateset rs; /* Default to 54g Auto */ /* Advertise and use shortslot (-1/0/1 Auto/Off/On) */ s8 shortslot = BRCMS_SHORTSLOT_AUTO; bool shortslot_restrict = false; /* Restrict association to stations * that support shortslot */ bool ofdm_basic = false; /* Make 6, 12, and 24 basic rates */ /* Advertise and use short preambles (-1/0/1 Auto/Off/On) */ int preamble = BRCMS_PLCP_LONG; bool preamble_restrict = false; /* Restrict association to stations * that support short preambles */ struct brcms_band *band; /* if N-support is enabled, allow Gmode set as long as requested * Gmode is not GMODE_LEGACY_B */ if ((wlc->pub->_n_enab & SUPPORT_11N) && gmode == GMODE_LEGACY_B) return -ENOTSUPP; /* verify that we are dealing with 2G band and grab the band pointer */ if (wlc->band->bandtype == BRCM_BAND_2G) band = wlc->band; else if ((wlc->pub->_nbands > 1) && (wlc->bandstate[OTHERBANDUNIT(wlc)]->bandtype == BRCM_BAND_2G)) band = wlc->bandstate[OTHERBANDUNIT(wlc)]; else return -EINVAL; /* Legacy or bust when no OFDM is supported by regulatory */ if ((brcms_c_channel_locale_flags_in_band(wlc->cmi, band->bandunit) & BRCMS_NO_OFDM) && (gmode != GMODE_LEGACY_B)) return -EINVAL; /* update configuration value */ if (config == true) brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, gmode); /* Clear rateset override */ memset(&rs, 0, sizeof(struct brcms_c_rateset)); switch (gmode) { case GMODE_LEGACY_B: shortslot = BRCMS_SHORTSLOT_OFF; brcms_c_rateset_copy(&gphy_legacy_rates, &rs); break; case GMODE_LRS: break; case GMODE_AUTO: /* Accept defaults */ break; case GMODE_ONLY: ofdm_basic = true; preamble = BRCMS_PLCP_SHORT; preamble_restrict = true; break; case GMODE_PERFORMANCE: shortslot = BRCMS_SHORTSLOT_ON; shortslot_restrict = true; ofdm_basic = true; preamble = BRCMS_PLCP_SHORT; preamble_restrict = true; break; default: /* Error */ wiphy_err(wlc->wiphy, "wl%d: %s: invalid gmode %d\n", wlc->pub->unit, __func__, gmode); return -ENOTSUPP; } band->gmode = gmode; wlc->shortslot_override = shortslot; /* Use the default 11g rateset */ if (!rs.count) brcms_c_rateset_copy(&cck_ofdm_rates, &rs); if (ofdm_basic) { for (i = 0; i < rs.count; i++) { if (rs.rates[i] == BRCM_RATE_6M || rs.rates[i] == BRCM_RATE_12M || rs.rates[i] == BRCM_RATE_24M) rs.rates[i] |= BRCMS_RATE_FLAG; } } /* Set default bss rateset */ wlc->default_bss->rateset.count = rs.count; memcpy(wlc->default_bss->rateset.rates, rs.rates, sizeof(wlc->default_bss->rateset.rates)); return ret; } int brcms_c_set_nmode(struct brcms_c_info *wlc) { uint i; s32 nmode = AUTO; if (wlc->stf->txstreams == WL_11N_3x3) nmode = WL_11N_3x3; else nmode = WL_11N_2x2; /* force GMODE_AUTO if NMODE is ON */ brcms_c_set_gmode(wlc, GMODE_AUTO, true); if (nmode == WL_11N_3x3) wlc->pub->_n_enab = SUPPORT_HT; else wlc->pub->_n_enab = SUPPORT_11N; wlc->default_bss->flags |= BRCMS_BSS_HT; /* add the mcs rates to the default and hw ratesets */ brcms_c_rateset_mcs_build(&wlc->default_bss->rateset, wlc->stf->txstreams); for (i = 0; i < wlc->pub->_nbands; i++) memcpy(wlc->bandstate[i]->hw_rateset.mcs, wlc->default_bss->rateset.mcs, MCSSET_LEN); return 0; } static int brcms_c_set_internal_rateset(struct brcms_c_info *wlc, struct brcms_c_rateset *rs_arg) { struct brcms_c_rateset rs, new; uint bandunit; memcpy(&rs, rs_arg, sizeof(struct brcms_c_rateset)); /* check for bad count value */ if ((rs.count == 0) || (rs.count > BRCMS_NUMRATES)) return -EINVAL; /* try the current band */ bandunit = wlc->band->bandunit; memcpy(&new, &rs, sizeof(struct brcms_c_rateset)); if (brcms_c_rate_hwrs_filter_sort_validate (&new, &wlc->bandstate[bandunit]->hw_rateset, true, wlc->stf->txstreams)) goto good; /* try the other band */ if (brcms_is_mband_unlocked(wlc)) { bandunit = OTHERBANDUNIT(wlc); memcpy(&new, &rs, sizeof(struct brcms_c_rateset)); if (brcms_c_rate_hwrs_filter_sort_validate(&new, &wlc-> bandstate[bandunit]-> hw_rateset, true, wlc->stf->txstreams)) goto good; } return -EBADE; good: /* apply new rateset */ memcpy(&wlc->default_bss->rateset, &new, sizeof(struct brcms_c_rateset)); memcpy(&wlc->bandstate[bandunit]->defrateset, &new, sizeof(struct brcms_c_rateset)); return 0; } static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc) { u8 r; bool war = false; if (wlc->bsscfg->associated) r = wlc->bsscfg->current_bss->rateset.rates[0]; else r = wlc->default_bss->rateset.rates[0]; wlc_phy_ofdm_rateset_war(wlc->band->pi, war); } int brcms_c_set_channel(struct brcms_c_info *wlc, u16 channel) { u16 chspec = ch20mhz_chspec(channel); if (channel < 0 || channel > MAXCHANNEL) return -EINVAL; if (!brcms_c_valid_chanspec_db(wlc->cmi, chspec)) return -EINVAL; if (!wlc->pub->up && brcms_is_mband_unlocked(wlc)) { if (wlc->band->bandunit != chspec_bandunit(chspec)) wlc->bandinit_pending = true; else wlc->bandinit_pending = false; } wlc->default_bss->chanspec = chspec; /* brcms_c_BSSinit() will sanitize the rateset before * using it.. */ if (wlc->pub->up && (wlc_phy_chanspec_get(wlc->band->pi) != chspec)) { brcms_c_set_home_chanspec(wlc, chspec); brcms_c_suspend_mac_and_wait(wlc); brcms_c_set_chanspec(wlc, chspec); brcms_c_enable_mac(wlc); } return 0; } int brcms_c_set_rate_limit(struct brcms_c_info *wlc, u16 srl, u16 lrl) { int ac; if (srl < 1 || srl > RETRY_SHORT_MAX || lrl < 1 || lrl > RETRY_SHORT_MAX) return -EINVAL; wlc->SRL = srl; wlc->LRL = lrl; brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL); for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac], EDCF_SHORT, wlc->SRL); wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac], EDCF_LONG, wlc->LRL); } brcms_c_wme_retries_write(wlc); return 0; } void brcms_c_get_current_rateset(struct brcms_c_info *wlc, struct brcm_rateset *currs) { struct brcms_c_rateset *rs; if (wlc->pub->associated) rs = &wlc->bsscfg->current_bss->rateset; else rs = &wlc->default_bss->rateset; /* Copy only legacy rateset section */ currs->count = rs->count; memcpy(&currs->rates, &rs->rates, rs->count); } int brcms_c_set_rateset(struct brcms_c_info *wlc, struct brcm_rateset *rs) { struct brcms_c_rateset internal_rs; int bcmerror; if (rs->count > BRCMS_NUMRATES) return -ENOBUFS; memset(&internal_rs, 0, sizeof(struct brcms_c_rateset)); /* Copy only legacy rateset section */ internal_rs.count = rs->count; memcpy(&internal_rs.rates, &rs->rates, internal_rs.count); /* merge rateset coming in with the current mcsset */ if (wlc->pub->_n_enab & SUPPORT_11N) { struct brcms_bss_info *mcsset_bss; if (wlc->bsscfg->associated) mcsset_bss = wlc->bsscfg->current_bss; else mcsset_bss = wlc->default_bss; memcpy(internal_rs.mcs, &mcsset_bss->rateset.mcs[0], MCSSET_LEN); } bcmerror = brcms_c_set_internal_rateset(wlc, &internal_rs); if (!bcmerror) brcms_c_ofdm_rateset_war(wlc); return bcmerror; } int brcms_c_set_beacon_period(struct brcms_c_info *wlc, u16 period) { if (period < DOT11_MIN_BEACON_PERIOD || period > DOT11_MAX_BEACON_PERIOD) return -EINVAL; wlc->default_bss->beacon_period = period; return 0; } u16 brcms_c_get_phy_type(struct brcms_c_info *wlc, int phyidx) { return wlc->band->phytype; } void brcms_c_set_shortslot_override(struct brcms_c_info *wlc, s8 sslot_override) { wlc->shortslot_override = sslot_override; /* * shortslot is an 11g feature, so no more work if we are * currently on the 5G band */ if (wlc->band->bandtype == BRCM_BAND_5G) return; if (wlc->pub->up && wlc->pub->associated) { /* let watchdog or beacon processing update shortslot */ } else if (wlc->pub->up) { /* unassociated shortslot is off */ brcms_c_switch_shortslot(wlc, false); } else { /* driver is down, so just update the brcms_c_info * value */ if (wlc->shortslot_override == BRCMS_SHORTSLOT_AUTO) wlc->shortslot = false; else wlc->shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON); } } /* * register watchdog and down handlers. */ int brcms_c_module_register(struct brcms_pub *pub, const char *name, struct brcms_info *hdl, int (*d_fn)(void *handle)) { struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc; int i; /* find an empty entry and just add, no duplication check! */ for (i = 0; i < BRCMS_MAXMODULES; i++) { if (wlc->modulecb[i].name[0] == '\0') { strncpy(wlc->modulecb[i].name, name, sizeof(wlc->modulecb[i].name) - 1); wlc->modulecb[i].hdl = hdl; wlc->modulecb[i].down_fn = d_fn; return 0; } } return -ENOSR; } /* unregister module callbacks */ int brcms_c_module_unregister(struct brcms_pub *pub, const char *name, struct brcms_info *hdl) { struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc; int i; if (wlc == NULL) return -ENODATA; for (i = 0; i < BRCMS_MAXMODULES; i++) { if (!strcmp(wlc->modulecb[i].name, name) && (wlc->modulecb[i].hdl == hdl)) { memset(&wlc->modulecb[i], 0, sizeof(struct modulecb)); return 0; } } /* table not found! */ return -ENODATA; } #ifdef BCMDBG static const char * const supr_reason[] = { "None", "PMQ Entry", "Flush request", "Previous frag failure", "Channel mismatch", "Lifetime Expiry", "Underflow" }; static void brcms_c_print_txs_status(u16 s) { printk(KERN_DEBUG "[15:12] %d frame attempts\n", (s & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT); printk(KERN_DEBUG " [11:8] %d rts attempts\n", (s & TX_STATUS_RTS_RTX_MASK) >> TX_STATUS_RTS_RTX_SHIFT); printk(KERN_DEBUG " [7] %d PM mode indicated\n", ((s & TX_STATUS_PMINDCTD) ? 1 : 0)); printk(KERN_DEBUG " [6] %d intermediate status\n", ((s & TX_STATUS_INTERMEDIATE) ? 1 : 0)); printk(KERN_DEBUG " [5] %d AMPDU\n", (s & TX_STATUS_AMPDU) ? 1 : 0); printk(KERN_DEBUG " [4:2] %d Frame Suppressed Reason (%s)\n", ((s & TX_STATUS_SUPR_MASK) >> TX_STATUS_SUPR_SHIFT), supr_reason[(s & TX_STATUS_SUPR_MASK) >> TX_STATUS_SUPR_SHIFT]); printk(KERN_DEBUG " [1] %d acked\n", ((s & TX_STATUS_ACK_RCV) ? 