/* * Copyright (c) 2006, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Copyright (C) 2006-2008 Intel Corporation * Author: Ashok Raj * Author: Shaohua Li * Author: Anil S Keshavamurthy * Author: Fenghua Yu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" #define ROOT_SIZE VTD_PAGE_SIZE #define CONTEXT_SIZE VTD_PAGE_SIZE #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) #define IOAPIC_RANGE_START (0xfee00000) #define IOAPIC_RANGE_END (0xfeefffff) #define IOVA_START_ADDR (0x1000) #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK) #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK) /* global iommu list, set NULL for ignored DMAR units */ static struct intel_iommu **g_iommus; static int rwbf_quirk; /* * 0: Present * 1-11: Reserved * 12-63: Context Ptr (12 - (haw-1)) * 64-127: Reserved */ struct root_entry { u64 val; u64 rsvd1; }; #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) static inline bool root_present(struct root_entry *root) { return (root->val & 1); } static inline void set_root_present(struct root_entry *root) { root->val |= 1; } static inline void set_root_value(struct root_entry *root, unsigned long value) { root->val |= value & VTD_PAGE_MASK; } static inline struct context_entry * get_context_addr_from_root(struct root_entry *root) { return (struct context_entry *) (root_present(root)?phys_to_virt( root->val & VTD_PAGE_MASK) : NULL); } /* * low 64 bits: * 0: present * 1: fault processing disable * 2-3: translation type * 12-63: address space root * high 64 bits: * 0-2: address width * 3-6: aval * 8-23: domain id */ struct context_entry { u64 lo; u64 hi; }; static inline bool context_present(struct context_entry *context) { return (context->lo & 1); } static inline void context_set_present(struct context_entry *context) { context->lo |= 1; } static inline void context_set_fault_enable(struct context_entry *context) { context->lo &= (((u64)-1) << 2) | 1; } #define CONTEXT_TT_MULTI_LEVEL 0 static inline void context_set_translation_type(struct context_entry *context, unsigned long value) { context->lo &= (((u64)-1) << 4) | 3; context->lo |= (value & 3) << 2; } static inline void context_set_address_root(struct context_entry *context, unsigned long value) { context->lo |= value & VTD_PAGE_MASK; } static inline void context_set_address_width(struct context_entry *context, unsigned long value) { context->hi |= value & 7; } static inline void context_set_domain_id(struct context_entry *context, unsigned long value) { context->hi |= (value & ((1 << 16) - 1)) << 8; } static inline void context_clear_entry(struct context_entry *context) { context->lo = 0; context->hi = 0; } /* * 0: readable * 1: writable * 2-6: reserved * 7: super page * 8-11: available * 12-63: Host physcial address */ struct dma_pte { u64 val; }; static inline void dma_clear_pte(struct dma_pte *pte) { pte->val = 0; } static inline void dma_set_pte_readable(struct dma_pte *pte) { pte->val |= DMA_PTE_READ; } static inline void dma_set_pte_writable(struct dma_pte *pte) { pte->val |= DMA_PTE_WRITE; } static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) { pte->val = (pte->val & ~3) | (prot & 3); } static inline u64 dma_pte_addr(struct dma_pte *pte) { return (pte->val & VTD_PAGE_MASK); } static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr) { pte->val |= (addr & VTD_PAGE_MASK); } static inline bool dma_pte_present(struct dma_pte *pte) { return (pte->val & 3) != 0; } /* devices under the same p2p bridge are owned in one domain */ #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) /* domain represents a virtual machine, more than one devices * across iommus may be owned in one domain, e.g. kvm guest. */ #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) struct dmar_domain { int id; /* domain id */ unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/ struct list_head devices; /* all devices' list */ struct iova_domain iovad; /* iova's that belong to this domain */ struct dma_pte *pgd; /* virtual address */ spinlock_t mapping_lock; /* page table lock */ int gaw; /* max guest address width */ /* adjusted guest address width, 0 is level 2 30-bit */ int agaw; int flags; /* flags to find out type of domain */ int iommu_coherency;/* indicate coherency of iommu access */ int iommu_count; /* reference count of iommu */ spinlock_t iommu_lock; /* protect iommu set in domain */ u64 max_addr; /* maximum mapped address */ }; /* PCI domain-device relationship */ struct device_domain_info { struct list_head link; /* link to domain siblings */ struct list_head global; /* link to global list */ u8 bus; /* PCI bus numer */ u8 devfn; /* PCI devfn number */ struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */ struct dmar_domain *domain; /* pointer to domain */ }; static void flush_unmaps_timeout(unsigned long data); DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); #define HIGH_WATER_MARK 250 struct deferred_flush_tables { int next; struct iova *iova[HIGH_WATER_MARK]; struct dmar_domain *domain[HIGH_WATER_MARK]; }; static struct deferred_flush_tables *deferred_flush; /* bitmap for indexing intel_iommus */ static int g_num_of_iommus; static DEFINE_SPINLOCK(async_umap_flush_lock); static LIST_HEAD(unmaps_to_do); static int timer_on; static long list_size; static void domain_remove_dev_info(struct dmar_domain *domain); #ifdef CONFIG_DMAR_DEFAULT_ON int dmar_disabled = 0; #else int dmar_disabled = 1; #endif /*CONFIG_DMAR_DEFAULT_ON*/ static int __initdata dmar_map_gfx = 1; static int dmar_forcedac; static int intel_iommu_strict; #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) static DEFINE_SPINLOCK(device_domain_lock); static LIST_HEAD(device_domain_list); static struct iommu_ops intel_iommu_ops; static int __init intel_iommu_setup(char *str) { if (!str) return -EINVAL; while (*str) { if (!strncmp(str, "on", 2)) { dmar_disabled = 0; printk(KERN_INFO "Intel-IOMMU: enabled\n"); } else if (!strncmp(str, "off", 3)) { dmar_disabled = 1; printk(KERN_INFO "Intel-IOMMU: disabled\n"); } else if (!strncmp(str, "igfx_off", 8)) { dmar_map_gfx = 0; printk(KERN_INFO "Intel-IOMMU: disable GFX device mapping\n"); } else if (!strncmp(str, "forcedac", 8)) { printk(KERN_INFO "Intel-IOMMU: Forcing DAC for PCI devices\n"); dmar_forcedac = 1; } else if (!strncmp(str, "strict", 6)) { printk(KERN_INFO "Intel-IOMMU: disable batched IOTLB flush\n"); intel_iommu_strict = 1; } str += strcspn(str, ","); while (*str == ',') str++; } return 0; } __setup("intel_iommu=", intel_iommu_setup); static struct kmem_cache *iommu_domain_cache; static struct kmem_cache *iommu_devinfo_cache; static struct kmem_cache *iommu_iova_cache; static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) { unsigned int flags; void *vaddr; /* trying to avoid low memory issues */ flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); current->flags &= (~PF_MEMALLOC | flags); return vaddr; } static inline void *alloc_pgtable_page(void) { unsigned int flags; void *vaddr; /* trying to avoid low memory issues */ flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; vaddr = (void *)get_zeroed_page(GFP_ATOMIC); current->flags &= (~PF_MEMALLOC | flags); return vaddr; } static inline void free_pgtable_page(void *vaddr) { free_page((unsigned long)vaddr); } static inline void *alloc_domain_mem(void) { return iommu_kmem_cache_alloc(iommu_domain_cache); } static void free_domain_mem(void *vaddr) { kmem_cache_free(iommu_domain_cache, vaddr); } static inline void * alloc_devinfo_mem(void) { return iommu_kmem_cache_alloc(iommu_devinfo_cache); } static inline void free_devinfo_mem(void *vaddr) { kmem_cache_free(iommu_devinfo_cache, vaddr); } struct iova *alloc_iova_mem(void) { return iommu_kmem_cache_alloc(iommu_iova_cache); } void free_iova_mem(struct iova *iova) { kmem_cache_free(iommu_iova_cache, iova); } static inline int width_to_agaw(int width); /* calculate agaw for each iommu. * "SAGAW" may be different across iommus, use a default agaw, and * get a supported less agaw for iommus that don't support the default agaw. */ int iommu_calculate_agaw(struct intel_iommu *iommu) { unsigned long sagaw; int agaw = -1; sagaw = cap_sagaw(iommu->cap); for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH); agaw >= 0; agaw--) { if (test_bit(agaw, &sagaw)) break; } return agaw; } /* in native case, each domain is related to only one iommu */ static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) { int iommu_id; BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); if (iommu_id < 0 || iommu_id >= g_num_of_iommus) return NULL; return g_iommus[iommu_id]; } /* "Coherency" capability may be different across iommus */ static void domain_update_iommu_coherency(struct dmar_domain *domain) { int i; domain->iommu_coherency = 1; i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); for (; i < g_num_of_iommus; ) { if (!ecap_coherent(g_iommus[i]->ecap)) { domain->iommu_coherency = 0; break; } i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1); } } static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn) { struct dmar_drhd_unit *drhd = NULL; int i; for_each_drhd_unit(drhd) { if (drhd->ignored) continue; for (i = 0; i < drhd->devices_cnt; i++) if (drhd->devices[i] && drhd->devices[i]->bus->number == bus && drhd->devices[i]->devfn == devfn) return drhd->iommu; if (drhd->include_all) return drhd->iommu; } return NULL; } static void domain_flush_cache(struct dmar_domain *domain, void *addr, int size) { if (!domain->iommu_coherency) clflush_cache_range(addr, size); } /* Gets context entry for a given bus and devfn */ static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; unsigned long phy_addr; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (!context) { context = (struct context_entry *)alloc_pgtable_page(); if (!context) { spin_unlock_irqrestore(&iommu->lock, flags); return NULL; } __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); phy_addr = virt_to_phys((void *)context); set_root_value(root, phy_addr); set_root_present(root); __iommu_flush_cache(iommu, root, sizeof(*root)); } spin_unlock_irqrestore(&iommu->lock, flags); return &context[devfn]; } static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; int ret; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (!context) { ret = 0; goto out; } ret = context_present(&context[devfn]); out: spin_unlock_irqrestore(&iommu->lock, flags); return ret; } static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) { struct root_entry *root; struct context_entry *context; unsigned long flags; spin_lock_irqsave(&iommu->lock, flags); root = &iommu->root_entry[bus]; context = get_context_addr_from_root(root); if (context) { context_clear_entry(&context[devfn]); __iommu_flush_cache(iommu, &context[devfn], \ sizeof(*context)); } spin_unlock_irqrestore(&iommu->lock, flags); } static void free_context_table(struct intel_iommu *iommu) { struct root_entry *root; int i; unsigned long flags; struct context_entry *context; spin_lock_irqsave(&iommu->lock, flags); if (!iommu->root_entry) { goto out; } for (i = 0; i < ROOT_ENTRY_NR; i++) { root = &iommu->root_entry[i]; context = get_context_addr_from_root(root); if (context) free_pgtable_page(context); } free_pgtable_page(iommu->root_entry); iommu->root_entry = NULL; out: spin_unlock_irqrestore(&iommu->lock, flags); } /* page table handling */ #define LEVEL_STRIDE (9) #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) static inline int agaw_to_level(int agaw) { return agaw + 2; } static inline int agaw_to_width(int agaw) { return 30 + agaw * LEVEL_STRIDE; } static inline int width_to_agaw(int width) { return (width - 30) / LEVEL_STRIDE; } static inline unsigned int level_to_offset_bits(int level) { return (12 + (level - 1) * LEVEL_STRIDE); } static inline int address_level_offset(u64 addr, int level) { return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); } static inline u64 level_mask(int level) { return ((u64)-1 << level_to_offset_bits(level)); } static inline u64 level_size(int level) { return ((u64)1 << level_to_offset_bits(level)); } static inline u64 align_to_level(u64 addr, int level) { return ((addr + level_size(level) - 1) & level_mask(level)); } static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) { int addr_width = agaw_to_width(domain->agaw); struct dma_pte *parent, *pte = NULL; int level = agaw_to_level(domain->agaw); int offset; unsigned long flags; BUG_ON(!domain->pgd); addr &= (((u64)1) << addr_width) - 1; parent = domain->pgd; spin_lock_irqsave(&domain->mapping_lock, flags); while (level > 0) { void *tmp_page; offset = address_level_offset(addr, level); pte = &parent[offset]; if (level == 1) break; if (!dma_pte_present(pte)) { tmp_page = alloc_pgtable_page(); if (!tmp_page) { spin_unlock_irqrestore(&domain->mapping_lock, flags); return NULL; } domain_flush_cache(domain, tmp_page, PAGE_SIZE); dma_set_pte_addr(pte, virt_to_phys(tmp_page)); /* * high level table always sets r/w, last level page * table control read/write */ dma_set_pte_readable(pte); dma_set_pte_writable(pte); domain_flush_cache(domain, pte, sizeof(*pte)); } parent = phys_to_virt(dma_pte_addr(pte)); level--; } spin_unlock_irqrestore(&domain->mapping_lock, flags); return pte; } /* return address's pte at specific level */ static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, int level) { struct dma_pte *parent, *pte = NULL; int total = agaw_to_level(domain->agaw); int offset; parent = domain->pgd; while (level <= total) { offset = address_level_offset(addr, total); pte = &parent[offset]; if (level == total) return pte; if (!dma_pte_present(pte)) break; parent = phys_to_virt(dma_pte_addr(pte)); total--; } return NULL; } /* clear one page's page table */ static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) { struct dma_pte *pte = NULL; /* get last level pte */ pte = dma_addr_level_pte(domain, addr, 1); if (pte) { dma_clear_pte(pte); domain_flush_cache(domain, pte, sizeof(*pte)); } } /* clear last level pte, a tlb flush should be followed */ static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) { int addr_width = agaw_to_width(domain->agaw); start &= (((u64)1) << addr_width) - 1; end &= (((u64)1) << addr_width) - 1; /* in case it's partial page */ start = PAGE_ALIGN(start); end &= PAGE_MASK; /* we don't need lock here, nobody else touches the iova range */ while (start < end) { dma_pte_clear_one(domain, start); start += VTD_PAGE_SIZE; } } /* free page table pages. last level pte should already be cleared */ static void dma_pte_free_pagetable(struct dmar_domain *domain, u64 start, u64 end) { int addr_width = agaw_to_width(domain->agaw); struct dma_pte *pte; int total = agaw_to_level(domain->agaw); int level; u64 tmp; start &= (((u64)1) << addr_width) - 1; end &= (((u64)1) << addr_width) - 1; /* we don't need lock here, nobody else touches the iova range */ level = 2; while (level <= total) { tmp = align_to_level(start, level); if (tmp >= end || (tmp + level_size(level) > end)) return; while (tmp < end) { pte = dma_addr_level_pte(domain, tmp, level); if (pte) { free_pgtable_page( phys_to_virt(dma_pte_addr(pte))); dma_clear_pte(pte); domain_flush_cache(domain, pte, sizeof(*pte)); } tmp += level_size(level); } level++; } /* free pgd */ if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { free_pgtable_page(domain->pgd); domain->pgd = NULL; } } /* iommu handling */ static int iommu_alloc_root_entry(struct intel_iommu *iommu) { struct root_entry *root; unsigned long flags; root = (struct root_entry *)alloc_pgtable_page(); if (!root) return -ENOMEM; __iommu_flush_cache(iommu, root, ROOT_SIZE); spin_lock_irqsave(&iommu->lock, flags); iommu->root_entry = root; spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static void iommu_set_root_entry(struct intel_iommu *iommu) { void *addr; u32 cmd, sts; unsigned long flag; addr = iommu->root_entry; spin_lock_irqsave(&iommu->register_lock, flag); dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); cmd = iommu->gcmd | DMA_GCMD_SRTP; writel(cmd, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_RTPS), sts); spin_unlock_irqrestore(&iommu->register_lock, flag); } static void iommu_flush_write_buffer(struct intel_iommu *iommu) { u32 val; unsigned long flag; if (!rwbf_quirk && !cap_rwbf(iommu->cap)) return; val = iommu->gcmd | DMA_GCMD_WBF; spin_lock_irqsave(&iommu->register_lock, flag); writel(val, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (!(val & DMA_GSTS_WBFS)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); } /* return value determine if we need a write buffer flush */ static int __iommu_flush_context(struct intel_iommu *iommu, u16 did, u16 source_id, u8 function_mask, u64 type, int non_present_entry_flush) { u64 val = 0; unsigned long flag; /* * In the non-present entry flush case, if hardware doesn't cache * non-present entry we do nothing and if hardware cache non-present * entry, we flush entries of domain 0 (the domain id is used to cache * any non-present entries) */ if (non_present_entry_flush) { if (!cap_caching_mode(iommu->cap)) return 1; else did = 0; } switch (type) { case DMA_CCMD_GLOBAL_INVL: val = DMA_CCMD_GLOBAL_INVL; break; case DMA_CCMD_DOMAIN_INVL: val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); break; case DMA_CCMD_DEVICE_INVL: val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); break; default: BUG(); } val |= DMA_CCMD_ICC; spin_lock_irqsave(&iommu->register_lock, flag); dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, dmar_readq, (!(val & DMA_CCMD_ICC)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); /* flush context entry will implicitly flush write buffer */ return 0; } /* return value determine if we need a write buffer flush */ static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, unsigned int size_order, u64 type, int non_present_entry_flush) { int tlb_offset = ecap_iotlb_offset(iommu->ecap); u64 val = 0, val_iva = 0; unsigned long flag; /* * In the non-present entry flush case, if hardware doesn't cache * non-present entry we do nothing and if hardware cache non-present * entry, we flush entries of domain 0 (the domain id is used to cache * any non-present entries) */ if (non_present_entry_flush) { if (!cap_caching_mode(iommu->cap)) return 1; else did = 0; } switch (type) { case DMA_TLB_GLOBAL_FLUSH: /* global flush doesn't need set IVA_REG */ val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; break; case DMA_TLB_DSI_FLUSH: val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); break; case DMA_TLB_PSI_FLUSH: val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); /* Note: always flush non-leaf currently */ val_iva = size_order | addr; break; default: BUG(); } /* Note: set drain read/write */ #if 0 /* * This is probably to be super secure.. Looks like we can * ignore it without any impact. */ if (cap_read_drain(iommu->cap)) val |= DMA_TLB_READ_DRAIN; #endif if (cap_write_drain(iommu->cap)) val |= DMA_TLB_WRITE_DRAIN; spin_lock_irqsave(&iommu->register_lock, flag); /* Note: Only uses first TLB reg currently */ if (val_iva) dmar_writeq(iommu->reg + tlb_offset, val_iva); dmar_writeq(iommu->reg + tlb_offset + 8, val); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, tlb_offset + 8, dmar_readq, (!