/* Copyright (C) 2010 Willow Garage Copyright (C) 2004 - 2010 Ivo van Doorn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 generic device routines. */ #include #include #include #include #include "rt2x00.h" #include "rt2x00lib.h" /* * Utility functions. */ u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif) { /* * When in STA mode, bssidx is always 0 otherwise local_address[5] * contains the bss number, see BSS_ID_MASK comments for details. */ if (rt2x00dev->intf_sta_count) return 0; return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); } EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); /* * Radio control handlers. */ int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) { int status; /* * Don't enable the radio twice. * And check if the hardware button has been disabled. */ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return 0; /* * Initialize all data queues. */ rt2x00queue_init_queues(rt2x00dev); /* * Enable radio. */ status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); if (status) return status; rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); rt2x00leds_led_radio(rt2x00dev, true); rt2x00led_led_activity(rt2x00dev, true); set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); /* * Enable queues. */ rt2x00queue_start_queues(rt2x00dev); rt2x00link_start_tuner(rt2x00dev); rt2x00link_start_agc(rt2x00dev); if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) rt2x00link_start_vcocal(rt2x00dev); /* * Start watchdog monitoring. */ rt2x00link_start_watchdog(rt2x00dev); return 0; } void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) { if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Stop watchdog monitoring. */ rt2x00link_stop_watchdog(rt2x00dev); /* * Stop all queues */ rt2x00link_stop_agc(rt2x00dev); if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) rt2x00link_stop_vcocal(rt2x00dev); rt2x00link_stop_tuner(rt2x00dev); rt2x00queue_stop_queues(rt2x00dev); rt2x00queue_flush_queues(rt2x00dev, true); /* * Disable radio. */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); rt2x00led_led_activity(rt2x00dev, false); rt2x00leds_led_radio(rt2x00dev, false); } static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = data; struct rt2x00_intf *intf = vif_to_intf(vif); /* * It is possible the radio was disabled while the work had been * scheduled. If that happens we should return here immediately, * note that in the spinlock protected area above the delayed_flags * have been cleared correctly. */ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return; if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) rt2x00queue_update_beacon(rt2x00dev, vif); } static void rt2x00lib_intf_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, intf_work); /* * Iterate over each interface and perform the * requested configurations. */ ieee80211_iterate_active_interfaces(rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, rt2x00lib_intf_scheduled_iter, rt2x00dev); } static void rt2x00lib_autowakeup(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, autowakeup_work.work); if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return; if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); } /* * Interrupt context handlers. */ static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = data; struct sk_buff *skb; /* * Only AP mode interfaces do broad- and multicast buffering */ if (vif->type != NL80211_IFTYPE_AP) return; /* * Send out buffered broad- and multicast frames */ skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); while (skb) { rt2x00mac_tx(rt2x00dev->hw, NULL, skb); skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); } } static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = data; if (vif->type != NL80211_IFTYPE_AP && vif->type != NL80211_IFTYPE_ADHOC && vif->type != NL80211_IFTYPE_MESH_POINT && vif->type != NL80211_IFTYPE_WDS) return; /* * Update the beacon without locking. This is safe on PCI devices * as they only update the beacon periodically here. This should * never be called for USB devices. */ WARN_ON(rt2x00_is_usb(rt2x00dev)); rt2x00queue_update_beacon_locked(rt2x00dev, vif); } void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* send buffered bc/mc frames out for every bssid */ ieee80211_iterate_active_interfaces_atomic( rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, rt2x00lib_bc_buffer_iter, rt2x00dev); /* * Devices with pre tbtt interrupt don't need to update the beacon * here as they will fetch the next beacon directly prior to * transmission. */ if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) return; /* fetch next beacon */ ieee80211_iterate_active_interfaces_atomic( rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, rt2x00lib_beaconupdate_iter, rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* fetch next beacon */ ieee80211_iterate_active_interfaces_atomic( rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, rt2x00lib_beaconupdate_iter, rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); void rt2x00lib_dmastart(struct queue_entry *entry) { set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); rt2x00queue_index_inc(entry, Q_INDEX); } EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); void rt2x00lib_dmadone(struct queue_entry *entry) { set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); } EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_bar *bar = (void *) entry->skb->data; struct rt2x00_bar_list_entry *bar_entry; int ret; if (likely(!ieee80211_is_back_req(bar->frame_control))) return 0; /* * Unlike all other frames, the status report for BARs does * not directly come from the hardware as it is incapable of * matching a BA to a previously send BAR. The hardware will * report all BARs as if they weren't acked at all. * * Instead the RX-path will scan for incoming BAs and set the * block_acked flag if it sees one that was likely caused by * a BAR from us. * * Remove remaining BARs here and return their status for * TX done processing. */ ret = 0; rcu_read_lock(); list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { if (bar_entry->entry != entry) continue; spin_lock_bh(&rt2x00dev->bar_list_lock); /* Return whether this BAR was blockacked or not */ ret = bar_entry->block_acked; /* Remove the BAR from our checklist */ list_del_rcu(&bar_entry->list); spin_unlock_bh(&rt2x00dev->bar_list_lock); kfree_rcu(bar_entry, head); break; } rcu_read_unlock(); return ret; } void rt2x00lib_txdone(struct queue_entry *entry, struct txdone_entry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); unsigned int header_length, i; u8 rate_idx, rate_flags, retry_rates; u8 skbdesc_flags = skbdesc->flags; bool success; /* * Unmap the skb. */ rt2x00queue_unmap_skb(entry); /* * Remove the extra tx headroom from the skb. */ skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); /* * Signal that the TX descriptor is no longer in the skb. */ skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; /* * Determine the length of 802.11 header. */ header_length = ieee80211_get_hdrlen_from_skb(entry->skb); /* * Remove L2 padding which was added during */ if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) rt2x00queue_remove_l2pad(entry->skb, header_length); /* * If the IV/EIV data was stripped from the frame before it was * passed to the hardware, we should now reinsert it again because * mac80211 will expect the same data to be present it the * frame as it was passed to us. */ if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) rt2x00crypto_tx_insert_iv(entry->skb, header_length); /* * Send frame to debugfs immediately, after this call is completed * we are going to overwrite the skb->cb array. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); /* * Determine if the frame has been successfully transmitted and * remove BARs from our check list while checking for their * TX status. */ success = rt2x00lib_txdone_bar_status(entry) || test_bit(TXDONE_SUCCESS, &txdesc->flags) || test_bit(TXDONE_UNKNOWN, &txdesc->flags); /* * Update TX statistics. */ rt2x00dev->link.qual.tx_success += success; rt2x00dev->link.qual.tx_failed += !success; rate_idx = skbdesc->tx_rate_idx; rate_flags = skbdesc->tx_rate_flags; retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? (txdesc->retry + 1) : 1; /* * Initialize TX status */ memset(&tx_info->status, 0, sizeof(tx_info->status)); tx_info->status.ack_signal = 0; /* * Frame was send with retries, hardware tried * different rates to send out the frame, at each * retry it lowered the rate 1 step except when the * lowest rate was used. */ for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { tx_info->status.rates[i].idx = rate_idx - i; tx_info->status.rates[i].flags = rate_flags; if (rate_idx - i == 0) { /* * The lowest rate (index 0) was used until the * number of max retries was reached. */ tx_info->status.rates[i].count = retry_rates - i; i++; break; } tx_info->status.rates[i].count = 1; } if (i < (IEEE80211_TX_MAX_RATES - 1)) tx_info->status.rates[i].idx = -1; /* terminate */ if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { if (success) tx_info->flags |= IEEE80211_TX_STAT_ACK; else rt2x00dev->low_level_stats.dot11ACKFailureCount++; } /* * Every single frame has it's own tx status, hence report * every frame as ampdu of size 1. * * TODO: if we can find out how many frames were aggregated * by the hw we could provide the real ampdu_len to mac80211 * which would allow the rc algorithm to better decide on * which rates are suitable. */ if (test_bit(TXDONE_AMPDU, &txdesc->flags) || tx_info->flags & IEEE80211_TX_CTL_AMPDU) { tx_info->flags |= IEEE80211_TX_STAT_AMPDU; tx_info->status.ampdu_len = 1; tx_info->status.ampdu_ack_len = success ? 