1 : 0)); } #endif /* BCMDBG */ void brcms_c_print_txstatus(struct tx_status *txs) { #if defined(BCMDBG) u16 s = txs->status; u16 ackphyrxsh = txs->ackphyrxsh; printk(KERN_DEBUG "\ntxpkt (MPDU) Complete\n"); printk(KERN_DEBUG "FrameID: %04x ", txs->frameid); printk(KERN_DEBUG "TxStatus: %04x", s); printk(KERN_DEBUG "\n"); brcms_c_print_txs_status(s); printk(KERN_DEBUG "LastTxTime: %04x ", txs->lasttxtime); printk(KERN_DEBUG "Seq: %04x ", txs->sequence); printk(KERN_DEBUG "PHYTxStatus: %04x ", txs->phyerr); printk(KERN_DEBUG "RxAckRSSI: %04x ", (ackphyrxsh & PRXS1_JSSI_MASK) >> PRXS1_JSSI_SHIFT); printk(KERN_DEBUG "RxAckSQ: %04x", (ackphyrxsh & PRXS1_SQ_MASK) >> PRXS1_SQ_SHIFT); printk(KERN_DEBUG "\n"); #endif /* defined(BCMDBG) */ } bool brcms_c_chipmatch(u16 vendor, u16 device) { if (vendor != PCI_VENDOR_ID_BROADCOM) { pr_err("chipmatch: unknown vendor id %04x\n", vendor); return false; } if (device == BCM43224_D11N_ID_VEN1) return true; if ((device == BCM43224_D11N_ID) || (device == BCM43225_D11N2G_ID)) return true; if (device == BCM4313_D11N2G_ID) return true; if ((device == BCM43236_D11N_ID) || (device == BCM43236_D11N2G_ID)) return true; pr_err("chipmatch: unknown device id %04x\n", device); return false; } #if defined(BCMDBG) void brcms_c_print_txdesc(struct d11txh *txh) { u16 mtcl = le16_to_cpu(txh->MacTxControlLow); u16 mtch = le16_to_cpu(txh->MacTxControlHigh); u16 mfc = le16_to_cpu(txh->MacFrameControl); u16 tfest = le16_to_cpu(txh->TxFesTimeNormal); u16 ptcw = le16_to_cpu(txh->PhyTxControlWord); u16 ptcw_1 = le16_to_cpu(txh->PhyTxControlWord_1); u16 ptcw_1_Fbr = le16_to_cpu(txh->PhyTxControlWord_1_Fbr); u16 ptcw_1_Rts = le16_to_cpu(txh->PhyTxControlWord_1_Rts); u16 ptcw_1_FbrRts = le16_to_cpu(txh->PhyTxControlWord_1_FbrRts); u16 mainrates = le16_to_cpu(txh->MainRates); u16 xtraft = le16_to_cpu(txh->XtraFrameTypes); u8 *iv = txh->IV; u8 *ra = txh->TxFrameRA; u16 tfestfb = le16_to_cpu(txh->TxFesTimeFallback); u8 *rtspfb = txh->RTSPLCPFallback; u16 rtsdfb = le16_to_cpu(txh->RTSDurFallback); u8 *fragpfb = txh->FragPLCPFallback; u16 fragdfb = le16_to_cpu(txh->FragDurFallback); u16 mmodelen = le16_to_cpu(txh->MModeLen); u16 mmodefbrlen = le16_to_cpu(txh->MModeFbrLen); u16 tfid = le16_to_cpu(txh->TxFrameID); u16 txs = le16_to_cpu(txh->TxStatus); u16 mnmpdu = le16_to_cpu(txh->MaxNMpdus); u16 mabyte = le16_to_cpu(txh->MaxABytes_MRT); u16 mabyte_f = le16_to_cpu(txh->MaxABytes_FBR); u16 mmbyte = le16_to_cpu(txh->MinMBytes); u8 *rtsph = txh->RTSPhyHeader; struct ieee80211_rts rts = txh->rts_frame; /* add plcp header along with txh descriptor */ printk(KERN_DEBUG "Raw TxDesc + plcp header:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, txh, sizeof(struct d11txh) + 48); printk(KERN_DEBUG "TxCtlLow: %04x ", mtcl); printk(KERN_DEBUG "TxCtlHigh: %04x ", mtch); printk(KERN_DEBUG "FC: %04x ", mfc); printk(KERN_DEBUG "FES Time: %04x\n", tfest); printk(KERN_DEBUG "PhyCtl: %04x%s ", ptcw, (ptcw & PHY_TXC_SHORT_HDR) ? " short" : ""); printk(KERN_DEBUG "PhyCtl_1: %04x ", ptcw_1); printk(KERN_DEBUG "PhyCtl_1_Fbr: %04x\n", ptcw_1_Fbr); printk(KERN_DEBUG "PhyCtl_1_Rts: %04x ", ptcw_1_Rts); printk(KERN_DEBUG "PhyCtl_1_Fbr_Rts: %04x\n", ptcw_1_FbrRts); printk(KERN_DEBUG "MainRates: %04x ", mainrates); printk(KERN_DEBUG "XtraFrameTypes: %04x ", xtraft); printk(KERN_DEBUG "\n"); print_hex_dump_bytes("SecIV:", DUMP_PREFIX_OFFSET, iv, sizeof(txh->IV)); print_hex_dump_bytes("RA:", DUMP_PREFIX_OFFSET, ra, sizeof(txh->TxFrameRA)); printk(KERN_DEBUG "Fb FES Time: %04x ", tfestfb); print_hex_dump_bytes("Fb RTS PLCP:", DUMP_PREFIX_OFFSET, rtspfb, sizeof(txh->RTSPLCPFallback)); printk(KERN_DEBUG "RTS DUR: %04x ", rtsdfb); print_hex_dump_bytes("PLCP:", DUMP_PREFIX_OFFSET, fragpfb, sizeof(txh->FragPLCPFallback)); printk(KERN_DEBUG "DUR: %04x", fragdfb); printk(KERN_DEBUG "\n"); printk(KERN_DEBUG "MModeLen: %04x ", mmodelen); printk(KERN_DEBUG "MModeFbrLen: %04x\n", mmodefbrlen); printk(KERN_DEBUG "FrameID: %04x\n", tfid); printk(KERN_DEBUG "TxStatus: %04x\n", txs); printk(KERN_DEBUG "MaxNumMpdu: %04x\n", mnmpdu); printk(KERN_DEBUG "MaxAggbyte: %04x\n", mabyte); printk(KERN_DEBUG "MaxAggbyte_fb: %04x\n", mabyte_f); printk(KERN_DEBUG "MinByte: %04x\n", mmbyte); print_hex_dump_bytes("RTS PLCP:", DUMP_PREFIX_OFFSET, rtsph, sizeof(txh->RTSPhyHeader)); print_hex_dump_bytes("RTS Frame:", DUMP_PREFIX_OFFSET, (u8 *)&rts, sizeof(txh->rts_frame)); printk(KERN_DEBUG "\n"); } #endif /* defined(BCMDBG) */ #if defined(BCMDBG) static int brcms_c_format_flags(const struct brcms_c_bit_desc *bd, u32 flags, char *buf, int len) { int i; char *p = buf; char hexstr[16]; int slen = 0, nlen = 0; u32 bit; const char *name; if (len < 2 || !buf) return 0; buf[0] = '\0'; for (i = 0; flags != 0; i++) { bit = bd[i].bit; name = bd[i].name; if (bit == 0 && flags != 0) { /* print any unnamed bits */ snprintf(hexstr, 16, "0x%X", flags); name = hexstr; flags = 0; /* exit loop */ } else if ((flags & bit) == 0) continue; flags &= ~bit; nlen = strlen(name); slen += nlen; /* count btwn flag space */ if (flags != 0) slen += 1; /* need NULL char as well */ if (len <= slen) break; /* copy NULL char but don't count it */ strncpy(p, name, nlen + 1); p += nlen; /* copy btwn flag space and NULL char */ if (flags != 0) p += snprintf(p, 2, " "); len -= slen; } /* indicate the str was too short */ if (flags != 0) { if (len < 2) p -= 2 - len; /* overwrite last char */ p += snprintf(p, 2, ">"); } return (int)(p - buf); } #endif /* defined(BCMDBG) */ #if defined(BCMDBG) void brcms_c_print_rxh(struct d11rxhdr *rxh) { u16 len = rxh->RxFrameSize; u16 phystatus_0 = rxh->PhyRxStatus_0; u16 phystatus_1 = rxh->PhyRxStatus_1; u16 phystatus_2 = rxh->PhyRxStatus_2; u16 phystatus_3 = rxh->PhyRxStatus_3; u16 macstatus1 = rxh->RxStatus1; u16 macstatus2 = rxh->RxStatus2; char flagstr[64]; char lenbuf[20]; static const struct brcms_c_bit_desc macstat_flags[] = { {RXS_FCSERR, "FCSErr"}, {RXS_RESPFRAMETX, "Reply"}, {RXS_PBPRES, "PADDING"}, {RXS_DECATMPT, "DeCr"}, {RXS_DECERR, "DeCrErr"}, {RXS_BCNSENT, "Bcn"}, {0, NULL} }; printk(KERN_DEBUG "Raw RxDesc:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, rxh, sizeof(struct d11rxhdr)); brcms_c_format_flags(macstat_flags, macstatus1, flagstr, 64); snprintf(lenbuf, sizeof(lenbuf), "0x%x", len); printk(KERN_DEBUG "RxFrameSize: %6s (%d)%s\n", lenbuf, len, (rxh->PhyRxStatus_0 & PRXS0_SHORTH) ? " short preamble" : ""); printk(KERN_DEBUG "RxPHYStatus: %04x %04x %04x %04x\n", phystatus_0, phystatus_1, phystatus_2, phystatus_3); printk(KERN_DEBUG "RxMACStatus: %x %s\n", macstatus1, flagstr); printk(KERN_DEBUG "RXMACaggtype: %x\n", (macstatus2 & RXS_AGGTYPE_MASK)); printk(KERN_DEBUG "RxTSFTime: %04x\n", rxh->RxTSFTime); } #endif /* defined(BCMDBG) */ u16 brcms_b_rate_shm_offset(struct brcms_hardware *wlc_hw, u8 rate) { u16 table_ptr; u8 phy_rate, index; /* get the phy specific rate encoding for the PLCP SIGNAL field */ if (is_ofdm_rate(rate)) table_ptr = M_RT_DIRMAP_A; else table_ptr = M_RT_DIRMAP_B; /* for a given rate, the LS-nibble of the PLCP SIGNAL field is * the index into the rate table. */ phy_rate = rate_info[rate] & BRCMS_RATE_MASK; index = phy_rate & 0xf; /* Find the SHM pointer to the rate table entry by looking in the * Direct-map Table */ return 2 * brcms_b_read_shm(wlc_hw, table_ptr + (index * 2)); } static bool brcms_c_prec_enq_head(struct brcms_c_info *wlc, struct pktq *q, struct sk_buff *pkt, int prec, bool head) { struct sk_buff *p; int eprec = -1; /* precedence to evict from */ /* Determine precedence from which to evict packet, if any */ if (pktq_pfull(q, prec)) eprec = prec; else if (pktq_full(q)) { p = brcmu_pktq_peek_tail(q, &eprec); if (eprec > prec) { wiphy_err(wlc->wiphy, "%s: Failing: eprec %d > prec %d" "\n", __func__, eprec, prec); return false; } } /* Evict if needed */ if (eprec >= 0) { bool discard_oldest; discard_oldest = ac_bitmap_tst(0, eprec); /* Refuse newer packet unless configured to discard oldest */ if (eprec == prec && !discard_oldest) { wiphy_err(wlc->wiphy, "%s: No where to go, prec == %d" "\n", __func__, prec); return false; } /* Evict packet according to discard policy */ p = discard_oldest ? brcmu_pktq_pdeq(q, eprec) : brcmu_pktq_pdeq_tail(q, eprec); brcmu_pkt_buf_free_skb(p); } /* Enqueue */ if (head) p = brcmu_pktq_penq_head(q, prec, pkt); else p = brcmu_pktq_penq(q, prec, pkt); return true; } /* * Attempts to queue a packet onto a multiple-precedence queue, * if necessary evicting a lower precedence packet from the queue. * * 'prec' is the precedence number that has already been mapped * from the packet priority. * * Returns true if packet consumed (queued), false if not. */ static bool brcms_c_prec_enq(struct brcms_c_info *wlc, struct pktq *q, struct sk_buff *pkt, int prec) { return brcms_c_prec_enq_head(wlc, q, pkt, prec, false); } void brcms_c_txq_enq(struct brcms_c_info *wlc, struct scb *scb, struct sk_buff *sdu, uint prec) { struct brcms_txq_info *qi = wlc->pkt_queue; /* Check me */ struct pktq *q = &qi->q; int prio; prio = sdu->priority; if (!brcms_c_prec_enq(wlc, q, sdu, prec)) { /* * we might hit this condtion in case * packet flooding from mac80211 stack */ brcmu_pkt_buf_free_skb(sdu); } } /* * bcmc_fid_generate: * Generate frame ID for a BCMC packet. The frag field is not used * for MC frames so is used as part of the sequence number. */ static inline u16 bcmc_fid_generate(struct brcms_c_info *wlc, struct brcms_bss_cfg *bsscfg, struct d11txh *txh) { u16 frameid; frameid = le16_to_cpu(txh->TxFrameID) & ~(TXFID_SEQ_MASK | TXFID_QUEUE_MASK); frameid |= (((wlc-> mc_fid_counter++) << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) | TX_BCMC_FIFO; return frameid; } static uint brcms_c_calc_ack_time(struct brcms_c_info *wlc, u32 rspec, u8 preamble_type) { uint dur = 0; BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d\n", wlc->pub->unit, rspec, preamble_type); /* * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that * is less than or equal to the rate of the immediately previous * frame in the FES */ rspec = brcms_basic_rate(wlc, rspec); /* ACK frame len == 14 == 2(fc) + 2(dur) + 6(ra) + 4(fcs) */ dur = brcms_c_calc_frame_time(wlc, rspec, preamble_type, (DOT11_ACK_LEN + FCS_LEN)); return dur; } static uint brcms_c_calc_cts_time(struct brcms_c_info *wlc, u32 rspec, u8 preamble_type) { BCMMSG(wlc->wiphy, "wl%d: