/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include #include #include "iwl-commands.h" #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-debug.h" #include "iwl-eeprom.h" #include "iwl-io.h" /************************** EEPROM BANDS **************************** * * The iwl_eeprom_band definitions below provide the mapping from the * EEPROM contents to the specific channel number supported for each * band. * * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 * definition below maps to physical channel 42 in the 5.2GHz spectrum. * The specific geography and calibration information for that channel * is contained in the eeprom map itself. * * During init, we copy the eeprom information and channel map * information into priv->channel_info_24/52 and priv->channel_map_24/52 * * channel_map_24/52 provides the index in the channel_info array for a * given channel. We have to have two separate maps as there is channel * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and * band_2 * * A value of 0xff stored in the channel_map indicates that the channel * is not supported by the hardware at all. * * A value of 0xfe in the channel_map indicates that the channel is not * valid for Tx with the current hardware. This means that * while the system can tune and receive on a given channel, it may not * be able to associate or transmit any frames on that * channel. There is no corresponding channel information for that * entry. * *********************************************************************/ /* 2.4 GHz */ const u8 iwl_eeprom_band_1[14] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; /* 5.2 GHz bands */ static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 }; static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 }; static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */ 145, 149, 153, 157, 161, 165 }; static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */ 1, 2, 3, 4, 5, 6, 7 }; static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 }; /** * struct iwl_txpwr_section: eeprom section information * @offset: indirect address into eeprom image * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section * @band: band type for the section * @is_common - true: common section, false: channel section * @is_cck - true: cck section, false: not cck section * @is_ht_40 - true: all channel in the section are HT40 channel, * false: legacy or HT 20 MHz * ignore if it is common section * @iwl_eeprom_section_channel: channel array in the section, * ignore if common section */ struct iwl_txpwr_section { u32 offset; u8 count; enum ieee80211_band band; bool is_common; bool is_cck; bool is_ht40; u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS]; }; /** * section 1 - 3 are regulatory tx power apply to all channels based on * modulation: CCK, OFDM * Band: 2.4GHz, 5.2GHz * section 4 - 10 are regulatory tx power apply to specified channels * For example: * 1L - Channel 1 Legacy * 1HT - Channel 1 HT * (1,+1) - Channel 1 HT40 "_above_" * * Section 1: all CCK channels * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1) * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1) * Section 8: 2.4 GHz channel: 13L, 13HT * Section 9: 2.4 GHz channel: 140L, 140HT * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1) * */ static const struct iwl_txpwr_section enhinfo[] = { { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false }, { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false }, { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false }, { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ, false, false, false, {1, 1, 2, 2, 10, 10, 11, 11 } }, { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ, false, false, true, { 1, 2, 6, 7, 9 } }, { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ, false, false, false, { 36, 64, 100, 36, 64, 100 } }, { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ, false, false, true, { 36, 60, 100 } }, { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ, false, false, false, { 13, 13 } }, { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ, false, false, false, { 140, 140 } }, { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ, false, false, true, { 132, 44 } }, }; /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ int iwlcore_eeprom_verify_signature(struct iwl_priv *priv) { u32 gp = iwl_read32(priv, CSR_EEPROM_GP); if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) { IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); return -ENOENT; } return 0; } EXPORT_SYMBOL(iwlcore_eeprom_verify_signature); static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode) { u32 otpgp; otpgp = iwl_read32(priv, CSR_OTP_GP_REG); if (mode == IWL_OTP_ACCESS_ABSOLUTE) iwl_clear_bit(priv, CSR_OTP_GP_REG, CSR_OTP_GP_REG_OTP_ACCESS_MODE); else iwl_set_bit(priv, CSR_OTP_GP_REG, CSR_OTP_GP_REG_OTP_ACCESS_MODE); } static int iwlcore_get_nvm_type(struct iwl_priv *priv) { u32 otpgp; int nvm_type; /* OTP only valid for CP/PP and after */ switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_NONE: IWL_ERR(priv, "Unknown hardware type\n"); return -ENOENT; case CSR_HW_REV_TYPE_3945: case CSR_HW_REV_TYPE_4965: case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: case CSR_HW_REV_TYPE_5100: case CSR_HW_REV_TYPE_5150: nvm_type = NVM_DEVICE_TYPE_EEPROM; break; default: otpgp = iwl_read32(priv, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) nvm_type = NVM_DEVICE_TYPE_OTP; else nvm_type = NVM_DEVICE_TYPE_EEPROM; break; } return nvm_type; } /* * The device's EEPROM semaphore prevents conflicts between driver and uCode * when accessing the EEPROM; each access is a series of pulses to/from the * EEPROM chip, not a single event, so even reads could conflict if they * weren't arbitrated by the semaphore. */ int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv) { u16 count; int ret; for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { /* Request semaphore */ iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); /* See if we got it */ ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, EEPROM_SEM_TIMEOUT); if (ret >= 0) { IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n", count+1); return ret; } } return ret; } EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore); void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv) { iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); } EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore); const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) { BUG_ON(offset >= priv->cfg->eeprom_size); return &priv->eeprom[offset]; } EXPORT_SYMBOL(iwlcore_eeprom_query_addr); static int iwl_init_otp_access(struct iwl_priv *priv) { int ret; /* Enable 40MHz radio clock */ _iwl_write32(priv, CSR_GP_CNTRL, _iwl_read32(priv, CSR_GP_CNTRL) | CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* wait for clock to be ready */ ret = iwl_poll_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) IWL_ERR(priv, "Time out access OTP\n"); else { iwl_set_bits_prph(priv, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); udelay(5); iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); } return ret; } static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, u16 *eeprom_data) { int ret = 0; u32 r; u32 otpgp; _iwl_write32(priv, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(priv, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(priv, "Time out reading OTP[%d]\n", addr); return ret; } r = _iwl_read_direct32(priv, CSR_EEPROM_REG); /* check for ECC errors: */ otpgp = iwl_read32(priv, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { /* stop in this case */ /* set the uncorrectable OTP ECC bit for acknowledgement */ iwl_set_bit(priv, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n"); return -EINVAL; } if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { /* continue in this case */ /* set the correctable OTP ECC bit for acknowledgement */ iwl_set_bit(priv, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); IWL_ERR(priv, "Correctable OTP ECC error, continue read\n"); } *eeprom_data = le16_to_cpu((__force __le16)(r >> 16)); return 0; } /* * iwl_is_otp_empty: check for empty OTP */ static bool iwl_is_otp_empty(struct iwl_priv *priv) { u16 next_link_addr = 0, link_value; bool is_empty = false; /* locate the beginning of OTP link list */ if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) { if (!link_value) { IWL_ERR(priv, "OTP is empty\n"); is_empty = true; } } else { IWL_ERR(priv, "Unable to read first block of OTP list.\n"); is_empty = true; } return is_empty; } /* * iwl_find_otp_image: find EEPROM image in OTP * finding the OTP block that contains the EEPROM image. * the last valid block on the link list (the block _before_ the last block) * is the block we should read and used to configure the device. * If all the available OTP blocks are full, the last block will be the block * we should read and used to configure the device. * only perform this operation if shadow RAM is disabled */ static int iwl_find_otp_image(struct iwl_priv *priv, u16 *validblockaddr) { u16 next_link_addr = 0, link_value = 0, valid_addr; int ret = 0; int usedblocks = 0; /* set addressing mode to absolute to traverse the link list */ iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE); /* checking for empty OTP or error */ if (iwl_is_otp_empty(priv)) return -EINVAL; /* * start traverse link list * until reach the max number of OTP blocks * different devices have different number of OTP blocks */ do { /* save current valid block address * check for more block on the link list */ valid_addr = next_link_addr; next_link_addr = link_value; IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n", usedblocks, next_link_addr); if (iwl_read_otp_word(priv, next_link_addr, &link_value)) return -EINVAL; if (!link_value) { /* * reach the end of link list, * set address point to the starting address * of the image */ goto done; } /* more in the link list, continue */ usedblocks++; } while (usedblocks < priv->cfg->max_ll_items); /* OTP full, use last block */ IWL_DEBUG_INFO(priv, "OTP is full, use last