1 : 0; if (!success) tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; } if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { if (success) rt2x00dev->low_level_stats.dot11RTSSuccessCount++; else rt2x00dev->low_level_stats.dot11RTSFailureCount++; } /* * Only send the status report to mac80211 when it's a frame * that originated in mac80211. If this was a extra frame coming * through a mac80211 library call (RTS/CTS) then we should not * send the status report back. */ if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) ieee80211_tx_status(rt2x00dev->hw, entry->skb); else ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); } else dev_kfree_skb_any(entry->skb); /* * Make this entry available for reuse. */ entry->skb = NULL; entry->flags = 0; rt2x00dev->ops->lib->clear_entry(entry); rt2x00queue_index_inc(entry, Q_INDEX_DONE); /* * If the data queue was below the threshold before the txdone * handler we must make sure the packet queue in the mac80211 stack * is reenabled when the txdone handler has finished. This has to be * serialized with rt2x00mac_tx(), otherwise we can wake up queue * before it was stopped. */ spin_lock_bh(&entry->queue->tx_lock); if (!rt2x00queue_threshold(entry->queue)) rt2x00queue_unpause_queue(entry->queue); spin_unlock_bh(&entry->queue->tx_lock); } EXPORT_SYMBOL_GPL(rt2x00lib_txdone); void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) { struct txdone_entry_desc txdesc; txdesc.flags = 0; __set_bit(status, &txdesc.flags); txdesc.retry = 0; rt2x00lib_txdone(entry, &txdesc); } EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) { struct ieee80211_mgmt *mgmt = (void *)data; u8 *pos, *end; pos = (u8 *)mgmt->u.beacon.variable; end = data + len; while (pos < end) { if (pos + 2 + pos[1] > end) return NULL; if (pos[0] == ie) return pos; pos += 2 + pos[1]; } return NULL; } static void rt2x00lib_sleep(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, sleep_work); if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return; /* * Check again is powersaving is enabled, to prevent races from delayed * work execution. */ if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, IEEE80211_CONF_CHANGE_PS); } static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct rxdone_entry_desc *rxdesc) { struct rt2x00_bar_list_entry *entry; struct ieee80211_bar *ba = (void *)skb->data; if (likely(!ieee80211_is_back(ba->frame_control))) return; if (rxdesc->size < sizeof(*ba) + FCS_LEN) return; rcu_read_lock(); list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { if (ba->start_seq_num != entry->start_seq_num) continue; #define TID_CHECK(a, b) ( \ ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ if (!TID_CHECK(ba->control, entry->control)) continue; #undef TID_CHECK if (compare_ether_addr(ba->ra, entry->ta)) continue; if (compare_ether_addr(ba->ta, entry->ra)) continue; /* Mark BAR since we received the according BA */ spin_lock_bh(&rt2x00dev->bar_list_lock); entry->block_acked = 1; spin_unlock_bh(&rt2x00dev->bar_list_lock); break; } rcu_read_unlock(); } static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct rxdone_entry_desc *rxdesc) { struct ieee80211_hdr *hdr = (void *) skb->data; struct ieee80211_tim_ie *tim_ie; u8 *tim; u8 tim_len; bool cam; /* If this is not a beacon, or if mac80211 has no powersaving * configured, or if the device is already in powersaving mode * we can exit now. */ if (likely(!ieee80211_is_beacon(hdr->frame_control) || !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) return; /* min. beacon length + FCS_LEN */ if (skb->len <= 40 + FCS_LEN) return; /* and only beacons from the associated BSSID, please */ if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || !rt2x00dev->aid) return; rt2x00dev->last_beacon = jiffies; tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); if (!tim) return; if (tim[1] < sizeof(*tim_ie)) return; tim_len = tim[1]; tim_ie = (struct ieee80211_tim_ie *) &tim[2]; /* Check whenever the PHY can be turned off again. */ /* 1. What about buffered unicast traffic for our AID? */ cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); /* 2. Maybe the AP wants to send multicast/broadcast data? */ cam |= (tim_ie->bitmap_ctrl & 