ratespec 0x%x, preamble_type %d\n", wlc->pub->unit, rspec, preamble_type); return brcms_c_calc_ack_time(wlc, rspec, preamble_type); } static uint brcms_c_calc_ba_time(struct brcms_c_info *wlc, u32 rspec, u8 preamble_type) { BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, " "preamble_type %d\n", wlc->pub->unit, rspec, preamble_type); /* * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that * is less than or equal to the rate of the immediately previous * frame in the FES */ rspec = brcms_basic_rate(wlc, rspec); /* BA len == 32 == 16(ctl hdr) + 4(ba len) + 8(bitmap) + 4(fcs) */ return brcms_c_calc_frame_time(wlc, rspec, preamble_type, (DOT11_BA_LEN + DOT11_BA_BITMAP_LEN + FCS_LEN)); } /* brcms_c_compute_frame_dur() * * Calculate the 802.11 MAC header DUR field for MPDU * DUR for a single frame = 1 SIFS + 1 ACK * DUR for a frame with following frags = 3 SIFS + 2 ACK + next frag time * * rate MPDU rate in unit of 500kbps * next_frag_len next MPDU length in bytes * preamble_type use short/GF or long/MM PLCP header */ static u16 brcms_c_compute_frame_dur(struct brcms_c_info *wlc, u32 rate, u8 preamble_type, uint next_frag_len) { u16 dur, sifs; sifs = get_sifs(wlc->band); dur = sifs; dur += (u16) brcms_c_calc_ack_time(wlc, rate, preamble_type); if (next_frag_len) { /* Double the current DUR to get 2 SIFS + 2 ACKs */ dur *= 2; /* add another SIFS and the frag time */ dur += sifs; dur += (u16) brcms_c_calc_frame_time(wlc, rate, preamble_type, next_frag_len); } return dur; } /* The opposite of brcms_c_calc_frame_time */ static uint brcms_c_calc_frame_len(struct brcms_c_info *wlc, u32 ratespec, u8 preamble_type, uint dur) { uint nsyms, mac_len, Ndps, kNdps; uint rate = rspec2rate(ratespec); BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, dur %d\n", wlc->pub->unit, ratespec, preamble_type, dur); if (is_mcs_rate(ratespec)) { uint mcs = ratespec & RSPEC_RATE_MASK; int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec); dur -= PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT); /* payload calculation matches that of regular ofdm */ if (wlc->band->bandtype == BRCM_BAND_2G) dur -= DOT11_OFDM_SIGNAL_EXTENSION; /* kNdbps = kbps * 4 */ kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), rspec_issgi(ratespec)) * 4; nsyms = dur / APHY_SYMBOL_TIME; mac_len = ((nsyms * kNdps) - ((APHY_SERVICE_NBITS + APHY_TAIL_NBITS) * 1000)) / 8000; } else if (is_ofdm_rate(ratespec)) { dur -= APHY_PREAMBLE_TIME; dur -= APHY_SIGNAL_TIME; /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */ Ndps = rate * 2; nsyms = dur / APHY_SYMBOL_TIME; mac_len = ((nsyms * Ndps) - (APHY_SERVICE_NBITS + APHY_TAIL_NBITS)) / 8; } else { if (preamble_type & BRCMS_SHORT_PREAMBLE) dur -= BPHY_PLCP_SHORT_TIME; else dur -= BPHY_PLCP_TIME; mac_len = dur * rate; /* divide out factor of 2 in rate (1/2 mbps) */ mac_len = mac_len / 8 / 2; } return mac_len; } /* * Return true if the specified rate is supported by the specified band. * BRCM_BAND_AUTO indicates the current band. */ static bool brcms_c_valid_rate(struct brcms_c_info *wlc, u32 rspec, int band, bool verbose) { struct brcms_c_rateset *hw_rateset; uint i; if ((band == BRCM_BAND_AUTO) || (band == wlc->band->bandtype)) hw_rateset = &wlc->band->hw_rateset; else if (wlc->pub->_nbands > 1) hw_rateset = &wlc->bandstate[OTHERBANDUNIT(wlc)]->hw_rateset; else /* other band specified and we are a single band device */ return false; /* check if this is a mimo rate */ if (is_mcs_rate(rspec)) { if ((rspec & RSPEC_RATE_MASK) >= MCS_TABLE_SIZE) goto error; return isset(hw_rateset->mcs, (rspec & RSPEC_RATE_MASK)); } for (i = 0; i < hw_rateset->count; i++) if (hw_rateset->rates[i] == rspec2rate(rspec)) return true; error: if (verbose) wiphy_err(wlc->wiphy, "wl%d: valid_rate: rate spec 0x%x " "not in hw_rateset\n", wlc->pub->unit, rspec); return false; } static u32 mac80211_wlc_set_nrate(struct brcms_c_info *wlc, struct brcms_band *cur_band, u32 int_val) { u8 stf = (int_val & NRATE_STF_MASK) >> NRATE_STF_SHIFT; u8 rate = int_val & NRATE_RATE_MASK; u32 rspec; bool ismcs = ((int_val & NRATE_MCS_INUSE) == NRATE_MCS_INUSE); bool issgi = ((int_val & NRATE_SGI_MASK) >> NRATE_SGI_SHIFT); bool override_mcs_only = ((int_val & NRATE_OVERRIDE_MCS_ONLY) == NRATE_OVERRIDE_MCS_ONLY); int bcmerror = 0; if (!ismcs) return (u32) rate; /* validate the combination of rate/mcs/stf is allowed */ if ((wlc->pub->_n_enab & SUPPORT_11N) && ismcs) { /* mcs only allowed when nmode */ if (stf > PHY_TXC1_MODE_SDM) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid stf\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } /* mcs 32 is a special case, DUP mode 40 only */ if (rate == 32) { if (!CHSPEC_IS40(wlc->home_chanspec) || ((stf != PHY_TXC1_MODE_SISO) && (stf != PHY_TXC1_MODE_CDD))) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid mcs " "32\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } /* mcs > 7 must use stf SDM */ } else if (rate > HIGHEST_SINGLE_STREAM_MCS) { /* mcs > 7 must use stf SDM */ if (stf != PHY_TXC1_MODE_SDM) { BCMMSG(wlc->wiphy, "wl%d: enabling " "SDM mode for mcs %d\n", wlc->pub->unit, rate); stf = PHY_TXC1_MODE_SDM; } } else { /* * MCS 0-7 may use SISO, CDD, and for * phy_rev >= 3 STBC */ if ((stf > PHY_TXC1_MODE_STBC) || (!BRCMS_STBC_CAP_PHY(wlc) && (stf == PHY_TXC1_MODE_STBC))) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid STBC" "\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } } } else if (is_ofdm_rate(rate)) { if ((stf != PHY_TXC1_MODE_CDD) && (stf != PHY_TXC1_MODE_SISO)) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid OFDM\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } } else if (is_cck_rate(rate)) { if ((cur_band->bandtype != BRCM_BAND_2G) || (stf != PHY_TXC1_MODE_SISO)) { wiphy_err(wlc->wiphy, "wl%d: %s: Invalid CCK\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } } else { wiphy_err(wlc->wiphy, "wl%d: %s: Unknown rate type\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } /* make sure multiple antennae are available for non-siso rates */ if ((stf != PHY_TXC1_MODE_SISO) && (wlc->stf->txstreams == 1)) { wiphy_err(wlc->wiphy, "wl%d: %s: SISO antenna but !SISO " "request\n", wlc->pub->unit, __func__); bcmerror = -EINVAL; goto done; } rspec = rate; if (ismcs) { rspec |= RSPEC_MIMORATE; /* For STBC populate the STC field of the ratespec */ if (stf == PHY_TXC1_MODE_STBC) { u8 stc; stc = 1; /* Nss for single stream is always 1 */ rspec |= (stc << RSPEC_STC_SHIFT); } } rspec |= (stf << RSPEC_STF_SHIFT); if (override_mcs_only) rspec |= RSPEC_OVERRIDE_MCS_ONLY; if (issgi) rspec |= RSPEC_SHORT_GI; if ((rate != 0) && !brcms_c_valid_rate(wlc, rspec, cur_band->bandtype, true)) return rate; return rspec; done: return rate; } /* * Compute PLCP, but only requires actual rate and length of pkt. * Rate is given in the driver standard multiple of 500 kbps. * le is set for 11 Mbps rate if necessary. * Broken out for PRQ. */ static void brcms_c_cck_plcp_set(struct brcms_c_info *wlc, int rate_500, uint length, u8 *plcp) { u16 usec = 0; u8 le = 0; switch (rate_500) { case BRCM_RATE_1M: usec = length << 3; break; case BRCM_RATE_2M: usec = length << 2; break; case BRCM_RATE_5M5: usec = (length << 4) / 11; if ((length << 4) - (usec * 11) > 0) usec++; break; case BRCM_RATE_11M: usec = (length << 3) / 11; if ((length << 3) - (usec * 11) > 0) { usec++; if ((usec * 11) - (length << 3) >= 8) le = D11B_PLCP_SIGNAL_LE; } break; default: wiphy_err(wlc->wiphy, "brcms_c_cck_plcp_set: unsupported rate %d\n", rate_500); rate_500 = BRCM_RATE_1M; usec = length << 3; break; } /* PLCP signal byte */ plcp[0] = rate_500 * 5; /* r (500kbps) * 5 == r (100kbps) */ /* PLCP service byte */ plcp[1] = (u8) (le | D11B_PLCP_SIGNAL_LOCKED); /* PLCP length u16, little endian */ plcp[2] = usec & 0xff; plcp[3] = (usec >> 8) & 0xff; /* PLCP CRC16 */ plcp[4] = 0; plcp[5] = 0; } /* Rate: 802.11 rate code, length: PSDU length in octets */ static void brcms_c_compute_mimo_plcp(u32 rspec, uint length, u8 *plcp) { u8 mcs = (u8) (rspec & RSPEC_RATE_MASK); plcp[0] = mcs; if (rspec_is40mhz(rspec) || (mcs == 32)) plcp[0] |= MIMO_PLCP_40MHZ; BRCMS_SET_MIMO_PLCP_LEN(plcp, length); plcp[3] = rspec_mimoplcp3(rspec); /* rspec already holds this byte */ plcp[3] |= 0x7; /* set smoothing, not sounding ppdu & reserved */ plcp[4] = 0; /* number of extension spatial streams bit 0 & 1 */ plcp[5] = 0; } /* Rate: 802.11 rate code, length: PSDU length in octets */ static void brcms_c_compute_ofdm_plcp(u32 rspec, u32 length, u8 *plcp) { u8 rate_signal; u32 tmp = 0; int rate = rspec2rate(rspec); /* * encode rate per 802.11a-1999 sec 17.3.4.1, with lsb * transmitted first */ rate_signal = rate_info[rate] & BRCMS_RATE_MASK; memset(plcp, 0, D11_PHY_HDR_LEN); D11A_PHY_HDR_SRATE((struct ofdm_phy_hdr *) plcp, rate_signal); tmp = (length & 0xfff) << 5; plcp[2] |= (tmp >> 16) & 0xff; plcp[1] |= (tmp >> 8) & 0xff; plcp[0] |= tmp & 0xff; } /* Rate: 802.11 rate code, length: PSDU length in octets */ static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, u32 rspec, uint length, u8 *plcp) { int rate = rspec2rate(rspec); brcms_c_cck_plcp_set(wlc, rate, length, plcp); } static void brcms_c_compute_plcp(struct brcms_c_info *wlc, u32 rspec, uint length, u8 *plcp) { if (is_mcs_rate(rspec)) brcms_c_compute_mimo_plcp(rspec, length, plcp); else if (is_ofdm_rate(rspec)) brcms_c_compute_ofdm_plcp(rspec, length, plcp); else brcms_c_compute_cck_plcp(wlc, rspec, length, plcp); } /* brcms_c_compute_rtscts_dur() * * Calculate the 802.11 MAC header DUR field for an RTS or CTS frame * DUR for normal RTS/CTS w/ frame = 3 SIFS + 1 CTS + next frame time + 1 ACK * DUR for CTS-TO-SELF w/ frame = 2 SIFS + next frame time + 1 ACK * * cts cts-to-self or rts/cts * rts_rate rts or cts rate in unit of 500kbps * rate next MPDU rate in unit of 500kbps * frame_len next MPDU frame length in bytes */ u16 brcms_c_compute_rtscts_dur(struct brcms_c_info *wlc, bool cts_only, u32 rts_rate, u32 frame_rate, u8 rts_preamble_type, u8 frame_preamble_type, uint