block\n"); done: *validblockaddr = valid_addr; /* skip first 2 bytes (link list pointer) */ *validblockaddr += 2; return ret; } /** * iwl_eeprom_init - read EEPROM contents * * Load the EEPROM contents from adapter into priv->eeprom * * NOTE: This routine uses the non-debug IO access functions. */ int iwl_eeprom_init(struct iwl_priv *priv) { u16 *e; u32 gp = iwl_read32(priv, CSR_EEPROM_GP); int sz; int ret; u16 addr; u16 validblockaddr = 0; u16 cache_addr = 0; priv->nvm_device_type = iwlcore_get_nvm_type(priv); if (priv->nvm_device_type == -ENOENT) return -ENOENT; /* allocate eeprom */ IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size); sz = priv->cfg->eeprom_size; priv->eeprom = kzalloc(sz, GFP_KERNEL); if (!priv->eeprom) { ret = -ENOMEM; goto alloc_err; } e = (u16 *)priv->eeprom; ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv); if (ret < 0) { IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); ret = -ENOENT; goto err; } /* Make sure driver (instead of uCode) is allowed to read EEPROM */ ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv); if (ret < 0) { IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n"); ret = -ENOENT; goto err; } if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) { ret = iwl_init_otp_access(priv); if (ret) { IWL_ERR(priv, "Failed to initialize OTP access.\n"); ret = -ENOENT; goto done; } _iwl_write32(priv, CSR_EEPROM_GP, iwl_read32(priv, CSR_EEPROM_GP) & ~CSR_EEPROM_GP_IF_OWNER_MSK); iwl_set_bit(priv, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); /* traversing the linked list if no shadow ram supported */ if (!priv->cfg->shadow_ram_support) { if (iwl_find_otp_image(priv, &validblockaddr)) { ret = -ENOENT; goto done; } } for (addr = validblockaddr; addr < validblockaddr + sz; addr += sizeof(u16)) { u16 eeprom_data; ret = iwl_read_otp_word(priv, addr, &eeprom_data); if (ret) goto done; e[cache_addr / 2] = eeprom_data; cache_addr += sizeof(u16); } } else { /* eeprom is an array of 16bit values */ for (addr = 0; addr < sz; addr += sizeof(u16)) { u32 r; _iwl_write32(priv, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(priv, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr); goto done; } r = _iwl_read_direct32(priv, CSR_EEPROM_REG); e[addr / 2] = le16_to_cpu((__force __le16)(r >> 16)); } } ret = 0; done: priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv); err: if (ret) iwl_eeprom_free(priv); alloc_err: return ret; } EXPORT_SYMBOL(iwl_eeprom_init); void iwl_eeprom_free(struct iwl_priv *priv) { kfree(priv->eeprom); priv->eeprom = NULL; } EXPORT_SYMBOL(iwl_eeprom_free); int iwl_eeprom_check_version(struct iwl_priv *priv) { u16 eeprom_ver; u16 calib_ver; eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION); calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv); if (eeprom_ver < priv->cfg->eeprom_ver || calib_ver < priv->cfg->eeprom_calib_ver) goto err; return 0; err: IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n", eeprom_ver, priv->cfg->eeprom_ver, calib_ver, priv->cfg->eeprom_calib_ver); return -EINVAL; } EXPORT_SYMBOL(iwl_eeprom_check_version); const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) { return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset); } EXPORT_SYMBOL(iwl_eeprom_query_addr); u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset) { if (!priv->eeprom) return 0; return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8); } EXPORT_SYMBOL(iwl_eeprom_query16); void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac) { const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv, EEPROM_MAC_ADDRESS); memcpy(mac, addr, ETH_ALEN); } EXPORT_SYMBOL(iwl_eeprom_get_mac); static void iwl_init_band_reference(const struct iwl_priv *priv, int eep_band, int *eeprom_ch_count, const struct iwl_eeprom_channel **eeprom_ch_info, const u8 **eeprom_ch_index) { u32 offset = priv->cfg->ops->lib-> eeprom_ops.regulatory_bands[eep_band - 1]; switch (eep_band) { case 1: /* 2.4GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_1; break; case 2: /* 4.9GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_2; break; case 3: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_3; break; case 4: /* 5.5GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_4; break; case 5: /* 5.7GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_5; break; case 6: /* 2.4GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_6; break; case 7: /* 5 GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(priv, offset); *eeprom_ch_index = iwl_eeprom_band_7; break; default: BUG(); return; } } #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /** * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv. * * Does not set up a command, or touch hardware. */ static int iwl_mod_ht40_chan_info(struct iwl_priv *priv, enum ieee80211_band band, u16 channel, const struct iwl_eeprom_channel *eeprom_ch, u8 clear_ht40_extension_channel) { struct iwl_channel_info *ch_info; ch_info = (struct iwl_channel_info *) iwl_get_channel_info(priv, band, channel); if (!is_channel_valid(ch_info)) return -1; IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(DFS), eeprom_ch->flags, eeprom_ch->max_power_avg, ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); ch_info->ht40_eeprom = *eeprom_ch; ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; ch_info->ht40_curr_txpow = eeprom_ch->max_power_avg; ch_info->ht40_min_power = 0; ch_info->ht40_scan_power = eeprom_ch->max_power_avg; ch_info->ht40_flags = eeprom_ch->flags; ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel; return 0; } /** * iwl_get_max_txpower_avg - get the highest tx power from all chains. * find the highest tx power from all chains for the channel */ static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element) { s8 max_txpower_avg = 0; /* (dBm) */ IWL_DEBUG_INFO(priv, "%d - " "chain_a: %d dB chain_b: %d dB " "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n", element, enhanced_txpower[element].chain_a_max >> 1, enhanced_txpower[element].chain_b_max >> 1, enhanced_txpower[element].chain_c_max >> 1, enhanced_txpower[element].mimo2_max >> 1, enhanced_txpower[element].mimo3_max >> 1); /* Take the highest tx power from any valid chains */ if ((priv->cfg->valid_tx_ant & ANT_A) && (enhanced_txpower[element].chain_a_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_a_max; if ((priv->cfg->valid_tx_ant & ANT_B) && (enhanced_txpower[element].chain_b_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_b_max; if ((priv->cfg->valid_tx_ant & ANT_C) && (enhanced_txpower[element].chain_c_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_c_max; if (((priv->cfg->valid_tx_ant == ANT_AB) | (priv->cfg->valid_tx_ant == ANT_BC) | (priv->cfg->valid_tx_ant == ANT_AC)) && (enhanced_txpower[element].mimo2_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo2_max; if ((priv->cfg->valid_tx_ant == ANT_ABC) && (enhanced_txpower[element].mimo3_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo3_max; /* max. tx power in EEPROM is in 1/2 dBm format * convert from 1/2 dBm to dBm */ return max_txpower_avg >> 1; } /** * iwl_update_common_txpower: update channel tx power * update tx power per band based on EEPROM enhanced tx power info. */ static s8 iwl_update_common_txpower(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int section, int element) { struct iwl_channel_info *ch_info; int ch; bool is_ht40 = false; s8 max_txpower_avg; /* (dBm) */ /* it is common section, contain all type (Legacy, HT and HT40) * based on the element in the section to determine * is it HT 40 or not */ if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX) is_ht40 = true; max_txpower_avg = iwl_get_max_txpower_avg(priv, enhanced_txpower, element); ch_info = priv->channel_info; for (ch = 0; ch < priv->channel_count; ch++) { /* find matching band and update tx power if needed */ if ((ch_info->band == enhinfo[section].band) && (ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) { /* Update regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if ((ch_info->band == enhinfo[section].band) && is_ht40 && ch_info->ht40_max_power_avg && (ch_info->ht40_max_power_avg < max_txpower_avg)) { /* Update regulatory-based run-time data */ ch_info->ht40_max_power_avg = max_txpower_avg; ch_info->ht40_curr_txpow = max_txpower_avg; ch_info->ht40_scan_power = max_txpower_avg; } ch_info++; } return max_txpower_avg; } /** * iwl_update_channel_txpower: update channel tx power * update channel tx power based on EEPROM enhanced tx power info. */ static s8 iwl_update_channel_txpower(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int section, int element) { struct iwl_channel_info *ch_info; int ch; u8 channel; s8 max_txpower_avg; /* (dBm) */ channel = enhinfo[section].iwl_eeprom_section_channel[element]; max_txpower_avg = iwl_get_max_txpower_avg(priv, enhanced_txpower, element); ch_info = priv->channel_info; for (ch = 0; ch < priv->channel_count; ch++) { /* find matching channel and update tx power if needed */ if (ch_info->channel == channel) { if ((ch_info->max_power_avg < max_txpower_avg) && (!enhinfo[section].is_ht40)) { /* Update regulatory-based run-time data */ ch_info->max_power_avg = max_txpower_avg; ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if ((enhinfo[section].is_ht40) && (ch_info->ht40_max_power_avg) && (ch_info->ht40_max_power_avg < max_txpower_avg)) { /* Update regulatory-based run-time data */ ch_info->ht40_max_power_avg = max_txpower_avg; ch_info->ht40_curr_txpow = max_txpower_avg; ch_info->ht40_scan_power = max_txpower_avg; } break; } ch_info++; } return max_txpower_avg; } /** * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info */ void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv) { int eeprom_section_count = 0; int section, element; struct iwl_eeprom_enhanced_txpwr *enhanced_txpower; u32 offset; s8 max_txpower_avg; /* (dBm) */ /* Loop through all the sections * adjust bands and channel's max tx power * Set the tx_power_user_lmt to the highest power * supported by any channels and chains */ for (section = 0; section < ARRAY_SIZE(enhinfo); section++) { eeprom_section_count = enhinfo[section].count; offset = enhinfo[section].offset; enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *) iwl_eeprom_query_addr(priv, offset); for (element = 0; element < eeprom_section_count; element++) { if (enhinfo[section].is_common) max_txpower_avg = iwl_update_common_txpower(priv, enhanced_txpower, section, element); else max_txpower_avg = iwl_update_channel_txpower(priv, enhanced_txpower, section, element); /* Update the tx_power_user_lmt to the highest power * supported by any channel */ if (max_txpower_avg > priv->tx_power_user_lmt) priv->tx_power_user_lmt = max_txpower_avg; } } } EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower); #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /** * iwl_init_channel_map - Set up driver's info for all possible channels */ int iwl_init_channel_map(struct iwl_priv *priv) { int eeprom_ch_count = 0; const u8 *eeprom_ch_index = NULL; const struct iwl_eeprom_channel *eeprom_ch_info = NULL; int band, ch; struct iwl_channel_info *ch_info; if (priv->channel_count) { IWL_DEBUG_INFO(priv, "Channel map already initialized.\n"); return 0; } IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n"); priv->channel_count = ARRAY_SIZE(iwl_eeprom_band_1) + ARRAY_SIZE(iwl_eeprom_band_2) + ARRAY_SIZE(iwl_eeprom_band_3) + ARRAY_SIZE(iwl_eeprom_band_4) + ARRAY_SIZE(iwl_eeprom_band_5); IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count); priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) * priv->channel_count, GFP_KERNEL); if (!priv->channel_info) { IWL_ERR(priv, "Could not allocate channel_info\n"); priv->channel_count = 0; return -ENOMEM; } ch_info = priv->channel_info; /* Loop through the 5 EEPROM bands adding them in order to the * channel map we maintain (that contains additional information than * what just in the EEPROM) */ for (band = 1; band <= 5; band++) { iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { ch_info->channel = eeprom_ch_index[ch]; ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; /* permanently store EEPROM's channel regulatory flags * and max power in channel info database. */ ch_info->eeprom = eeprom_ch_info[ch]; /* Copy the run-time flags so they are there even on * invalid channels */ ch_info->flags = eeprom_ch_info[ch].flags; /* First write that ht40 is not enabled, and then enable * one by one */ ch_info->ht40_extension_channel = IEEE80211_CHAN_NO_HT40; if (!(is_channel_valid(ch_info))) { IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - " "No traffic\n", ch_info->channel, ch_info->flags, is_channel_a_band(ch_info) ? "5.2" : "2.4"); ch_info++; continue; } /* Initialize regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = eeprom_ch_info[ch].max_power_avg; ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; ch_info->min_power = 0; IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(DFS), eeprom_ch_info[ch].flags, eeprom_ch_info[ch].max_power_avg, ((eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); /* Set the tx_power_user_lmt to the highest power * supported by any channel */ if (eeprom_ch_info[ch].max_power_avg > priv->tx_power_user_lmt) priv->tx_power_user_lmt = eeprom_ch_info[ch].max_power_avg; ch_info++; } } /* Check if we do have HT40 channels */ if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 && priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) return 0; /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ for (band = 6; band <= 7; band++) { enum ieee80211_band ieeeband; iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ ieeeband = (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { /* Set up driver's info for lower half */ iwl_mod_ht40_chan_info(priv, ieeeband, eeprom_ch_index[ch], &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40PLUS); /* Set up driver's info for upper half */ iwl_mod_ht40_chan_info(priv, ieeeband, eeprom_ch_index[ch] + 4, &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40MINUS); } } /* for newer device (6000 series and up) * EEPROM contain enhanced tx power information * driver need to process addition information * to determine the max channel tx power limits */ if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower) priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv); return 0; } EXPORT_SYMBOL(iwl_init_channel_map); /* * iwl_free_channel_map - undo allocations in iwl_init_channel_map */ void iwl_free_channel_map(struct iwl_priv *priv) { kfree(priv->channel_info); priv->channel_count = 0; } EXPORT_SYMBOL(iwl_free_channel_map); /** * iwl_get_channel_info - Find driver's private channel info * * Based on band and channel number. */ const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv, enum ieee80211_band band, u16 channel) { int i; switch (band) { case IEEE80211_BAND_5GHZ: for (i = 14; i < priv->channel_count; i++) { if (priv->channel_info[i].channel == channel) return &priv->channel_info[i]; } break; case IEEE80211_BAND_2GHZ: if (channel >= 1 && channel <= 14) return &priv->channel_info[channel - 1]; break; default: BUG(); } return NULL; } EXPORT_SYMBOL(iwl_get_channel_info);