0x01); if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); } static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, struct rxdone_entry_desc *rxdesc) { struct ieee80211_supported_band *sband; const struct rt2x00_rate *rate; unsigned int i; int signal = rxdesc->signal; int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); switch (rxdesc->rate_mode) { case RATE_MODE_CCK: case RATE_MODE_OFDM: /* * For non-HT rates the MCS value needs to contain the * actually used rate modulation (CCK or OFDM). */ if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) signal = RATE_MCS(rxdesc->rate_mode, signal); sband = &rt2x00dev->bands[rt2x00dev->curr_band]; for (i = 0; i < sband->n_bitrates; i++) { rate = rt2x00_get_rate(sband->bitrates[i].hw_value); if (((type == RXDONE_SIGNAL_PLCP) && (rate->plcp == signal)) || ((type == RXDONE_SIGNAL_BITRATE) && (rate->bitrate == signal)) || ((type == RXDONE_SIGNAL_MCS) && (rate->mcs == signal))) { return i; } } break; case RATE_MODE_HT_MIX: case RATE_MODE_HT_GREENFIELD: if (signal >= 0 && signal <= 76) return signal; break; default: break; } rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", rxdesc->rate_mode, signal, type); return 0; } void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct rxdone_entry_desc rxdesc; struct sk_buff *skb; struct ieee80211_rx_status *rx_status; unsigned int header_length; int rate_idx; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) goto submit_entry; if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) goto submit_entry; /* * Allocate a new sk_buffer. If no new buffer available, drop the * received frame and reuse the existing buffer. */ skb = rt2x00queue_alloc_rxskb(entry, gfp); if (!skb) goto submit_entry; /* * Unmap the skb. */ rt2x00queue_unmap_skb(entry); /* * Extract the RXD details. */ memset(&rxdesc, 0, sizeof(rxdesc)); rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); /* * Check for valid size in case we get corrupted descriptor from * hardware. */ if (unlikely(rxdesc.size == 0 || rxdesc.size > entry->queue->data_size)) { rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", rxdesc.size, entry->queue->data_size); dev_kfree_skb(entry->skb); goto renew_skb; } /* * The data behind the ieee80211 header must be * aligned on a 4 byte boundary. */ header_length = ieee80211_get_hdrlen_from_skb(entry->skb); /* * Hardware might have stripped the IV/EIV/ICV data, * in that case it is possible that the data was * provided separately (through hardware descriptor) * in which case we should reinsert the data into the frame. */ if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && (rxdesc.flags & RX_FLAG_IV_STRIPPED)) rt2x00crypto_rx_insert_iv(entry->skb, header_length, &rxdesc); else if (header_length && (rxdesc.size > header_length) && (rxdesc.dev_flags & RXDONE_L2PAD)) rt2x00queue_remove_l2pad(entry->skb, header_length); /* Trim buffer to correct size */ skb_trim(entry->skb, rxdesc.size); /* * Translate the signal to the correct bitrate index. */ rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); if (rxdesc.rate_mode == RATE_MODE_HT_MIX || rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) rxdesc.flags |= RX_FLAG_HT; /* * Check if this is a beacon, and more frames have been * buffered while we were in powersaving mode. */ rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); /* * Check for incoming BlockAcks to match to the BlockAckReqs * we've send out. */ rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); /* * Update extra components */ rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); rt2x00debug_update_crypto(rt2x00dev, &rxdesc); rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); /* * Initialize RX status information, and send frame * to mac80211. */ rx_status = IEEE80211_SKB_RXCB(entry->skb); /* Ensure that all fields of rx_status are initialized * properly. The skb->cb array was used for driver * specific informations, so rx_status might contain * garbage. */ memset(rx_status, 0, sizeof(*rx_status)); rx_status->mactime = rxdesc.timestamp; rx_status->band = rt2x00dev->curr_band; rx_status->freq = rt2x00dev->curr_freq; rx_status->rate_idx = rate_idx; rx_status->signal = rxdesc.rssi; rx_status->flag = rxdesc.flags; rx_status->antenna = rt2x00dev->link.ant.active.rx; ieee80211_rx_ni(rt2x00dev->hw, entry->skb); renew_skb: /* * Replace the skb with the freshly allocated one. */ entry->skb = skb; submit_entry: entry->flags = 0; rt2x00queue_index_inc(entry, Q_INDEX_DONE); if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2x00dev->ops->lib->clear_entry(entry); } EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); /* * Driver