frame_len, bool ba) { u16 dur, sifs; sifs = get_sifs(wlc->band); if (!cts_only) { /* RTS/CTS */ dur = 3 * sifs; dur += (u16) brcms_c_calc_cts_time(wlc, rts_rate, rts_preamble_type); } else { /* CTS-TO-SELF */ dur = 2 * sifs; } dur += (u16) brcms_c_calc_frame_time(wlc, frame_rate, frame_preamble_type, frame_len); if (ba) dur += (u16) brcms_c_calc_ba_time(wlc, frame_rate, BRCMS_SHORT_PREAMBLE); else dur += (u16) brcms_c_calc_ack_time(wlc, frame_rate, frame_preamble_type); return dur; } static u16 brcms_c_phytxctl1_calc(struct brcms_c_info *wlc, u32 rspec) { u16 phyctl1 = 0; u16 bw; if (BRCMS_ISLCNPHY(wlc->band)) { bw = PHY_TXC1_BW_20MHZ; } else { bw = rspec_get_bw(rspec); /* 10Mhz is not supported yet */ if (bw < PHY_TXC1_BW_20MHZ) { wiphy_err(wlc->wiphy, "phytxctl1_calc: bw %d is " "not supported yet, set to 20L\n", bw); bw = PHY_TXC1_BW_20MHZ; } } if (is_mcs_rate(rspec)) { uint mcs = rspec & RSPEC_RATE_MASK; /* bw, stf, coding-type is part of rspec_phytxbyte2 returns */ phyctl1 = rspec_phytxbyte2(rspec); /* set the upper byte of phyctl1 */ phyctl1 |= (mcs_table[mcs].tx_phy_ctl3 << 8); } else if (is_cck_rate(rspec) && !BRCMS_ISLCNPHY(wlc->band) && !BRCMS_ISSSLPNPHY(wlc->band)) { /* * In CCK mode LPPHY overloads OFDM Modulation bits with CCK * Data Rate. Eventually MIMOPHY would also be converted to * this format */ /* 0 = 1Mbps; 1 = 2Mbps; 2 = 5.5Mbps; 3 = 11Mbps */ phyctl1 = (bw | (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT)); } else { /* legacy OFDM/CCK */ s16 phycfg; /* get the phyctl byte from rate phycfg table */ phycfg = brcms_c_rate_legacy_phyctl(rspec2rate(rspec)); if (phycfg == -1) { wiphy_err(wlc->wiphy, "phytxctl1_calc: wrong " "legacy OFDM/CCK rate\n"); phycfg = 0; } /* set the upper byte of phyctl1 */ phyctl1 = (bw | (phycfg << 8) | (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT)); } return phyctl1; } /* * Add struct d11txh, struct cck_phy_hdr. * * 'p' data must start with 802.11 MAC header * 'p' must allow enough bytes of local headers to be "pushed" onto the packet * * headroom == D11_PHY_HDR_LEN + D11_TXH_LEN (D11_TXH_LEN is now 104 bytes) * */ static u16 brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc, struct ieee80211_hw *hw, struct sk_buff *p, struct scb *scb, uint frag, uint nfrags, uint queue, uint next_frag_len) { struct ieee80211_hdr *h; struct d11txh *txh; u8 *plcp, plcp_fallback[D11_PHY_HDR_LEN]; int len, phylen, rts_phylen; u16 mch, phyctl, xfts, mainrates; u16 seq = 0, mcl = 0, status = 0, frameid = 0; u32 rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M }; u32 rts_rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M }; bool use_rts = false; bool use_cts = false; bool use_rifs = false; bool short_preamble[2] = { false, false }; u8 preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE }; u8 rts_preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE }; u8 *rts_plcp, rts_plcp_fallback[D11_PHY_HDR_LEN]; struct ieee80211_rts *rts = NULL; bool qos; uint ac; bool hwtkmic = false; u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ; #define ANTCFG_NONE 0xFF u8 antcfg = ANTCFG_NONE; u8 fbantcfg = ANTCFG_NONE; uint phyctl1_stf = 0; u16 durid = 0; struct ieee80211_tx_rate *txrate[2]; int k; struct ieee80211_tx_info *tx_info; bool is_mcs; u16 mimo_txbw; u8 mimo_preamble_type; /* locate 802.11 MAC header */ h = (struct ieee80211_hdr *)(p->data); qos = ieee80211_is_data_qos(h->frame_control); /* compute length of frame in bytes for use in PLCP computations */ len = p->len; phylen = len + FCS_LEN; /* Get tx_info */ tx_info = IEEE80211_SKB_CB(p); /* add PLCP */ plcp = skb_push(p, D11_PHY_HDR_LEN); /* add Broadcom tx descriptor header */ txh = (struct d11txh *) skb_push(p, D11_TXH_LEN); memset(txh, 0, D11_TXH_LEN); /* setup frameid */ if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { /* non-AP STA should never use BCMC queue */ if (queue == TX_BCMC_FIFO) { wiphy_err(wlc->wiphy, "wl%d: %s: ASSERT queue == " "TX_BCMC!\n", wlc->pub->unit, __func__); frameid = bcmc_fid_generate(wlc, NULL, txh); } else { /* Increment the counter for first fragment */ if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) scb->seqnum[p->priority]++; /* extract fragment number from frame first */ seq = le16_to_cpu(h->seq_ctrl) & FRAGNUM_MASK; seq |= (scb->seqnum[p->priority] << SEQNUM_SHIFT); h->seq_ctrl = cpu_to_le16(seq); frameid = ((seq << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) | (queue & TXFID_QUEUE_MASK); } } frameid |= queue & TXFID_QUEUE_MASK; /* set the ignpmq bit for all pkts tx'd in PS mode and for beacons */ if (ieee80211_is_beacon(h->frame_control)) mcl |= TXC_IGNOREPMQ; txrate[0] = tx_info->control.rates; txrate[1] = txrate[0] + 1; /* * if rate control algorithm didn't give us a fallback * rate, use the primary rate */ if (txrate[1]->idx < 0) txrate[1] = txrate[0]; for (k = 0; k < hw->max_rates; k++) { is_mcs = txrate[k]->flags & IEEE80211_TX_RC_MCS ? true : false; if (!is_mcs) { if ((txrate[k]->idx >= 0) && (txrate[k]->idx < hw->wiphy->bands[tx_info->band]->n_bitrates)) { rspec[k] = hw->wiphy->bands[tx_info->band]-> bitrates[txrate[k]->idx].hw_value; short_preamble[k] = txrate[k]-> flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE ? true : false; } else { rspec[k] = BRCM_RATE_1M; } } else { rspec[k] = mac80211_wlc_set_nrate(wlc, wlc->band, NRATE_MCS_INUSE | txrate[k]->idx); } /* * Currently only support same setting for primay and * fallback rates. Unify flags for each rate into a * single value for the frame */ use_rts |= txrate[k]-> flags & IEEE80211_TX_RC_USE_RTS_CTS ? true : false; use_cts |= txrate[k]-> flags & IEEE80211_TX_RC_USE_CTS_PROTECT ? true : false; /* * (1) RATE: * determine and validate primary rate * and fallback rates */ if (!rspec_active(rspec[k])) { rspec[k] = BRCM_RATE_1M; } else { if (!is_multicast_ether_addr(h->addr1)) { /* set tx antenna config */ brcms_c_antsel_antcfg_get(wlc->asi, false, false, 0, 0, &antcfg, &fbantcfg); } } } phyctl1_stf = wlc->stf->ss_opmode; if (wlc->pub->_n_enab & SUPPORT_11N) { for (k = 0; k < hw->max_rates; k++) { /* * apply siso/cdd to single stream mcs's or ofdm * if rspec is auto selected */ if (((is_mcs_rate(rspec[k]) && is_single_stream(rspec[k] & RSPEC_RATE_MASK)) || is_ofdm_rate(rspec[k])) && ((rspec[k] & RSPEC_OVERRIDE_MCS_ONLY) || !(rspec[k] & RSPEC_OVERRIDE))) { rspec[k] &= ~(RSPEC_STF_MASK | RSPEC_STC_MASK); /* For SISO MCS use STBC if possible */ if (is_mcs_rate(rspec[k]) && BRCMS_STF_SS_STBC_TX(wlc, scb)) { u8 stc; /* Nss for single stream is always 1 */ stc = 1; rspec[k] |= (PHY_TXC1_MODE_STBC << RSPEC_STF_SHIFT) | (stc << RSPEC_STC_SHIFT); } else rspec[k] |= (phyctl1_stf << RSPEC_STF_SHIFT); } /* * Is the phy configured to use 40MHZ frames? If * so then pick the desired txbw */ if (brcms_chspec_bw(wlc->chanspec) == BRCMS_40_MHZ) { /* default txbw is 20in40 SB */ mimo_ctlchbw = mimo_txbw = CHSPEC_SB_UPPER(wlc_phy_chanspec_get( wlc->band->pi)) ? PHY_TXC1_BW_20MHZ_UP : PHY_TXC1_BW_20MHZ; if (is_mcs_rate(rspec[k])) { /* mcs 32 must be 40b/w DUP */ if ((rspec[k] & RSPEC_RATE_MASK) == 32) { mimo_txbw = PHY_TXC1_BW_40MHZ_DUP; /* use override */ } else if (wlc->mimo_40txbw != AUTO) mimo_txbw = wlc->mimo_40txbw; /* else check if dst is using 40 Mhz */ else if (scb->flags & SCB_IS40) mimo_txbw = PHY_TXC1_BW_40MHZ; } else if (is_ofdm_rate(rspec[k])) { if (wlc->ofdm_40txbw != AUTO) mimo_txbw = wlc->ofdm_40txbw; } else if (wlc->cck_40txbw != AUTO) { mimo_txbw = wlc->cck_40txbw; } } else { /* * mcs32 is 40 b/w only. * This is possible for probe packets on * a STA during SCAN */ if ((rspec[k] & RSPEC_RATE_MASK) == 32) /* mcs 0 */ rspec[k] = RSPEC_MIMORATE; mimo_txbw = PHY_TXC1_BW_20MHZ; } /* Set channel width */ rspec[k] &= ~RSPEC_BW_MASK; if ((k == 0) || ((k > 0) && is_mcs_rate(rspec[k]))) rspec[k] |= (mimo_txbw << RSPEC_BW_SHIFT); else rspec[k] |= (mimo_ctlchbw << RSPEC_BW_SHIFT); /* Disable short GI, not supported yet */ rspec[k] &= ~RSPEC_SHORT_GI; mimo_preamble_type = BRCMS_MM_PREAMBLE; if (txrate[k]->flags & IEEE80211_TX_RC_GREEN_FIELD) mimo_preamble_type = BRCMS_GF_PREAMBLE; if ((txrate[k]->flags & IEEE80211_TX_RC_MCS) && (!is_mcs_rate(rspec[k]))) { wiphy_err(wlc->wiphy, "wl%d: %s: IEEE80211_TX_" "RC_MCS != is_mcs_rate(rspec)\n", wlc->pub->unit, __func__); } if (is_mcs_rate(rspec[k])) { preamble_type[k] = mimo_preamble_type; /* * if SGI is selected, then forced mm * for single stream */ if ((rspec[k] & RSPEC_SHORT_GI) && is_single_stream(rspec[k] & RSPEC_RATE_MASK)) preamble_type[k] = BRCMS_MM_PREAMBLE; } /* should be better conditionalized */ if (!is_mcs_rate(rspec[0]) && (tx_info->control.rates[0]. flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)) preamble_type[k] = BRCMS_SHORT_PREAMBLE; } } else { for (k = 0; k < hw->max_rates; k++) { /* Set ctrlchbw as 20Mhz */ rspec[k] &= ~RSPEC_BW_MASK; rspec[k] |= (PHY_TXC1_BW_20MHZ << RSPEC_BW_SHIFT); /* for nphy, stf of ofdm frames must follow policies */ if (BRCMS_ISNPHY(wlc->band) && is_ofdm_rate(rspec[k])) { rspec[k] &= ~RSPEC_STF_MASK; rspec[k] |= phyctl1_stf << RSPEC_STF_SHIFT; } } } /* Reset these for use with AMPDU's */ txrate[0]->count = 0; txrate[1]->count = 0; /* (2) PROTECTION, may change rspec */ if ((ieee80211_is_data(h->frame_control) || ieee80211_is_mgmt(h->frame_control)) && (phylen > wlc->RTSThresh) && !is_multicast_ether_addr(h->addr1)) use_rts = true; /* (3) PLCP: determine PLCP header and MAC duration, * fill struct d11txh */ brcms_c_compute_plcp(wlc, rspec[0], phylen, plcp); brcms_c_compute_plcp(wlc, rspec[1], phylen, plcp_fallback); memcpy(&txh->FragPLCPFallback, plcp_fallback, sizeof(txh->FragPLCPFallback)); /* Length field now put in CCK FBR CRC field */ if (is_cck_rate(rspec[1])) { txh->FragPLCPFallback[4] = phylen & 0xff; txh->FragPLCPFallback[5] = (phylen & 0xff00) >> 8; } /* MIMO-RATE: need validation ?? */ mainrates = is_ofdm_rate(rspec[0]) ? D11A_PHY_HDR_GRATE((struct ofdm_phy_hdr *) plcp) : plcp[0]; /* DUR field for main rate */ if (!ieee80211_is_pspoll(h->frame_control) && !is_multicast_ether_addr(h->addr1) && !use_rifs) { durid = brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0], next_frag_len); h->duration_id = cpu_to_le16(durid); } else if (use_rifs) { /* NAV protect to end of next max packet size */ durid = (u16) brcms_c_calc_frame_time(wlc, rspec[0], preamble_type[0], DOT11_MAX_FRAG_LEN); durid += RIFS_11N_TIME; h->duration_id = cpu_to_le16(durid); } /* DUR field for fallback rate */ if (ieee80211_is_pspoll(h->frame_control)) txh->FragDurFallback = h->duration_id; else if (is_multicast_ether_addr(h->addr1) || use_rifs) txh->FragDurFallback = 0; else { durid = brcms_c_compute_frame_dur(wlc, rspec[1], preamble_type[1], next_frag_len); txh->FragDurFallback = cpu_to_le16(durid); } /* (4) MAC-HDR: MacTxControlLow */ if (frag == 0) mcl |= TXC_STARTMSDU; if (!is_multicast_ether_addr(h->addr1)) mcl |= TXC_IMMEDACK; if (wlc->band->bandtype == BRCM_BAND_5G) mcl |= TXC_FREQBAND_5G; if (CHSPEC_IS40(wlc_phy_chanspec_get(wlc->band->pi))) mcl |= TXC_BW_40; /* set AMIC bit if using hardware TKIP MIC */ if (hwtkmic) mcl |= TXC_AMIC; txh->MacTxControlLow = cpu_to_le16(mcl); /* MacTxControlHigh */ mch = 0; /* Set fallback rate preamble type */ if ((preamble_type[1] == BRCMS_SHORT_PREAMBLE) || (preamble_type[1] == BRCMS_GF_PREAMBLE)) { if (rspec2rate(rspec[1]) != BRCM_RATE_1M) mch |= TXC_PREAMBLE_DATA_FB_SHORT; } /* MacFrameControl */ memcpy(&txh->MacFrameControl, &h->frame_control, sizeof(u16)); txh->TxFesTimeNormal = cpu_to_le16(0); txh->TxFesTimeFallback = cpu_to_le16(0); /* TxFrameRA */ memcpy(&txh->TxFrameRA, &h->addr1, ETH_ALEN); /* TxFrameID */ txh->TxFrameID = cpu_to_le16(frameid); /* * TxStatus, Note the case of recreating the first frag of a suppressed * frame then we may need to reset the retry cnt's via the status reg */ txh->TxStatus = cpu_to_le16(status); /* * extra fields for ucode AMPDU aggregation, the new fields are added to * the END of previous structure so that it's compatible in driver. */ txh->MaxNMpdus = cpu_to_le16(0); txh->MaxABytes_MRT = cpu_to_le16(0); txh->MaxABytes_FBR = cpu_to_le16(0); txh->MinMBytes = cpu_to_le16(0); /* (5) RTS/CTS: determine RTS/CTS PLCP header and MAC duration, * furnish struct d11txh */ /* RTS PLCP header and RTS frame */ if (use_rts || use_cts) { if (use_rts && use_cts) use_cts = false; for (k = 0; k < 2; k++) { rts_rspec[k] = brcms_c_rspec_to_rts_rspec(wlc, rspec[k], false, mimo_ctlchbw); } if (!is_ofdm_rate(rts_rspec[0]) && !((rspec2rate(rts_rspec[0]) == BRCM_RATE_1M) || (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) { rts_preamble_type[0] = BRCMS_SHORT_PREAMBLE; mch |= TXC_PREAMBLE_RTS_MAIN_SHORT; } if (!is_ofdm_rate(rts_rspec[1]) && !((rspec2rate(rts_rspec[1]) == BRCM_RATE_1M) || (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) { rts_preamble_type[1] = BRCMS_SHORT_PREAMBLE; mch |= TXC_PREAMBLE_RTS_FB_SHORT; } /* RTS/CTS additions to MacTxControlLow */ if (use_cts) { txh->MacTxControlLow |= cpu_to_le16(TXC_SENDCTS); } else { txh->MacTxControlLow |= cpu_to_le16(TXC_SENDRTS); txh->MacTxControlLow |= cpu_to_le16(TXC_LONGFRAME); } /* RTS PLCP header */ rts_plcp = txh->RTSPhyHeader; if (use_cts) rts_phylen = DOT11_CTS_LEN + FCS_LEN; else rts_phylen = DOT11_RTS_LEN + FCS_LEN; brcms_c_compute_plcp(wlc, rts_rspec[0], rts_phylen, rts_plcp); /* fallback rate version of RTS PLCP header */ brcms_c_compute_plcp(wlc, rts_rspec[1], rts_phylen, rts_plcp_fallback); memcpy(&txh->RTSPLCPFallback, rts_plcp_fallback, sizeof(txh->RTSPLCPFallback)); /* RTS frame fields... */ rts = (struct ieee80211_rts *)&txh->rts_frame; durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[0], rspec[0], rts_preamble_type[0], preamble_type[0], phylen, false); rts->duration = cpu_to_le16(durid); /* fallback rate version of RTS DUR field */ durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[1], rspec[1], rts_preamble_type[1], preamble_type[1], phylen, false); txh->RTSDurFallback = cpu_to_le16(durid); if (use_cts) { rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); memcpy(&rts->ra, &h->addr2, ETH_ALEN); } else { rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); memcpy(&rts->ra, &h->addr1, 2 * ETH_ALEN); } /* mainrate * low 8 bits: main frag rate/mcs, * high 8 bits: rts/cts rate/mcs */ mainrates |= (is_ofdm_rate(rts_rspec[0]) ? D11A_PHY_HDR_GRATE( (struct ofdm_phy_hdr *) rts_plcp) : rts_plcp[0]) << 8; } else { memset((char *)txh->RTSPhyHeader, 0, D11_PHY_HDR_LEN); memset((char *)&txh->rts_frame, 0, sizeof(struct ieee80211_rts)); memset((char *)txh->RTSPLCPFallback, 0, sizeof(txh->RTSPLCPFallback)); txh->RTSDurFallback = 0; } #ifdef SUPPORT_40MHZ /* add null delimiter count */ if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && is_mcs_rate(rspec)) txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = brcm_c_ampdu_null_delim_cnt(wlc->ampdu, scb, rspec, phylen); #endif /* * Now that RTS/RTS FB preamble types are updated, write * the final value */ txh->MacTxControlHigh = cpu_to_le16(mch); /* * MainRates (both the rts and frag plcp rates have * been calculated now) */ txh->MainRates = cpu_to_le16(mainrates); /* XtraFrameTypes */ xfts = frametype(rspec[1], wlc->mimoft); xfts |= (frametype(rts_rspec[0], wlc->mimoft) << XFTS_RTS_FT_SHIFT); xfts |= (frametype(rts_rspec[1], wlc->mimoft) << XFTS_FBRRTS_FT_SHIFT); xfts |= CHSPEC_CHANNEL(wlc_phy_chanspec_get(wlc->band->pi)) << XFTS_CHANNEL_SHIFT; txh->XtraFrameTypes = cpu_to_le16(xfts); /* PhyTxControlWord */ phyctl = frametype(rspec[0], wlc->mimoft); if ((preamble_type[0] == BRCMS_SHORT_PREAMBLE) || (preamble_type[0] == BRCMS_GF_PREAMBLE)) { if (rspec2rate(rspec[0]) != BRCM_RATE_1M) phyctl |= PHY_TXC_SHORT_HDR; } /* phytxant is properly bit shifted */ phyctl |= brcms_c_stf_d11hdrs_phyctl_txant(wlc, rspec[0]); txh->PhyTxControlWord = cpu_to_le16(phyctl); /* PhyTxControlWord_1 */ if (BRCMS_PHY_11N_CAP(wlc->band)) { u16 phyctl1 = 0; phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[0]); txh->PhyTxControlWord_1 = cpu_to_le16(phyctl1); phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[1]); txh->PhyTxControlWord_1_Fbr = cpu_to_le16(phyctl1); if (use_rts || use_cts) { phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[0]); txh->PhyTxControlWord_1_Rts = cpu_to_le16(phyctl1); phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[1]); txh->PhyTxControlWord_1_FbrRts = cpu_to_le16(phyctl1); } /* * For mcs frames, if mixedmode(overloaded with long preamble) * is going to be set, fill in non-zero MModeLen and/or * MModeFbrLen it will be unnecessary if they are separated */ if (is_mcs_rate(rspec[0]) && (preamble_type[0] == BRCMS_MM_PREAMBLE)) { u16 mmodelen = brcms_c_calc_lsig_len(wlc, rspec[0], phylen); txh->MModeLen = cpu_to_le16(mmodelen); } if (is_mcs_rate(rspec[1]) && (preamble_type[1] == BRCMS_MM_PREAMBLE)) { u16 mmodefbrlen = brcms_c_calc_lsig_len(wlc, rspec[1], phylen); txh->MModeFbrLen = cpu_to_le16(mmodefbrlen); } } ac = skb_get_queue_mapping(p); if ((scb->flags & SCB_WMECAP) && qos && wlc->edcf_txop[ac]) { uint frag_dur, dur, dur_fallback; /* WME: Update TXOP threshold */ if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) && frag == 0) { frag_dur = brcms_c_calc_frame_time(wlc, rspec[0], preamble_type[0], phylen); if (rts) { /* 1 RTS or CTS-to-self frame */ dur = brcms_c_calc_cts_time(wlc, rts_rspec[0], rts_preamble_type[0]); dur_fallback = brcms_c_calc_cts_time(wlc, rts_rspec[1], rts_preamble_type[1]); /* (SIFS + CTS) + SIFS + frame + SIFS + ACK */ dur += le16_to_cpu(rts->duration); dur_fallback += le16_to_cpu(txh->RTSDurFallback); } else if (use_rifs) { dur = frag_dur; dur_fallback = 0; } else { /* frame + SIFS + ACK */ dur = frag_dur; dur += brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0], 0); dur_fallback = brcms_c_calc_frame_time(wlc, rspec[1], preamble_type[1], phylen); dur_fallback += brcms_c_compute_frame_dur(wlc, rspec[1], preamble_type[1], 0); } /* NEED to set TxFesTimeNormal (hard) */ txh->TxFesTimeNormal = cpu_to_le16((u16) dur); /* * NEED to set fallback rate version of * TxFesTimeNormal (hard) */ txh->TxFesTimeFallback = cpu_to_le16((u16) dur_fallback); /* * update txop byte threshold (txop minus intraframe * overhead) */ if (wlc->edcf_txop[ac] >= (dur - frag_dur)) { uint newfragthresh; newfragthresh = brcms_c_calc_frame_len(wlc, rspec[0], preamble_type[0], (wlc->edcf_txop[ac] - (dur - frag_dur))); /* range bound the fragthreshold */ if (newfragthresh < DOT11_MIN_FRAG_LEN) newfragthresh = DOT11_MIN_FRAG_LEN; else if (newfragthresh > wlc->usr_fragthresh) newfragthresh = wlc->usr_fragthresh; /* update the fragthresh and do txc update */ if (wlc->fragthresh[queue] != (u16) newfragthresh) wlc->fragthresh[queue] = (u16) newfragthresh; } else { wiphy_err(wlc->wiphy, "wl%d: %s txop invalid " "for rate %d\n", wlc->pub->unit, fifo_names[queue], rspec2rate(rspec[0])); } if (dur > wlc->edcf_txop[ac]) wiphy_err(wlc->wiphy, "wl%d: %s: %s txop " "exceeded phylen %d/%d dur %d/%d\n", wlc->pub->unit, __func__, fifo_names[queue], phylen, wlc->fragthresh[queue], dur, wlc->edcf_txop[ac]); } } return 0; } void brcms_c_sendpkt_mac80211(struct brcms_c_info *wlc, struct sk_buff *sdu, struct ieee80211_hw *hw) { u8 prio; uint fifo; struct scb *scb = &wlc->pri_scb; struct ieee80211_hdr *d11_header = (struct ieee80211_hdr *)(sdu->data); /* * 802.11 standard requires management traffic * to go at highest priority */ prio = ieee80211_is_data(d11_header->frame_control) ? sdu->priority : MAXPRIO; fifo = prio2fifo[prio]; if (brcms_c_d11hdrs_mac80211(wlc, hw, sdu, scb, 0, 1, fifo, 0)) return; brcms_c_txq_enq(wlc, scb, sdu, BRCMS_PRIO_TO_PREC(prio)); brcms_c_send_q(wlc); } void brcms_c_send_q(struct brcms_c_info *wlc) { struct sk_buff *pkt[DOT11_MAXNUMFRAGS]; int prec; u16 prec_map; int err = 0, i, count; uint fifo; struct brcms_txq_info *qi = wlc->pkt_queue; struct pktq *q = &qi->q; struct ieee80211_tx_info *tx_info; prec_map = wlc->tx_prec_map; /* Send all the enq'd pkts that we can. * Dequeue packets with precedence with empty HW fifo only */ while (prec_map && (pkt[0] = brcmu_pktq_mdeq(q, prec_map, &prec))) { tx_info = IEEE80211_SKB_CB(pkt[0]); if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { err = brcms_c_sendampdu(wlc->ampdu, qi, pkt, prec); } else { count = 1; err = brcms_c_prep_pdu(wlc, pkt[0], &fifo); if (!err) { for (i = 0; i < count; i++) brcms_c_txfifo(wlc, fifo, pkt[i], true, 1); } } if (err == -EBUSY) { brcmu_pktq_penq_head(q, prec, pkt[0]); /* * If send failed due to any other reason than a * change in HW FIFO condition, quit. Otherwise, * read the new prec_map! */ if (prec_map == wlc->tx_prec_map) break; prec_map = wlc->tx_prec_map; } } } void brcms_c_txfifo(struct brcms_c_info *wlc, uint fifo, struct sk_buff *p, bool commit, s8 txpktpend) { u16 frameid = INVALIDFID; struct d11txh *txh; txh = (struct d11txh *) (p->data); /* When a BC/MC frame is being committed to the BCMC fifo * via DMA (NOT PIO), update ucode or BSS info as appropriate. */ if (fifo == TX_BCMC_FIFO) frameid = le16_to_cpu(txh->TxFrameID); /* * Bump up pending count for if not using rpc. If rpc is * used, this will be handled in brcms_b_txfifo() */ if (commit) { wlc->core->txpktpend[fifo] += txpktpend; BCMMSG(wlc->wiphy, "pktpend inc %d to %d\n", txpktpend, wlc->core->txpktpend[fifo]); } /* Commit BCMC sequence number in the SHM frame ID location */ if (frameid != INVALIDFID) { /* * To inform the ucode of the last mcast frame posted * so that it can clear moredata bit */ brcms_b_write_shm(wlc->hw, M_BCMC_FID, frameid); } if (dma_txfast(wlc->hw->di[fifo], p, commit) < 0) wiphy_err(wlc->wiphy, "txfifo: fatal, toss frames !!!\n"); } u32 brcms_c_rspec_to_rts_rspec(struct brcms_c_info *wlc, u32 rspec, bool use_rspec, u16 mimo_ctlchbw) { u32 rts_rspec = 0; if (use_rspec) /* use frame rate as rts rate */ rts_rspec = rspec; else if (wlc->band->gmode && wlc->protection->_g && !is_cck_rate(rspec)) /* Use 11Mbps as the g protection RTS target rate and fallback. * Use the brcms_basic_rate() lookup to find the best basic rate * under the target in case 11 Mbps is not Basic. * 6 and 9 Mbps are not usually selected by rate selection, but * even if the OFDM rate we are protecting is 6 or 9 Mbps, 11 * is more robust. */ rts_rspec = brcms_basic_rate(wlc, BRCM_RATE_11M); else /* calculate RTS rate and fallback rate based on the frame rate * RTS must be sent at a basic rate since it is a * control frame, sec 9.6 of 802.11 spec */ rts_rspec = brcms_basic_rate(wlc, rspec); if (BRCMS_PHY_11N_CAP(wlc->band)) { /* set rts txbw to correct side band */ rts_rspec &= ~RSPEC_BW_MASK; /* * if rspec/rspec_fallback is 40MHz, then send RTS on both * 20MHz channel (DUP), otherwise send RTS on control channel */ if (rspec_is40mhz(rspec) && !is_cck_rate(rts_rspec)) rts_rspec |= (PHY_TXC1_BW_40MHZ_DUP << RSPEC_BW_SHIFT); else rts_rspec |= (mimo_ctlchbw << RSPEC_BW_SHIFT); /* pick siso/cdd as default for ofdm */ if (is_ofdm_rate(rts_rspec)) { rts_rspec &= ~RSPEC_STF_MASK; rts_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT); } } return rts_rspec; } void brcms_c_txfifo_complete(struct brcms_c_info *wlc, uint fifo, s8 txpktpend) { wlc->core->txpktpend[fifo] -= txpktpend; BCMMSG(wlc->wiphy, "pktpend dec %d to %d\n", txpktpend, wlc->core->txpktpend[fifo]); /* There is more room; mark precedences related to this FIFO sendable */ wlc->tx_prec_map |= wlc->fifo2prec_map[fifo]; /* figure out which bsscfg is being worked on... */ } /* Update beacon listen interval in shared memory */ static void brcms_c_bcn_li_upd(struct brcms_c_info *wlc) { /* wake up every DTIM is the default */ if (wlc->bcn_li_dtim == 1) brcms_b_write_shm(wlc->hw, M_BCN_LI, 0); else brcms_b_write_shm(wlc->hw, M_BCN_LI, (wlc->bcn_li_dtim << 8) | wlc->bcn_li_bcn); } static void brcms_b_read_tsf(struct brcms_hardware *wlc_hw, u32 *tsf_l_ptr, u32 *tsf_h_ptr) { struct bcma_device *core = wlc_hw->d11core; /* read the tsf timer low, then high to get an atomic read */ *tsf_l_ptr = bcma_read32(core, D11REGOFFS(tsf_timerlow)); *tsf_h_ptr = bcma_read32(core, D11REGOFFS(tsf_timerhigh)); } /* * recover 64bit TSF value from the 16bit TSF value in the rx header * given the assumption that the TSF passed in header is within 65ms * of the current tsf. * * 6 5 4 4 3 2 1 * 3.......6.......8.......0.......2.......4.......6.......8......0 * |<---------- tsf_h ----------->||<--- tsf_l -->||<-RxTSFTime ->| * * The RxTSFTime are the lowest 16 bits and provided by the ucode. The * tsf_l is filled in by brcms_b_recv, which is done earlier in the * receive call sequence after rx interrupt. Only the higher 16 bits * are used. Finally, the tsf_h is read from the tsf register. */ static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc, struct d11rxhdr *rxh) { u32 tsf_h, tsf_l; u16 rx_tsf_0_15, rx_tsf_16_31; brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h); rx_tsf_16_31 = (u16)(tsf_l >> 16); rx_tsf_0_15 = rxh->RxTSFTime; /* * a greater tsf time indicates the low 16 bits of * tsf_l wrapped, so decrement the high 16 bits. */ if ((u16)tsf_l < rx_tsf_0_15) { rx_tsf_16_31 -= 1; if (rx_tsf_16_31 == 0xffff) tsf_h -= 1; } return ((u64)tsf_h << 32) | (((u32)rx_tsf_16_31 << 16) + rx_tsf_0_15); } static void prep_mac80211_status(struct brcms_c_info *wlc, struct d11rxhdr *rxh, struct sk_buff *p, struct ieee80211_rx_status *rx_status) { int preamble; int channel; u32 rspec; unsigned char *plcp; /* fill in TSF and flag its presence */ rx_status->mactime = brcms_c_recover_tsf64(wlc, rxh); rx_status->flag |= RX_FLAG_MACTIME_MPDU; channel = BRCMS_CHAN_CHANNEL(rxh->RxChan); if (channel > 14) { rx_status->band = IEEE80211_BAND_5GHZ; rx_status->freq = ieee80211_ofdm_chan_to_freq( WF_CHAN_FACTOR_5_G/2, channel); } else { rx_status->band = IEEE80211_BAND_2GHZ; rx_status->freq = ieee80211_dsss_chan_to_freq(channel); } rx_status->signal = wlc_phy_rssi_compute(wlc->hw->band->pi, rxh); /* noise */ /* qual */ rx_status->antenna = (rxh->PhyRxStatus_0 & PRXS0_RXANT_UPSUBBAND) ? 1 : 0; plcp = p->data; rspec = brcms_c_compute_rspec(rxh, plcp); if (is_mcs_rate(rspec)) { rx_status->rate_idx = rspec & RSPEC_RATE_MASK; rx_status->flag |= RX_FLAG_HT; if (rspec_is40mhz(rspec)) rx_status->flag |= RX_FLAG_40MHZ; } else { switch (rspec2rate(rspec)) { case BRCM_RATE_1M: rx_status->rate_idx = 0; break; case BRCM_RATE_2M: rx_status->rate_idx = 1; break; case BRCM_RATE_5M5: rx_status->rate_idx = 2; break; case BRCM_RATE_11M: rx_status->rate_idx = 3; break; case BRCM_RATE_6M: rx_status->rate_idx = 4; break; case BRCM_RATE_9M: rx_status->rate_idx = 5; break; case BRCM_RATE_12M: rx_status->rate_idx = 6; break; case BRCM_RATE_18M: rx_status->rate_idx = 7; break; case BRCM_RATE_24M: rx_status->rate_idx = 8; break; case BRCM_RATE_36M: rx_status->rate_idx = 9; break; case BRCM_RATE_48M: rx_status->rate_idx = 10; break; case BRCM_RATE_54M: rx_status->rate_idx = 11; break; default: wiphy_err(wlc->wiphy, "%s: Unknown rate\n", __func__); } /* * For 5GHz, we should decrease the index as it is * a subset of the 2.4G rates. See bitrates field * of brcms_band_5GHz_nphy (in mac80211_if.c). */ if (rx_status->band == IEEE80211_BAND_5GHZ) rx_status->rate_idx -= BRCMS_LEGACY_5G_RATE_OFFSET; /* Determine short preamble and rate_idx */ preamble = 0; if (is_cck_rate(rspec)) { if (rxh->PhyRxStatus_0 & PRXS0_SHORTH) rx_status->flag |= RX_FLAG_SHORTPRE; } else if (is_ofdm_rate(rspec)) { rx_status->flag |= RX_FLAG_SHORTPRE; } else { wiphy_err(wlc->wiphy, "%s: Unknown modulation\n", __func__); } } if (plcp3_issgi(plcp[3])) rx_status->flag |= RX_FLAG_SHORT_GI; if (rxh->RxStatus1 & RXS_DECERR) { rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_PLCP_CRC\n", __func__); } if (rxh->RxStatus1 & RXS_FCSERR) { rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_FCS_CRC\n", __func__); } } static void brcms_c_recvctl(struct brcms_c_info *wlc, struct d11rxhdr *rxh, struct sk_buff *p) { int len_mpdu; struct ieee80211_rx_status rx_status; memset(&rx_status, 0, sizeof(rx_status)); prep_mac80211_status(wlc, rxh, p, &rx_status); /* mac header+body length, exclude CRC and plcp header */ len_mpdu = p->len - D11_PHY_HDR_LEN - FCS_LEN; skb_pull(p, D11_PHY_HDR_LEN); __skb_trim(p, len_mpdu); memcpy(IEEE80211_SKB_RXCB(p), &rx_status, sizeof(rx_status)); ieee80211_rx_irqsafe(wlc->pub->ieee_hw, p); } /* calculate frame duration for Mixed-mode L-SIG spoofing, return * number of bytes goes in the length field * * Formula given by HT PHY Spec v 1.13 * len = 3(nsyms + nstream + 3) - 3 */ u16 brcms_c_calc_lsig_len(struct brcms_c_info *wlc, u32 ratespec, uint mac_len) { uint nsyms, len = 0, kNdps; BCMMSG(wlc->wiphy, "wl%d: rate %d, len%d\n", wlc->pub->unit, rspec2rate(ratespec), mac_len); if (is_mcs_rate(ratespec)) { uint mcs = ratespec & RSPEC_RATE_MASK; int tot_streams = (mcs_2_txstreams(mcs) + 1) + rspec_stc(ratespec); /* * the payload duration calculation matches that * of regular ofdm */ /* 1000Ndbps = kbps * 4 */ kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec), rspec_issgi(ratespec)) * 4; if (rspec_stc(ratespec) == 0) nsyms = CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS) * 1000, kNdps); else /* STBC needs to have even number of symbols */ nsyms = 2 * CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS) * 1000, 2 * kNdps); /* (+3) account for HT-SIG(2) and HT-STF(1) */ nsyms += (tot_streams + 3); /* * 3 bytes/symbol @ legacy 6Mbps rate * (-3) excluding service bits and tail bits */ len = (3 * nsyms) - 3; } return (u16) len; } static void brcms_c_mod_prb_rsp_rate_table(struct brcms_c_info *wlc, uint frame_len) { const struct brcms_c_rateset *rs_dflt; struct brcms_c_rateset rs; u8 rate; u16 entry_ptr; u8 plcp[D11_PHY_HDR_LEN]; u16 dur, sifs; uint i; sifs = get_sifs(wlc->band); rs_dflt = brcms_c_rateset_get_hwrs(wlc); brcms_c_rateset_copy(rs_dflt, &rs); brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams); /* * walk the phy rate table and update MAC core SHM * basic rate table entries */ for (i = 0; i < rs.count; i++) { rate = rs.rates[i] & BRCMS_RATE_MASK; entry_ptr = brcms_b_rate_shm_offset(wlc->hw, rate); /* Calculate