(val & DMA_TLB_IVT)), val); spin_unlock_irqrestore(&iommu->register_lock, flag); /* check IOTLB invalidation granularity */ if (DMA_TLB_IAIG(val) == 0) printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", (unsigned long long)DMA_TLB_IIRG(type), (unsigned long long)DMA_TLB_IAIG(val)); /* flush iotlb entry will implicitly flush write buffer */ return 0; } static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, u64 addr, unsigned int pages, int non_present_entry_flush) { unsigned int mask; BUG_ON(addr & (~VTD_PAGE_MASK)); BUG_ON(pages == 0); /* Fallback to domain selective flush if no PSI support */ if (!cap_pgsel_inv(iommu->cap)) return iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, non_present_entry_flush); /* * PSI requires page size to be 2 ^ x, and the base address is naturally * aligned to the size */ mask = ilog2(__roundup_pow_of_two(pages)); /* Fallback to domain selective flush if size is too big */ if (mask > cap_max_amask_val(iommu->cap)) return iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, non_present_entry_flush); return iommu->flush.flush_iotlb(iommu, did, addr, mask, DMA_TLB_PSI_FLUSH, non_present_entry_flush); } static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) { u32 pmen; unsigned long flags; spin_lock_irqsave(&iommu->register_lock, flags); pmen = readl(iommu->reg + DMAR_PMEN_REG); pmen &= ~DMA_PMEN_EPM; writel(pmen, iommu->reg + DMAR_PMEN_REG); /* wait for the protected region status bit to clear */ IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, readl, !(pmen & DMA_PMEN_PRS), pmen); spin_unlock_irqrestore(&iommu->register_lock, flags); } static int iommu_enable_translation(struct intel_iommu *iommu) { u32 sts; unsigned long flags; spin_lock_irqsave(&iommu->register_lock, flags); writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_TES), sts); iommu->gcmd |= DMA_GCMD_TE; spin_unlock_irqrestore(&iommu->register_lock, flags); return 0; } static int iommu_disable_translation(struct intel_iommu *iommu) { u32 sts; unsigned long flag; spin_lock_irqsave(&iommu->register_lock, flag); iommu->gcmd &= ~DMA_GCMD_TE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (!(sts & DMA_GSTS_TES)), sts); spin_unlock_irqrestore(&iommu->register_lock, flag); return 0; } static int iommu_init_domains(struct intel_iommu *iommu) { unsigned long ndomains; unsigned long nlongs; ndomains = cap_ndoms(iommu->cap); pr_debug("Number of Domains supportd <%ld>\n", ndomains); nlongs = BITS_TO_LONGS(ndomains); /* TBD: there might be 64K domains, * consider other allocation for future chip */ iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); if (!iommu->domain_ids) { printk(KERN_ERR "Allocating domain id array failed\n"); return -ENOMEM; } iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), GFP_KERNEL); if (!iommu->domains) { printk(KERN_ERR "Allocating domain array failed\n"); kfree(iommu->domain_ids); return -ENOMEM; } spin_lock_init(&iommu->lock); /* * if Caching mode is set, then invalid translations are tagged * with domainid 0. Hence we need to pre-allocate it. */ if (cap_caching_mode(iommu->cap)) set_bit(0, iommu->domain_ids); return 0; } static void domain_exit(struct dmar_domain *domain); static void vm_domain_exit(struct dmar_domain *domain); void free_dmar_iommu(struct intel_iommu *iommu) { struct dmar_domain *domain; int i; unsigned long flags; i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); for (; i < cap_ndoms(iommu->cap); ) { domain = iommu->domains[i]; clear_bit(i, iommu->domain_ids); spin_lock_irqsave(&domain->iommu_lock, flags); if (--domain->iommu_count == 0) { if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) vm_domain_exit(domain); else domain_exit(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags); i = find_next_bit(iommu->domain_ids, cap_ndoms(iommu->cap), i+1); } if (iommu->gcmd & DMA_GCMD_TE) iommu_disable_translation(iommu); if (iommu->irq) { set_irq_data(iommu->irq, NULL); /* This will mask the irq */ free_irq(iommu->irq, iommu); destroy_irq(iommu->irq); } kfree(iommu->domains); kfree(iommu->domain_ids); g_iommus[iommu->seq_id] = NULL; /* if all iommus are freed, free g_iommus */ for (i = 0; i < g_num_of_iommus; i++) { if (g_iommus[i]) break; } if (i == g_num_of_iommus) kfree(g_iommus); /* free context mapping */ free_context_table(iommu); } static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) { unsigned long num; unsigned long ndomains; struct dmar_domain *domain; unsigned long flags; domain = alloc_domain_mem(); if (!domain) return NULL; ndomains = cap_ndoms(iommu->cap); spin_lock_irqsave(&iommu->lock, flags); num = find_first_zero_bit(iommu->domain_ids, ndomains); if (num >= ndomains) { spin_unlock_irqrestore(&iommu->lock, flags); free_domain_mem(domain); printk(KERN_ERR "IOMMU: no free domain ids\n"); return NULL; } set_bit(num, iommu->domain_ids); domain->id = num; memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); set_bit(iommu->seq_id, &domain->iommu_bmp); domain->flags = 0; iommu->domains[num] = domain; spin_unlock_irqrestore(&iommu->lock, flags); return domain; } static void iommu_free_domain(struct dmar_domain *domain) { unsigned long flags; struct intel_iommu *iommu; iommu = domain_get_iommu(domain); spin_lock_irqsave(&iommu->lock, flags); clear_bit(domain->id, iommu->domain_ids); spin_unlock_irqrestore(&iommu->lock, flags); } static struct iova_domain reserved_iova_list; static struct lock_class_key reserved_alloc_key; static struct lock_class_key reserved_rbtree_key; static void dmar_init_reserved_ranges(void) { struct pci_dev *pdev = NULL; struct iova *iova; int i; u64 addr, size; init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); lockdep_set_class(&reserved_iova_list.iova_alloc_lock, &reserved_alloc_key); lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, &reserved_rbtree_key); /* IOAPIC ranges shouldn't be accessed by DMA */ iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), IOVA_PFN(IOAPIC_RANGE_END)); if (!iova) printk(KERN_ERR "Reserve IOAPIC range failed\n"); /* Reserve all PCI MMIO to avoid peer-to-peer access */ for_each_pci_dev(pdev) { struct resource *r; for (i = 0; i < PCI_NUM_RESOURCES; i++) { r = &pdev->resource[i]; if (!r->flags || !