initialization handlers. */ const struct rt2x00_rate rt2x00_supported_rates[12] = { { .flags = DEV_RATE_CCK, .bitrate = 10, .ratemask = BIT(0), .plcp = 0x00, .mcs = RATE_MCS(RATE_MODE_CCK, 0), }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, .bitrate = 20, .ratemask = BIT(1), .plcp = 0x01, .mcs = RATE_MCS(RATE_MODE_CCK, 1), }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, .bitrate = 55, .ratemask = BIT(2), .plcp = 0x02, .mcs = RATE_MCS(RATE_MODE_CCK, 2), }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, .bitrate = 110, .ratemask = BIT(3), .plcp = 0x03, .mcs = RATE_MCS(RATE_MODE_CCK, 3), }, { .flags = DEV_RATE_OFDM, .bitrate = 60, .ratemask = BIT(4), .plcp = 0x0b, .mcs = RATE_MCS(RATE_MODE_OFDM, 0), }, { .flags = DEV_RATE_OFDM, .bitrate = 90, .ratemask = BIT(5), .plcp = 0x0f, .mcs = RATE_MCS(RATE_MODE_OFDM, 1), }, { .flags = DEV_RATE_OFDM, .bitrate = 120, .ratemask = BIT(6), .plcp = 0x0a, .mcs = RATE_MCS(RATE_MODE_OFDM, 2), }, { .flags = DEV_RATE_OFDM, .bitrate = 180, .ratemask = BIT(7), .plcp = 0x0e, .mcs = RATE_MCS(RATE_MODE_OFDM, 3), }, { .flags = DEV_RATE_OFDM, .bitrate = 240, .ratemask = BIT(8), .plcp = 0x09, .mcs = RATE_MCS(RATE_MODE_OFDM, 4), }, { .flags = DEV_RATE_OFDM, .bitrate = 360, .ratemask = BIT(9), .plcp = 0x0d, .mcs = RATE_MCS(RATE_MODE_OFDM, 5), }, { .flags = DEV_RATE_OFDM, .bitrate = 480, .ratemask = BIT(10), .plcp = 0x08, .mcs = RATE_MCS(RATE_MODE_OFDM, 6), }, { .flags = DEV_RATE_OFDM, .bitrate = 540, .ratemask = BIT(11), .plcp = 0x0c, .mcs = RATE_MCS(RATE_MODE_OFDM, 7), }, }; static void rt2x00lib_channel(struct ieee80211_channel *entry, const int channel, const int tx_power, const int value) { /* XXX: this assumption about the band is wrong for 802.11j */ entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; entry->center_freq = ieee80211_channel_to_frequency(channel, entry->band); entry->hw_value = value; entry->max_power = tx_power; entry->max_antenna_gain = 0xff; } static void rt2x00lib_rate(struct ieee80211_rate *entry, const u16 index, const struct rt2x00_rate *rate) { entry->flags = 0; entry->bitrate = rate->bitrate; entry->hw_value = index; entry->hw_value_short = index; if (rate->flags & DEV_RATE_SHORT_PREAMBLE) entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; } static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, struct hw_mode_spec *spec) { struct ieee80211_hw *hw = rt2x00dev->hw; struct ieee80211_channel *channels; struct ieee80211_rate *rates; unsigned int num_rates; unsigned int i; num_rates = 0; if (spec->supported_rates & SUPPORT_RATE_CCK) num_rates += 4; if (spec->supported_rates & SUPPORT_RATE_OFDM) num_rates += 8; channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); if (!channels) return -ENOMEM; rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); if (!rates) goto exit_free_channels; /* * Initialize Rate list. */ for (i = 0; i < num_rates; i++) rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); /* * Initialize Channel list. */ for (i = 0; i < spec->num_channels; i++) { rt2x00lib_channel(&channels[i], spec->channels[i].channel, spec->channels_info[i].max_power, i); } /* * Intitialize 802.11b, 802.11g * Rates: CCK, OFDM. * Channels: 2.4 GHz */ if (spec->supported_bands & SUPPORT_BAND_2GHZ) { rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, &spec->ht, sizeof(spec->ht)); } /* * Intitialize 802.11a * Rates: OFDM. * Channels: OFDM, UNII, HiperLAN2. */ if (spec->supported_bands & SUPPORT_BAND_5GHZ) { rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14; rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = num_rates - 4; rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, &spec->ht, sizeof(spec->ht)); } return 0; exit_free_channels: kfree(channels); rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); return -ENOMEM; } static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) { if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) ieee80211_unregister_hw(rt2x00dev->hw); if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; } kfree(rt2x00dev->spec.channels_info); } static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; int status; if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) return 0; /* * Initialize HW modes. */ status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); if (status) return status; /* * Initialize HW fields. */ rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; /* * Initialize extra TX headroom required. */ rt2x00dev->hw->extra_tx_headroom = max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, rt2x00dev->ops->extra_tx_headroom); /* * Take TX headroom required for alignment into account. */ if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; /* * Tell mac80211 about the size of our private STA structure. */ rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); /* * Allocate tx status FIFO for driver use. */ if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { /* * Allocate the txstatus fifo. In the worst case the tx * status fifo has to hold the tx status of all entries * in all tx queues. Hence, calculate the kfifo size as * tx_queues * entry_num and round up to the nearest * power of 2. */ int kfifo_size = roundup_pow_of_two(rt2x00dev->ops->tx_queues * rt2x00dev->ops->tx->entry_num * sizeof(u32)); status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, GFP_KERNEL); if (status) return status; } /* * Initialize tasklets if used by the driver. Tasklets are * disabled until the interrupts are turned on. The driver * has to handle that. */ #define RT2X00_TASKLET_INIT(taskletname) \ if (rt2x00dev->ops->lib->taskletname) { \ tasklet_init(&rt2x00dev->taskletname, \ rt2x00dev->ops->lib->taskletname, \ (unsigned long)rt2x00dev); \ } RT2X00_TASKLET_INIT(txstatus_tasklet); RT2X00_TASKLET_INIT(pretbtt_tasklet); RT2X00_TASKLET_INIT(tbtt_tasklet); RT2X00_TASKLET_INIT(rxdone_tasklet); RT2X00_TASKLET_INIT(autowake_tasklet); #undef RT2X00_TASKLET_INIT /* * Register HW. */ status = ieee80211_register_hw(rt2x00dev->hw); if (status) return status; set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); return 0; } /* * Initialization/uninitialization handlers. */ static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) { if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) return; /* * Unregister extra components. */ rt2x00rfkill_unregister(rt2x00dev); /* * Allow the HW to uninitialize. */ rt2x00dev->ops->lib->uninitialize(rt2x00dev); /* * Free allocated queue entries. */ rt2x00queue_uninitialize(rt2x00dev); } static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) { int status; if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) return 0; /* * Allocate all queue entries. */ status = rt2x00queue_initialize(rt2x00dev); if (status) return status; /* * Initialize the device. */ status = rt2x00dev->ops->lib->initialize(rt2x00dev); if (status) { rt2x00queue_uninitialize(rt2x00dev); return status; } set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); return 0; } int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) { int retval; if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) return 0; /* * If this is the first interface which is added, * we should load the firmware now. */ retval = rt2x00lib_load_firmware(rt2x00dev); if (retval) return retval; /* * Initialize the device. */ retval = rt2x00lib_initialize(rt2x00dev); if (retval) return retval; rt2x00dev->intf_ap_count = 0; rt2x00dev->intf_sta_count = 0; rt2x00dev->intf_associated = 0; /* Enable the radio */ retval = rt2x00lib_enable_radio(rt2x00dev); if (retval) return retval; set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); return 0; } void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) { if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) return; /* * Perhaps we can add something smarter here, * but for now just disabling the radio should do. */ rt2x00lib_disable_radio(rt2x00dev); rt2x00dev->intf_ap_count = 0; rt2x00dev->intf_sta_count = 0; rt2x00dev->intf_associated = 0; } static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) { struct ieee80211_iface_limit *if_limit; struct ieee80211_iface_combination *if_combination; if (rt2x00dev->ops->max_ap_intf < 2) return; /* * Build up AP interface limits structure. */ if_limit = &rt2x00dev->if_limits_ap; if_limit->max = rt2x00dev->ops->max_ap_intf; if_limit->types = BIT(NL80211_IFTYPE_AP); #ifdef CONFIG_MAC80211_MESH if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); #endif /* * Build up AP interface combinations structure. */ if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; if_combination->limits = if_limit; if_combination->n_limits = 1; if_combination->max_interfaces = if_limit->max; if_combination->num_different_channels = 1; /* * Finally, specify the possible combinations to mac80211. */ rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; rt2x00dev->hw->wiphy->n_iface_combinations = 1; } /* * driver allocation handlers. */ int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) { int retval = -ENOMEM; /* * Set possible interface combinations. */ rt2x00lib_set_if_combinations(rt2x00dev); /* * Allocate the driver data memory, if necessary. */ if (rt2x00dev->ops->drv_data_size > 0) { rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, GFP_KERNEL); if (!rt2x00dev->drv_data) { retval = -ENOMEM; goto exit; } } spin_lock_init(&rt2x00dev->irqmask_lock); mutex_init(&rt2x00dev->csr_mutex); INIT_LIST_HEAD(&rt2x00dev->bar_list); spin_lock_init(&rt2x00dev->bar_list_lock); set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); /* * Make room for rt2x00_intf inside the per-interface * structure ieee80211_vif. */ rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); /* * rt2x00 devices can only use the last n bits of the MAC address * for virtual interfaces. */ rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = (rt2x00dev->ops->max_ap_intf - 1); /* * Determine which operating modes are supported, all modes * which require beaconing, depend on the availability of * beacon entries. */ rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); if (rt2x00dev->ops->bcn->entry_num > 0) rt2x00dev->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_WDS); rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; /* * Initialize work. */ rt2x00dev->workqueue = alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); if (!rt2x00dev->workqueue) { retval = -ENOMEM; goto exit; } INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); /* * Let the driver probe the device to detect the capabilities. */ retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); if (retval) { rt2x00_err(rt2x00dev, "Failed to allocate device\n"); goto exit; } /* * Allocate queue array. */ retval = rt2x00queue_allocate(rt2x00dev); if (retval) goto exit; /* * Initialize ieee80211 structure. */ retval = rt2x00lib_probe_hw(rt2x00dev); if (retval) { rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); goto exit; } /* * Register extra components. */ rt2x00link_register(rt2x00dev); rt2x00leds_register(rt2x00dev); rt2x00debug_register(rt2x00dev); rt2x00rfkill_register(rt2x00dev); return 0; exit: rt2x00lib_remove_dev(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) { clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); /* * Disable radio. */ rt2x00lib_disable_radio(rt2x00dev); /* * Stop all work. */ cancel_work_sync(&rt2x00dev->intf_work); cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); cancel_work_sync(&rt2x00dev->sleep_work); if (rt2x00_is_usb(rt2x00dev)) { hrtimer_cancel(&rt2x00dev->txstatus_timer); cancel_work_sync(&rt2x00dev->rxdone_work); cancel_work_sync(&rt2x00dev->txdone_work); } if (rt2x00dev->workqueue) destroy_workqueue(rt2x00dev->workqueue); /* * Free the tx status fifo. */ kfifo_free(&rt2x00dev->txstatus_fifo); /* * Kill the tx status tasklet. */ tasklet_kill(&rt2x00dev->txstatus_tasklet); tasklet_kill(&rt2x00dev->pretbtt_tasklet); tasklet_kill(&rt2x00dev->tbtt_tasklet); tasklet_kill(&rt2x00dev->rxdone_tasklet); tasklet_kill(&rt2x00dev->autowake_tasklet); /* * Uninitialize device. */ rt2x00lib_uninitialize(rt2x00dev); /* * Free extra components */ rt2x00debug_deregister(rt2x00dev); rt2x00leds_unregister(rt2x00dev); /* * Free ieee80211_hw memory. */ rt2x00lib_remove_hw(rt2x00dev); /* * Free firmware image. */ rt2x00lib_free_firmware(rt2x00dev); /* * Free queue structures. */ rt2x00queue_free(rt2x00dev); /* * Free the driver data. */ if (rt2x00dev->drv_data) kfree(rt2x00dev->drv_data); } EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); /* * Device state handlers */ #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) { rt2x00_dbg(rt2x00dev, "Going to sleep\n"); /* * Prevent mac80211 from accessing driver while suspended. */ if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return 0; /* * Cleanup as much as possible. */ rt2x00lib_uninitialize(rt2x00dev); /* * Suspend/disable extra components. */ rt2x00leds_suspend(rt2x00dev); rt2x00debug_deregister(rt2x00dev); /* * Set device mode to sleep for power management, * on some hardware this call seems to consistently fail. * From the specifications it is hard to tell why it fails, * and if this is a "bad thing". * Overall it is safe to just ignore the failure and * continue suspending. The only downside is that the * device will not be in optimal power save mode, but with * the radio and the other components already disabled the * device is as good as disabled. */ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_suspend); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) { rt2x00_dbg(rt2x00dev, "Waking up\n"); /* * Restore/enable extra components. */ rt2x00debug_register(rt2x00dev); rt2x00leds_resume(rt2x00dev); /* * We are ready again to receive requests from mac80211. */ set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_resume); #endif /* CONFIG_PM */ /* * rt2x00lib module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 library"); MODULE_LICENSE("GPL");