the Probe Response PLCP for the given rate */ brcms_c_compute_plcp(wlc, rate, frame_len, plcp); /* * Calculate the duration of the Probe Response * frame plus SIFS for the MAC */ dur = (u16) brcms_c_calc_frame_time(wlc, rate, BRCMS_LONG_PREAMBLE, frame_len); dur += sifs; /* Update the SHM Rate Table entry Probe Response values */ brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS, (u16) (plcp[0] + (plcp[1] << 8))); brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS + 2, (u16) (plcp[2] + (plcp[3] << 8))); brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_DUR_POS, dur); } } /* Max buffering needed for beacon template/prb resp template is 142 bytes. * * PLCP header is 6 bytes. * 802.11 A3 header is 24 bytes. * Max beacon frame body template length is 112 bytes. * Max probe resp frame body template length is 110 bytes. * * *len on input contains the max length of the packet available. * * The *len value is set to the number of bytes in buf used, and starts * with the PLCP and included up to, but not including, the 4 byte FCS. */ static void brcms_c_bcn_prb_template(struct brcms_c_info *wlc, u16 type, u32 bcn_rspec, struct brcms_bss_cfg *cfg, u16 *buf, int *len) { static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255}; struct cck_phy_hdr *plcp; struct ieee80211_mgmt *h; int hdr_len, body_len; hdr_len = D11_PHY_HDR_LEN + DOT11_MAC_HDR_LEN; /* calc buffer size provided for frame body */ body_len = *len - hdr_len; /* return actual size */ *len = hdr_len + body_len; /* format PHY and MAC headers */ memset((char *)buf, 0, hdr_len); plcp = (struct cck_phy_hdr *) buf; /* * PLCP for Probe Response frames are filled in from * core's rate table */ if (type == IEEE80211_STYPE_BEACON) /* fill in PLCP */ brcms_c_compute_plcp(wlc, bcn_rspec, (DOT11_MAC_HDR_LEN + body_len + FCS_LEN), (u8 *) plcp); /* "Regular" and 16 MBSS but not for 4 MBSS */ /* Update the phytxctl for the beacon based on the rspec */ brcms_c_beacon_phytxctl_txant_upd(wlc, bcn_rspec); h = (struct ieee80211_mgmt *)&plcp[1]; /* fill in 802.11 header */ h->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | type); /* DUR is 0 for multicast bcn, or filled in by MAC for prb resp */ /* A1 filled in by MAC for prb resp, broadcast for bcn */ if (type == IEEE80211_STYPE_BEACON) memcpy(&h->da, ðer_bcast, ETH_ALEN); memcpy(&h->sa, &cfg->cur_etheraddr, ETH_ALEN); memcpy(&h->bssid, &cfg->BSSID, ETH_ALEN); /* SEQ filled in by MAC */ } int brcms_c_get_header_len(void) { return TXOFF; } /* * Update all beacons for the system. */ void brcms_c_update_beacon(struct brcms_c_info *wlc) { struct brcms_bss_cfg *bsscfg = wlc->bsscfg; if (bsscfg->up && !bsscfg->BSS) /* Clear the soft intmask */ wlc->defmacintmask &= ~MI_BCNTPL; } /* Write ssid into shared memory */ static void brcms_c_shm_ssid_upd(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg) { u8 *ssidptr = cfg->SSID; u16 base = M_SSID; u8 ssidbuf[IEEE80211_MAX_SSID_LEN]; /* padding the ssid with zero and copy it into shm */ memset(ssidbuf, 0, IEEE80211_MAX_SSID_LEN); memcpy(ssidbuf, ssidptr, cfg->SSID_len); brcms_c_copyto_shm(wlc, base, ssidbuf, IEEE80211_MAX_SSID_LEN); brcms_b_write_shm(wlc->hw, M_SSIDLEN, (u16) cfg->SSID_len); } static void brcms_c_bss_update_probe_resp(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg, bool suspend) { u16 prb_resp[BCN_TMPL_LEN / 2]; int len = BCN_TMPL_LEN; /* * write the probe response to hardware, or save in * the config structure */ /* create the probe response template */ brcms_c_bcn_prb_template(wlc, IEEE80211_STYPE_PROBE_RESP, 0, cfg, prb_resp, &len); if (suspend) brcms_c_suspend_mac_and_wait(wlc); /* write the probe response into the template region */ brcms_b_write_template_ram(wlc->hw, T_PRS_TPL_BASE, (len + 3) & ~3, prb_resp); /* write the length of the probe response frame (+PLCP/-FCS) */ brcms_b_write_shm(wlc->hw, M_PRB_RESP_FRM_LEN, (u16) len); /* write the SSID and SSID length */ brcms_c_shm_ssid_upd(wlc, cfg); /* * Write PLCP headers and durations for probe response frames * at all rates. Use the actual frame length covered by the * PLCP header for the call to brcms_c_mod_prb_rsp_rate_table() * by subtracting the PLCP len and adding the FCS. */ len += (-D11_PHY_HDR_LEN + FCS_LEN); brcms_c_mod_prb_rsp_rate_table(wlc, (u16) len); if (suspend) brcms_c_enable_mac(wlc); } void brcms_c_update_probe_resp(struct brcms_c_info *wlc, bool suspend) { struct brcms_bss_cfg *bsscfg = wlc->bsscfg; /* update AP or IBSS probe responses */ if (bsscfg->up && !bsscfg->BSS) brcms_c_bss_update_probe_resp(wlc, bsscfg, suspend); } /* prepares pdu for transmission. returns BCM error codes */ int brcms_c_prep_pdu(struct brcms_c_info *wlc, struct sk_buff *pdu, uint *fifop) { uint fifo; struct d11txh *txh; struct ieee80211_hdr *h; struct scb *scb; txh = (struct d11txh *) (pdu->data); h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN); /* get the pkt queue info. This was put at brcms_c_sendctl or * brcms_c_send for PDU */ fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK; scb = NULL; *fifop = fifo; /* return if insufficient dma resources */ if (*wlc->core->txavail[fifo] < MAX_DMA_SEGS) { /* Mark precedences related to this FIFO, unsendable */ /* A fifo is full. Clear precedences related to that FIFO */ wlc->tx_prec_map &= ~(wlc->fifo2prec_map[fifo]); return -EBUSY; } return 0; } int brcms_b_xmtfifo_sz_get(struct brcms_hardware *wlc_hw, uint fifo, uint *blocks) { if (fifo >= NFIFO) return -EINVAL; *blocks = wlc_hw->xmtfifo_sz[fifo]; return 0; } void brcms_c_set_addrmatch(struct brcms_c_info *wlc, int match_reg_offset, const u8 *addr) { brcms_b_set_addrmatch(wlc->hw, match_reg_offset, addr); if (match_reg_offset == RCM_BSSID_OFFSET) memcpy(wlc->bsscfg->BSSID, addr, ETH_ALEN); } /* * Flag 'scan in progress' to withhold dynamic phy calibration */ void brcms_c_scan_start(struct brcms_c_info *wlc) { wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, true); } void brcms_c_scan_stop(struct brcms_c_info *wlc) { wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, false); } void brcms_c_associate_upd(struct brcms_c_info *wlc, bool state) { wlc->pub->associated = state; wlc->bsscfg->associated = state; } /* * When a remote STA/AP is removed by Mac80211, or when it can no longer accept * AMPDU traffic, packets pending in hardware have to be invalidated so that * when later on hardware releases them, they can be handled appropriately. */ void brcms_c_inval_dma_pkts(struct brcms_hardware *hw, struct ieee80211_sta *sta, void (*dma_callback_fn)) { struct dma_pub *dmah; int i; for (i = 0; i < NFIFO; i++) { dmah = hw->di[i]; if (dmah != NULL) dma_walk_packets(dmah, dma_callback_fn, sta); } } int brcms_c_get_curband(struct brcms_c_info *wlc) { return wlc->band->bandunit; } void brcms_c_wait_for_tx_completion(struct brcms_c_info *wlc, bool drop) { int timeout = 20; /* flush packet queue when requested */ if (drop) brcmu_pktq_flush(&wlc->pkt_queue->q, false, NULL, NULL); /* wait for queue and DMA fifos to run dry */ while (!pktq_empty(&wlc->pkt_queue->q) || brcms_txpktpendtot(wlc) > 0) { brcms_msleep(wlc->wl, 1); if (--timeout == 0) break; } WARN_ON_ONCE(timeout == 0); } void brcms_c_set_beacon_listen_interval(struct brcms_c_info *wlc, u8 interval) { wlc->bcn_li_bcn = interval; if (wlc->pub->up) brcms_c_bcn_li_upd(wlc); } int brcms_c_set_tx_power(struct brcms_c_info *wlc, int txpwr) { uint qdbm; /* Remove override bit and clip to max qdbm value */ qdbm = min_t(uint, txpwr * BRCMS_TXPWR_DB_FACTOR, 0xff); return wlc_phy_txpower_set(wlc->band->pi, qdbm, false); } int brcms_c_get_tx_power(struct brcms_c_info *wlc) { uint qdbm; bool override; wlc_phy_txpower_get(wlc->band->pi, &qdbm, &override); /* Return qdbm units */ return (int)(qdbm / BRCMS_TXPWR_DB_FACTOR); } /* Process received frames */ /* * Return true if more frames need to be processed. false otherwise. * Param 'bound' indicates max. # frames to process before break out. */ static void brcms_c_recv(struct brcms_c_info *wlc, struct sk_buff *p) { struct d11rxhdr *rxh; struct ieee80211_hdr *h; uint len; bool is_amsdu; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* frame starts with rxhdr */ rxh = (struct d11rxhdr *) (p->data); /* strip off rxhdr */ skb_pull(p, BRCMS_HWRXOFF); /* MAC inserts 2 pad bytes for a4 headers or QoS or A-MSDU subframes */ if (rxh->RxStatus1 & RXS_PBPRES) { if (p->len < 2) { wiphy_err(wlc->wiphy, "wl%d: recv: rcvd runt of " "len %d\n", wlc->pub->unit, p->len); goto toss; } skb_pull(p, 2); } h = (struct ieee80211_hdr *)(p->data + D11_PHY_HDR_LEN); len = p->len; if (rxh->RxStatus1 & RXS_FCSERR) { if (!