(r->flags & IORESOURCE_MEM)) continue; addr = r->start; addr &= PAGE_MASK; size = r->end - addr; size = PAGE_ALIGN(size); iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), IOVA_PFN(size + addr) - 1); if (!iova) printk(KERN_ERR "Reserve iova failed\n"); } } } static void domain_reserve_special_ranges(struct dmar_domain *domain) { copy_reserved_iova(&reserved_iova_list, &domain->iovad); } static inline int guestwidth_to_adjustwidth(int gaw) { int agaw; int r = (gaw - 12) % 9; if (r == 0) agaw = gaw; else agaw = gaw + 9 - r; if (agaw > 64) agaw = 64; return agaw; } static int domain_init(struct dmar_domain *domain, int guest_width) { struct intel_iommu *iommu; int adjust_width, agaw; unsigned long sagaw; init_iova_domain(&domain->iovad, DMA_32BIT_PFN); spin_lock_init(&domain->mapping_lock); spin_lock_init(&domain->iommu_lock); domain_reserve_special_ranges(domain); /* calculate AGAW */ iommu = domain_get_iommu(domain); if (guest_width > cap_mgaw(iommu->cap)) guest_width = cap_mgaw(iommu->cap); domain->gaw = guest_width; adjust_width = guestwidth_to_adjustwidth(guest_width); agaw = width_to_agaw(adjust_width); sagaw = cap_sagaw(iommu->cap); if (!test_bit(agaw, &sagaw)) { /* hardware doesn't support it, choose a bigger one */ pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); agaw = find_next_bit(&sagaw, 5, agaw); if (agaw >= 5) return -ENODEV; } domain->agaw = agaw; INIT_LIST_HEAD(&domain->devices); if (ecap_coherent(iommu->ecap)) domain->iommu_coherency = 1; else domain->iommu_coherency = 0; domain->iommu_count = 1; /* always allocate the top pgd */ domain->pgd = (struct dma_pte *)alloc_pgtable_page(); if (!domain->pgd) return -ENOMEM; __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); return 0; } static void domain_exit(struct dmar_domain *domain) { u64 end; /* Domain 0 is reserved, so dont process it */ if (!domain) return; domain_remove_dev_info(domain); /* destroy iovas */ put_iova_domain(&domain->iovad); end = DOMAIN_MAX_ADDR(domain->gaw); end = end & (~PAGE_MASK); /* clear ptes */ dma_pte_clear_range(domain, 0, end); /* free page tables */ dma_pte_free_pagetable(domain, 0, end); iommu_free_domain(domain); free_domain_mem(domain); } static int domain_context_mapping_one(struct dmar_domain *domain, u8 bus, u8 devfn) { struct context_entry *context; unsigned long flags; struct intel_iommu *iommu; struct dma_pte *pgd; unsigned long num; unsigned long ndomains; int id; int agaw; pr_debug("Set context mapping for %02x:%02x.%d\n", bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); BUG_ON(!domain->pgd); iommu = device_to_iommu(bus, devfn); if (!iommu) return -ENODEV; context = device_to_context_entry(iommu, bus, devfn); if (!context) return -ENOMEM; spin_lock_irqsave(&iommu->lock, flags); if (context_present(context)) { spin_unlock_irqrestore(&iommu->lock, flags); return 0; } id = domain->id; pgd = domain->pgd; if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) { int found = 0; /* find an available domain id for this device in iommu */ ndomains = cap_ndoms(iommu->cap); num = find_first_bit(iommu->domain_ids, ndomains); for (; num < ndomains; ) { if (iommu->domains[num] == domain) { id = num; found = 1; break; } num = find_next_bit(iommu->domain_ids, cap_ndoms(iommu->cap), num+1); } if (found == 0) { num = find_first_zero_bit(iommu->domain_ids, ndomains); if (num >= ndomains) { spin_unlock_irqrestore(&iommu->lock, flags); printk(KERN_ERR "IOMMU: no free domain ids\n"); return -EFAULT; } set_bit(num, iommu->domain_ids); iommu->domains[num] = domain; id = num; } /* Skip top levels of page tables for * iommu which has less agaw than default. */ for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { pgd = phys_to_virt(dma_pte_addr(pgd)); if (!dma_pte_present(pgd)) { spin_unlock_irqrestore(&iommu->lock, flags); return -ENOMEM; } } } context_set_domain_id(context, id); context_set_address_width(context, iommu->agaw); context_set_address_root(context, virt_to_phys(pgd)); context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL); context_set_fault_enable(context); context_set_present(context); domain_flush_cache(domain, context, sizeof(*context)); /* it's a non-present to present mapping */ if (iommu->flush.flush_context(iommu, domain->id, (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, DMA_CCMD_DEVICE_INVL, 1)) iommu_flush_write_buffer(iommu); else iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0); spin_unlock_irqrestore(&iommu->lock, flags); spin_lock_irqsave(&domain->iommu_lock, flags); if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) { domain->iommu_count++; domain_update_iommu_coherency(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags); return 0; } static int domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) { int ret; struct pci_dev *tmp, *parent; ret = domain_context_mapping_one(domain, pdev->bus->number, pdev->devfn); if (ret) return ret; /* dependent device mapping */ tmp = pci_find_upstream_pcie_bridge(pdev); if (!tmp) return 0; /* Secondary interface's bus number and devfn 0 */ parent = pdev->bus->self; while (parent != tmp) { ret = domain_context_mapping_one(domain, parent->bus->number, parent->devfn); if (ret) return ret; parent = parent->bus->self; } if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ return domain_context_mapping_one(domain, tmp->subordinate->number, 0); else /* this is a legacy PCI bridge */ return domain_context_mapping_one(domain, tmp->bus->number, tmp->devfn); } static int domain_context_mapped(struct pci_dev *pdev) { int ret; struct pci_dev *tmp, *parent; struct intel_iommu *iommu; iommu = device_to_iommu(pdev->bus->number, pdev->devfn); if (!iommu) return -ENODEV; ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); if (!ret) return ret; /* dependent device mapping */ tmp = pci_find_upstream_pcie_bridge(pdev); if (!tmp) return ret; /* Secondary interface's bus number and devfn 0 */ parent = pdev->bus->self; while (parent != tmp) { ret = device_context_mapped(iommu, parent->bus->number, parent->devfn); if (!ret) return ret; parent = parent->bus->self; } if (tmp->is_pcie) return device_context_mapped(iommu, tmp->subordinate->number, 0); else return device_context_mapped(iommu, tmp->bus->number, tmp->devfn); } static int domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, u64 hpa, size_t size, int prot) { u64 start_pfn, end_pfn; struct dma_pte *pte; int index; int addr_width = agaw_to_width(domain->agaw); hpa &= (((u64)1) << addr_width) - 1; if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) return -EINVAL; iova &= PAGE_MASK; start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT; end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT; index = 0; while (start_pfn < end_pfn) { pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index); if (!pte) return -ENOMEM; /* We don't need lock here, nobody else * touches the iova range */ BUG_ON(dma_pte_addr(pte)); dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT); dma_set_pte_prot(pte, prot); domain_flush_cache(domain, pte, sizeof(*pte)); start_pfn++; index++; } return 0; } static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) { if (!iommu) return; clear_context_table(iommu, bus, devfn); iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, 0); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, 0); } static void domain_remove_dev_info(struct dmar_domain *domain) { struct device_domain_info *info; unsigned long flags; struct intel_iommu *iommu; spin_lock_irqsave(&device_domain_lock, flags); while (!list_empty(&domain->devices)) { info = list_entry(domain->devices.next, struct device_domain_info, link); list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags); iommu = device_to_iommu(info->bus, info->devfn); iommu_detach_dev(iommu, info->bus, info->devfn); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags); } spin_unlock_irqrestore(&device_domain_lock, flags); } /* * find_domain * Note: we use struct pci_dev->dev.archdata.iommu stores the info */ static struct dmar_domain * find_domain(struct pci_dev *pdev) { struct device_domain_info *info; /* No lock here, assumes no domain exit in normal case */ info = pdev->dev.archdata.iommu; if (info) return info->domain; return NULL; } /* domain is initialized */ static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) { struct dmar_domain *domain, *found = NULL; struct intel_iommu *iommu; struct dmar_drhd_unit *drhd; struct device_domain_info *info, *tmp; struct pci_dev *dev_tmp; unsigned long flags; int bus = 0, devfn = 0; domain = find_domain(pdev); if (domain) return domain; dev_tmp = pci_find_upstream_pcie_bridge(pdev); if (dev_tmp) { if (dev_tmp->is_pcie) { bus = dev_tmp->subordinate->number; devfn = 0; } else { bus = dev_tmp->bus->number; devfn = dev_tmp->devfn; } spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(info, &device_domain_list, global) { if (info->bus == bus && info->devfn == devfn) { found = info->domain; break; } } spin_unlock_irqrestore(&device_domain_lock, flags); /* pcie-pci bridge already has a domain, uses it */ if (found) { domain = found; goto found_domain; } } /* Allocate new domain for the device */ drhd = dmar_find_matched_drhd_unit(pdev); if (!drhd) { printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", pci_name(pdev)); return NULL; } iommu = drhd->iommu; domain = iommu_alloc_domain(iommu); if (!domain) goto error; if (domain_init(domain, gaw)) { domain_exit(domain); goto error; } /* register pcie-to-pci device */ if (dev_tmp) { info = alloc_devinfo_mem(); if (!info) { domain_exit(domain); goto error; } info->bus = bus; info->devfn = devfn; info->dev = NULL; info->domain = domain; /* This domain is shared by devices under p2p bridge */ domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; /* pcie-to-pci bridge already has a domain, uses it */ found = NULL; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_entry(tmp, &device_domain_list, global) { if (tmp->bus == bus && tmp->devfn == devfn) { found = tmp->domain; break; } } if (found) { free_devinfo_mem(info); domain_exit(domain); domain = found; } else { list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); } spin_unlock_irqrestore(&device_domain_lock, flags); } found_domain: info = alloc_devinfo_mem(); if (!info) goto error; info->bus = pdev->bus->number; info->devfn = pdev->devfn; info->dev = pdev; info->domain = domain; spin_lock_irqsave(&device_domain_lock, flags); /* somebody is fast */ found = find_domain(pdev); if (found != NULL) { spin_unlock_irqrestore(&device_domain_lock, flags); if (found != domain) { domain_exit(domain); domain = found; } free_devinfo_mem(info); return domain; } list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); pdev->dev.archdata.iommu = info; spin_unlock_irqrestore(&device_domain_lock, flags); return domain; error: /* recheck it here, maybe others set it */ return find_domain(pdev); } static int iommu_prepare_identity_map(struct pci_dev *pdev, unsigned long long start, unsigned long long end) { struct dmar_domain *domain; unsigned long size; unsigned long long base; int ret; printk(KERN_INFO "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", pci_name(pdev), start, end); /* page table init */ domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); if (!domain) return -ENOMEM; /* The address might not be aligned */ base = start & PAGE_MASK; size = end - base; size = PAGE_ALIGN(size); if (!reserve_iova(&domain->iovad, IOVA_PFN(base), IOVA_PFN(base + size) - 1)) { printk(KERN_ERR "IOMMU: reserve iova failed\n"); ret = -ENOMEM; goto error; } pr_debug("Mapping reserved region %lx@%llx for %s\n", size, base, pci_name(pdev)); /* * RMRR range might have overlap with physical memory range, * clear it first */ dma_pte_clear_range(domain, base, base + size); ret = domain_page_mapping(domain, base, base, size, DMA_PTE_READ|DMA_PTE_WRITE); if (ret) goto error; /* context entry init */ ret = domain_context_mapping(domain, pdev); if (!ret) return 0; error: domain_exit(domain); return ret; } static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, struct pci_dev *pdev) { if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return 0; return iommu_prepare_identity_map(pdev, rmrr->base_address, rmrr->end_address + 1); } #ifdef CONFIG_DMAR_GFX_WA struct iommu_prepare_data { struct pci_dev *pdev; int ret; }; static int __init iommu_prepare_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax) { struct iommu_prepare_data *data; data = (struct iommu_prepare_data *)datax; data->ret = iommu_prepare_identity_map(data->pdev, start_pfn<ret; } static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev) { int nid; struct iommu_prepare_data data; data.pdev = pdev; data.ret = 0; for_each_online_node(nid) { work_with_active_regions(nid, iommu_prepare_work_fn, &data); if (data.ret) return data.ret; } return data.ret; } static void __init iommu_prepare_gfx_mapping(void) { struct pci_dev *pdev = NULL; int ret; for_each_pci_dev(pdev) { if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO || !IS_GFX_DEVICE(pdev)) continue; printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n", pci_name(pdev)); ret = iommu_prepare_with_active_regions(pdev); if (ret) printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); } } #else /* !CONFIG_DMAR_GFX_WA */ static inline void iommu_prepare_gfx_mapping(void) { return; } #endif #ifdef CONFIG_DMAR_FLOPPY_WA static inline void iommu_prepare_isa(void) { struct pci_dev *pdev; int ret; pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); if (!pdev) return; printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n"); ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); if (ret) printk("IOMMU: Failed to create 0-64M identity map, " "floppy might not work\n"); } #else static inline void iommu_prepare_isa(void) { return; } #endif /* !CONFIG_DMAR_FLPY_WA */ static int __init init_dmars(void) { struct dmar_drhd_unit *drhd; struct dmar_rmrr_unit *rmrr; struct pci_dev *pdev; struct intel_iommu *iommu; int i, ret; /* * for each drhd * allocate root * initialize and program root entry to not present * endfor */ for_each_drhd_unit(drhd) { g_num_of_iommus++; /* * lock not needed as this is only incremented in the single * threaded kernel __init code path all other access are read * only */ } g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), GFP_KERNEL); if (!g_iommus) { printk(KERN_ERR "Allocating global iommu array failed\n"); ret = -ENOMEM; goto error; } deferred_flush = kzalloc(g_num_of_iommus * sizeof(struct deferred_flush_tables), GFP_KERNEL); if (!deferred_flush) { kfree(g_iommus); ret = -ENOMEM; goto error; } for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; g_iommus[iommu->seq_id] = iommu; ret = iommu_init_domains(iommu); if (ret) goto error; /* * TBD: * we could share the same root & context tables * amoung all IOMMU's. Need to Split it later. */ ret = iommu_alloc_root_entry(iommu); if (ret) { printk(KERN_ERR "IOMMU: allocate root entry failed\n"); goto error; } } for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; if (dmar_enable_qi(iommu)) { /* * Queued Invalidate not enabled, use Register Based * Invalidate */ iommu->flush.flush_context = __iommu_flush_context; iommu->flush.flush_iotlb = __iommu_flush_iotlb; printk(KERN_INFO "IOMMU 0x%Lx: using Register based " "invalidation\n", (unsigned long long)drhd->reg_base_addr); } else { iommu->flush.flush_context = qi_flush_context; iommu->flush.flush_iotlb = qi_flush_iotlb; printk(KERN_INFO "IOMMU 0x%Lx: using Queued " "invalidation\n", (unsigned long long)drhd->reg_base_addr); } } /* * For each rmrr * for each dev attached to rmrr * do * locate drhd for dev, alloc domain for dev * allocate free domain * allocate page table entries for rmrr * if context not allocated for bus * allocate and init context * set present in root table for this bus * init context with domain, translation etc * endfor * endfor */ for_each_rmrr_units(rmrr) { for (i = 0; i < rmrr->devices_cnt; i++) { pdev = rmrr->devices[i]; /* some BIOS lists non-exist devices in DMAR table */ if (!pdev) continue; ret = iommu_prepare_rmrr_dev(rmrr, pdev); if (ret) printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); } } iommu_prepare_gfx_mapping(); iommu_prepare_isa(); /* * for each drhd * enable fault log * global invalidate context cache * global invalidate iotlb * enable translation */ for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; iommu_flush_write_buffer(iommu); ret = dmar_set_interrupt(iommu); if (ret) goto error; iommu_set_root_entry(iommu); iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, 0); iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, 0); iommu_disable_protect_mem_regions(iommu); ret = iommu_enable_translation(iommu); if (ret) goto error; } return 0; error: for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; free_iommu(iommu); } kfree(g_iommus); return ret; } static inline u64 aligned_size(u64 host_addr, size_t size) { u64 addr; addr = (host_addr & (~PAGE_MASK)) + size; return PAGE_ALIGN(addr); } struct iova * iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end) { struct iova *piova; /* Make sure it's in range */ end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); if (!size || (IOVA_START_ADDR + size > end)) return NULL; piova = alloc_iova(&domain->iovad, size >> PAGE_SHIFT, IOVA_PFN(end), 1); return piova; } static struct iova * __intel_alloc_iova(struct device *dev, struct dmar_domain *domain, size_t size, u64 dma_mask) { struct pci_dev *pdev = to_pci_dev(dev); struct iova *iova = NULL; if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac) iova = iommu_alloc_iova(domain, size, dma_mask); else { /* * First try to allocate an io virtual address in * DMA_32BIT_MASK and if that fails then try allocating * from higher range */ iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK); if (!iova) iova = iommu_alloc_iova(domain, size, dma_mask); } if (!iova) { printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); return NULL; } return iova; } static struct dmar_domain * get_valid_domain_for_dev(struct pci_dev *pdev) { struct dmar_domain *domain; int ret; domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); if (!domain) { printk(KERN_ERR "Allocating domain for %s failed", pci_name(pdev)); return NULL; } /* make sure context mapping is ok */ if (unlikely(!domain_context_mapped(pdev))) { ret = domain_context_mapping(domain, pdev); if (ret) { printk(KERN_ERR "Domain context map for %s failed", pci_name(pdev)); return NULL; } } return domain; } static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir, u64 dma_mask) { struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; phys_addr_t start_paddr; struct iova *iova; int prot = 0; int ret; struct intel_iommu *iommu; BUG_ON(dir == DMA_NONE); if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return paddr; domain = get_valid_domain_for_dev(pdev); if (!domain) return 0; iommu = domain_get_iommu(domain); size = aligned_size((u64)paddr, size); iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); if (!iova) goto error; start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; /* * Check if DMAR supports zero-length reads on write only * mappings.. */ if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ !cap_zlr(iommu->cap)) prot |= DMA_PTE_READ; if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) prot |= DMA_PTE_WRITE; /* * paddr - (paddr + size) might be partial page, we should map the whole * page. Note: if two part of one page are separately mapped, we * might have two guest_addr mapping to the same host paddr, but this * is not a big problem */ ret = domain_page_mapping(domain, start_paddr, ((u64)paddr) & PAGE_MASK, size, prot); if (ret) goto error; /* it's a non-present to present mapping */ ret = iommu_flush_iotlb_psi(iommu, domain->id, start_paddr, size >> VTD_PAGE_SHIFT, 1); if (ret) iommu_flush_write_buffer(iommu); return start_paddr + ((u64)paddr & (~PAGE_MASK)); error: if (iova) __free_iova(&domain->iovad, iova); printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", pci_name(pdev), size, (unsigned long long)paddr, dir); return 0; } dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir) { return __intel_map_single(hwdev, paddr, size, dir, to_pci_dev(hwdev)->dma_mask); } static void flush_unmaps(void) { int i, j; timer_on = 0; /* just flush them