(wlc->filter_flags & FIF_FCSFAIL)) goto toss; } /* check received pkt has at least frame control field */ if (len < D11_PHY_HDR_LEN + sizeof(h->frame_control)) goto toss; /* not supporting A-MSDU */ is_amsdu = rxh->RxStatus2 & RXS_AMSDU_MASK; if (is_amsdu) goto toss; brcms_c_recvctl(wlc, rxh, p); return; toss: brcmu_pkt_buf_free_skb(p); } /* Process received frames */ /* * Return true if more frames need to be processed. false otherwise. * Param 'bound' indicates max. # frames to process before break out. */ static bool brcms_b_recv(struct brcms_hardware *wlc_hw, uint fifo, bool bound) { struct sk_buff *p; struct sk_buff *next = NULL; struct sk_buff_head recv_frames; uint n = 0; uint bound_limit = bound ? RXBND : -1; BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit); skb_queue_head_init(&recv_frames); /* gather received frames */ while (dma_rx(wlc_hw->di[fifo], &recv_frames)) { /* !give others some time to run! */ if (++n >= bound_limit) break; } /* post more rbufs */ dma_rxfill(wlc_hw->di[fifo]); /* process each frame */ skb_queue_walk_safe(&recv_frames, p, next) { struct d11rxhdr_le *rxh_le; struct d11rxhdr *rxh; skb_unlink(p, &recv_frames); rxh_le = (struct d11rxhdr_le *)p->data; rxh = (struct d11rxhdr *)p->data; /* fixup rx header endianness */ rxh->RxFrameSize = le16_to_cpu(rxh_le->RxFrameSize); rxh->PhyRxStatus_0 = le16_to_cpu(rxh_le->PhyRxStatus_0); rxh->PhyRxStatus_1 = le16_to_cpu(rxh_le->PhyRxStatus_1); rxh->PhyRxStatus_2 = le16_to_cpu(rxh_le->PhyRxStatus_2); rxh->PhyRxStatus_3 = le16_to_cpu(rxh_le->PhyRxStatus_3); rxh->PhyRxStatus_4 = le16_to_cpu(rxh_le->PhyRxStatus_4); rxh->PhyRxStatus_5 = le16_to_cpu(rxh_le->PhyRxStatus_5); rxh->RxStatus1 = le16_to_cpu(rxh_le->RxStatus1); rxh->RxStatus2 = le16_to_cpu(rxh_le->RxStatus2); rxh->RxTSFTime = le16_to_cpu(rxh_le->RxTSFTime); rxh->RxChan = le16_to_cpu(rxh_le->RxChan); brcms_c_recv(wlc_hw->wlc, p); } return n >= bound_limit; } /* second-level interrupt processing * Return true if another dpc needs to be re-scheduled. false otherwise. * Param 'bounded' indicates if applicable loops should be bounded. */ bool brcms_c_dpc(struct brcms_c_info *wlc, bool bounded) { u32 macintstatus; struct brcms_hardware *wlc_hw = wlc->hw; struct bcma_device *core = wlc_hw->d11core; struct wiphy *wiphy = wlc->wiphy; if (brcms_deviceremoved(wlc)) { wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit, __func__); brcms_down(wlc->wl); return false; } /* grab and clear the saved software intstatus bits */ macintstatus = wlc->macintstatus; wlc->macintstatus = 0; BCMMSG(wlc->wiphy, "wl%d: macintstatus 0x%x\n", wlc_hw->unit, macintstatus); WARN_ON(macintstatus & MI_PRQ); /* PRQ Interrupt in non-MBSS */ /* tx status */ if (macintstatus & MI_TFS) { bool fatal; if (brcms_b_txstatus(wlc->hw, bounded, &fatal)) wlc->macintstatus |= MI_TFS; if (fatal) { wiphy_err(wiphy, "MI_TFS: fatal\n"); goto fatal; } } if (macintstatus & (MI_TBTT | MI_DTIM_TBTT)) brcms_c_tbtt(wlc); /* ATIM window end */ if (macintstatus & MI_ATIMWINEND) { BCMMSG(wlc->wiphy, "end of ATIM window\n"); bcma_set32(core, D11REGOFFS(maccommand), wlc->qvalid); wlc->qvalid = 0; } /* * received data or control frame, MI_DMAINT is * indication of RX_FIFO interrupt */ if (macintstatus & MI_DMAINT) if (brcms_b_recv(wlc_hw, RX_FIFO, bounded)) wlc->macintstatus |= MI_DMAINT; /* noise sample collected */ if (macintstatus & MI_BG_NOISE) wlc_phy_noise_sample_intr(wlc_hw->band->pi); if (macintstatus & MI_GP0) { wiphy_err(wiphy, "wl%d: PSM microcode watchdog fired at %d " "(seconds). Resetting.\n", wlc_hw->unit, wlc_hw->now); printk_once("%s : PSM Watchdog, chipid 0x%x, chiprev 0x%x\n", __func__, ai_get_chip_id(wlc_hw->sih), ai_get_chiprev(wlc_hw->sih)); brcms_fatal_error(wlc_hw->wlc->wl); } /* gptimer timeout */ if (macintstatus & MI_TO) bcma_write32(core, D11REGOFFS(gptimer), 0); if (macintstatus & MI_RFDISABLE) { BCMMSG(wlc->wiphy, "wl%d: BMAC Detected a change on the" " RF Disable Input\n", wlc_hw->unit); brcms_rfkill_set_hw_state(wlc->wl); } /* send any enq'd tx packets. Just makes sure to jump start tx */ if (!pktq_empty(&wlc->pkt_queue->q)) brcms_c_send_q(wlc); /* it isn't done and needs to be resched if macintstatus is non-zero */ return wlc->macintstatus != 0; fatal: brcms_fatal_error(wlc_hw->wlc->wl); return wlc->macintstatus != 0; } void brcms_c_init(struct brcms_c_info *wlc, bool mute_tx) { struct bcma_device *core = wlc->hw->d11core; u16 chanspec; BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit); /* * This will happen if a big-hammer was executed. In * that case, we want to go back to the channel that * we were on and not new channel */ if (wlc->pub->associated) chanspec = wlc->home_chanspec; else chanspec = brcms_c_init_chanspec(wlc); brcms_b_init(wlc->hw, chanspec); /* update beacon listen interval */ brcms_c_bcn_li_upd(wlc); /* write ethernet address to core */ brcms_c_set_mac(wlc->bsscfg); brcms_c_set_bssid(wlc->bsscfg); /* Update tsf_cfprep if associated and up */ if (wlc->pub->associated && wlc->bsscfg->up) { u32 bi; /* get beacon period and convert to uS */ bi = wlc->bsscfg->current_bss->beacon_period << 10; /* * update since init path would reset * to default value */ bcma_write32(core, D11REGOFFS(tsf_cfprep), bi << CFPREP_CBI_SHIFT); /* Update maccontrol PM related bits */ brcms_c_set_ps_ctrl(wlc); } brcms_c_bandinit_ordered(wlc, chanspec); /* init probe response timeout */ brcms_b_write_shm(wlc->hw, M_PRS_MAXTIME, wlc->prb_resp_timeout); /* init max burst txop (framebursting) */ brcms_b_write_shm(wlc->hw, M_MBURST_TXOP, (wlc-> _rifs ? (EDCF_AC_VO_TXOP_AP << 5) : MAXFRAMEBURST_TXOP)); /* initialize maximum allowed duty cycle */ brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_ofdm, true, true); brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_cck, false, true); /* * Update some shared memory locations related to * max AMPDU size allowed to received */ brcms_c_ampdu_shm_upd(wlc->ampdu); /* band-specific inits */ brcms_c_bsinit(wlc); /* Enable EDCF mode (while the MAC is suspended) */ bcma_set16(core, D11REGOFFS(ifs_ctl), IFS_USEEDCF); brcms_c_edcf_setparams(wlc, false); /* Init precedence maps for empty FIFOs */ brcms_c_tx_prec_map_init(wlc); /* read the ucode version if we have not yet done so */ if (wlc->ucode_rev == 0) { wlc->ucode_rev = brcms_b_read_shm(wlc->hw, M_BOM_REV_MAJOR) << NBITS(u16); wlc->ucode_rev |= brcms_b_read_shm(wlc->hw, M_BOM_REV_MINOR); } /* ..now really unleash hell (allow the MAC out of suspend) */ brcms_c_enable_mac(wlc); /* suspend the tx fifos and mute the phy for preism cac time */ if (mute_tx) brcms_b_mute(wlc->hw, true); /* clear tx flow control */ brcms_c_txflowcontrol_reset(wlc); /* enable the RF Disable Delay timer */ bcma_write32(core, D11REGOFFS(rfdisabledly), RFDISABLE_DEFAULT); /* * Initialize WME parameters; if they haven't been set by some other * mechanism (IOVar, etc) then read them from the hardware. */ if (GFIELD(wlc->wme_retries[0], EDCF_SHORT) == 0) { /* Uninitialized; read from HW */ int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) wlc->wme_retries[ac] = brcms_b_read_shm(wlc->hw, M_AC_TXLMT_ADDR(ac)); } } /* * The common driver entry routine. Error codes should be unique */ struct brcms_c_info * brcms_c_attach(struct brcms_info *wl, struct bcma_device *core, uint unit, bool piomode, uint *perr) { struct brcms_c_info *wlc; uint err = 0; uint i, j; struct brcms_pub *pub; /* allocate struct brcms_c_info state and its substructures */ wlc = (struct brcms_c_info *) brcms_c_attach_malloc(unit, &err, 0); if (wlc == NULL) goto fail; wlc->wiphy = wl->wiphy; pub = wlc->pub; #if defined(BCMDBG) wlc_info_dbg = wlc; #endif wlc->band = wlc->bandstate[0]; wlc->core = wlc->corestate; wlc->wl = wl; pub->unit = unit; pub->_piomode = piomode; wlc->bandinit_pending = false; /* populate struct brcms_c_info with default values */ brcms_c_info_init(wlc, unit); /* update sta/ap related parameters */ brcms_c_ap_upd(wlc); /* * low level attach steps(all hw accesses go * inside, no more in rest of the attach) */ err = brcms_b_attach(wlc, core, unit, piomode); if (err) goto fail; brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, OFF); pub->phy_11ncapable = BRCMS_PHY_11N_CAP(wlc->band); /* disable allowed duty cycle */ wlc->tx_duty_cycle_ofdm = 0; wlc->tx_duty_cycle_cck = 0; brcms_c_stf_phy_chain_calc(wlc); /* txchain 1: txant 0, txchain 2: txant 1 */ if (BRCMS_ISNPHY(wlc->band) && (wlc->stf->txstreams == 1)) wlc->stf->txant = wlc->stf->hw_txchain - 1; /* push to BMAC driver */ wlc_phy_stf_chain_init(wlc->band->pi, wlc->stf->hw_txchain, wlc->stf->hw_rxchain); /* pull up some info resulting from the low attach */ for (i = 0; i < NFIFO; i++) wlc->core->txavail[i] = wlc->hw->txavail[i]; memcpy(&wlc->perm_etheraddr, &wlc->hw->etheraddr, ETH_ALEN); memcpy(&pub->cur_etheraddr, &wlc->hw->etheraddr, ETH_ALEN); for (j = 0; j < wlc->pub->_nbands; j++) { wlc->band = wlc->bandstate[j]; if (!brcms_c_attach_stf_ant_init(wlc)) { err = 24; goto fail; } /* default contention windows size limits */ wlc->band->CWmin = APHY_CWMIN; wlc->band->CWmax = PHY_CWMAX; /* init gmode value */ if (wlc->band->bandtype == BRCM_BAND_2G) { wlc->band->gmode = GMODE_AUTO; brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, wlc->band->gmode); } /* init _n_enab supported mode */ if (BRCMS_PHY_11N_CAP(wlc->band)) { pub->_n_enab = SUPPORT_11N; brcms_c_protection_upd(wlc, BRCMS_PROT_N_USER, ((pub->_n_enab == SUPPORT_11N) ? WL_11N_2x2 : WL_11N_3x3)); } /* init per-band default rateset, depend on band->gmode */ brcms_default_rateset(wlc, &wlc->band->defrateset); /* fill in hw_rateset */ brcms_c_rateset_filter(&wlc->band->defrateset, &wlc->band->hw_rateset, false, BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK, (bool) (wlc->pub->_n_enab & SUPPORT_11N)); } /* * update antenna config due to * wlc->stf->txant/txchain/ant_rx_ovr change */ brcms_c_stf_phy_txant_upd(wlc); /* attach each modules */ err = brcms_c_attach_module(wlc); if (err != 0) goto fail; if (!brcms_c_timers_init(wlc, unit)) { wiphy_err(wl->wiphy, "wl%d: %s: init_timer failed\n", unit, __func__); err = 32; goto fail; } /* depend on rateset, gmode */ wlc->cmi = brcms_c_channel_mgr_attach(wlc); if (!wlc->cmi) { wiphy_err(wl->wiphy, "wl%d: %s: channel_mgr_attach failed" "\n", unit, __func__); err = 33; goto fail; } /* init default when all parameters are ready, i.e. ->rateset */ brcms_c_bss_default_init(wlc); /* * Complete the wlc default state initializations.. */ /* allocate our initial queue */ wlc->pkt_queue = brcms_c_txq_alloc(wlc); if (wlc->pkt_queue == NULL) { wiphy_err(wl->wiphy, "wl%d: %s: failed to malloc tx queue\n", unit, __func__); err = 100; goto fail; } wlc->bsscfg->wlc = wlc; wlc->mimoft = FT_HT; wlc->mimo_40txbw = AUTO; wlc->ofdm_40txbw = AUTO; wlc->cck_40txbw = AUTO; brcms_c_update_mimo_band_bwcap(wlc, BRCMS_N_BW_20IN2G_40IN5G); /* Set default values of SGI */ if (BRCMS_SGI_CAP_PHY(wlc)) { brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 | BRCMS_N_SGI_40)); } else if (BRCMS_ISSSLPNPHY(wlc->band)) { brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 | BRCMS_N_SGI_40)); } else { brcms_c_ht_update_sgi_rx(wlc, 0); } brcms_b_antsel_set(wlc->hw, wlc->asi->antsel_avail); if (perr) *perr = 0; return wlc; fail: wiphy_err(wl->wiphy, "wl%d: %s: failed with err %d\n", unit, __func__, err); if (wlc) brcms_c_detach(wlc); if (perr) *perr = err; return NULL; }