all */ for (i = 0; i < g_num_of_iommus; i++) { struct intel_iommu *iommu = g_iommus[i]; if (!iommu) continue; if (deferred_flush[i].next) { iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, 0); for (j = 0; j < deferred_flush[i].next; j++) { __free_iova(&deferred_flush[i].domain[j]->iovad, deferred_flush[i].iova[j]); } deferred_flush[i].next = 0; } } list_size = 0; } static void flush_unmaps_timeout(unsigned long data) { unsigned long flags; spin_lock_irqsave(&async_umap_flush_lock, flags); flush_unmaps(); spin_unlock_irqrestore(&async_umap_flush_lock, flags); } static void add_unmap(struct dmar_domain *dom, struct iova *iova) { unsigned long flags; int next, iommu_id; struct intel_iommu *iommu; spin_lock_irqsave(&async_umap_flush_lock, flags); if (list_size == HIGH_WATER_MARK) flush_unmaps(); iommu = domain_get_iommu(dom); iommu_id = iommu->seq_id; next = deferred_flush[iommu_id].next; deferred_flush[iommu_id].domain[next] = dom; deferred_flush[iommu_id].iova[next] = iova; deferred_flush[iommu_id].next++; if (!timer_on) { mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); timer_on = 1; } list_size++; spin_unlock_irqrestore(&async_umap_flush_lock, flags); } void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, int dir) { struct pci_dev *pdev = to_pci_dev(dev); struct dmar_domain *domain; unsigned long start_addr; struct iova *iova; struct intel_iommu *iommu; if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return; domain = find_domain(pdev); BUG_ON(!domain); iommu = domain_get_iommu(domain); iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); if (!iova) return; start_addr = iova->pfn_lo << PAGE_SHIFT; size = aligned_size((u64)dev_addr, size); pr_debug("Device %s unmapping: %lx@%llx\n", pci_name(pdev), size, (unsigned long long)start_addr); /* clear the whole page */ dma_pte_clear_range(domain, start_addr, start_addr + size); /* free page tables */ dma_pte_free_pagetable(domain, start_addr, start_addr + size); if (intel_iommu_strict) { if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0)) iommu_flush_write_buffer(iommu); /* free iova */ __free_iova(&domain->iovad, iova); } else { add_unmap(domain, iova); /* * queue up the release of the unmap to save the 1/6th of the * cpu used up by the iotlb flush operation... */ } } void *intel_alloc_coherent(struct device *hwdev, size_t size, dma_addr_t *dma_handle, gfp_t flags) { void *vaddr; int order; size = PAGE_ALIGN(size); order = get_order(size); flags &= ~(GFP_DMA | GFP_DMA32); vaddr = (void *)__get_free_pages(flags, order); if (!vaddr) return NULL; memset(vaddr, 0, size); *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL, hwdev->coherent_dma_mask); if (*dma_handle) return vaddr; free_pages((unsigned long)vaddr, order); return NULL; } void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle) { int order; size = PAGE_ALIGN(size); order = get_order(size); intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); free_pages((unsigned long)vaddr, order); } #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg))) void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, int dir) { int i; struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; unsigned long start_addr; struct iova *iova; size_t size = 0; void *addr; struct scatterlist *sg; struct intel_iommu *iommu; if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return; domain = find_domain(pdev); BUG_ON(!domain); iommu = domain_get_iommu(domain); iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); if (!iova) return; for_each_sg(sglist, sg, nelems, i) { addr = SG_ENT_VIRT_ADDRESS(sg); size += aligned_size((u64)addr, sg->length); } start_addr = iova->pfn_lo << PAGE_SHIFT; /* clear the whole page */ dma_pte_clear_range(domain, start_addr, start_addr + size); /* free page tables */ dma_pte_free_pagetable(domain, start_addr, start_addr + size); if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0)) iommu_flush_write_buffer(iommu); /* free iova */ __free_iova(&domain->iovad, iova); } static int intel_nontranslate_map_sg(struct device *hddev, struct scatterlist *sglist, int nelems, int dir) { int i; struct scatterlist *sg; for_each_sg(sglist, sg, nelems, i) { BUG_ON(!sg_page(sg)); sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg)); sg->dma_length = sg->length; } return nelems; } int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, int dir) { void *addr; int i; struct pci_dev *pdev = to_pci_dev(hwdev); struct dmar_domain *domain; size_t size = 0; int prot = 0; size_t offset = 0; struct iova *iova = NULL; int ret; struct scatterlist *sg; unsigned long start_addr; struct intel_iommu *iommu; BUG_ON(dir == DMA_NONE); if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); domain = get_valid_domain_for_dev(pdev); if (!domain) return 0; iommu = domain_get_iommu(domain); for_each_sg(sglist, sg, nelems, i) { addr = SG_ENT_VIRT_ADDRESS(sg); addr = (void *)virt_to_phys(addr); size += aligned_size((u64)addr, sg->length); } iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask); if (!iova) { sglist->dma_length = 0; return 0; } /* * Check if DMAR supports zero-length reads on write only * mappings.. */ if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ !cap_zlr(iommu->cap)) prot |= DMA_PTE_READ; if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) prot |= DMA_PTE_WRITE; start_addr = iova->pfn_lo << PAGE_SHIFT; offset = 0; for_each_sg(sglist, sg, nelems, i) { addr = SG_ENT_VIRT_ADDRESS(sg); addr = (void *)virt_to_phys(addr); size = aligned_size((u64)addr, sg->length); ret = domain_page_mapping(domain, start_addr + offset, ((u64)addr) & PAGE_MASK, size, prot); if (ret) { /* clear the page */ dma_pte_clear_range(domain, start_addr, start_addr + offset); /* free page tables */ dma_pte_free_pagetable(domain, start_addr, start_addr + offset); /* free iova */ __free_iova(&domain->iovad, iova); return 0; } sg->dma_address = start_addr + offset + ((u64)addr & (~PAGE_MASK)); sg->dma_length = sg->length; offset += size; } /* it's a non-present to present mapping */ if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr, offset >> VTD_PAGE_SHIFT, 1)) iommu_flush_write_buffer(iommu); return nelems; } static struct dma_mapping_ops intel_dma_ops = { .alloc_coherent = intel_alloc_coherent, .free_coherent = intel_free_coherent, .map_single = intel_map_single, .unmap_single = intel_unmap_single, .map_sg = intel_map_sg, .unmap_sg = intel_unmap_sg, }; static inline int iommu_domain_cache_init(void) { int ret = 0; iommu_domain_cache = kmem_cache_create("iommu_domain", sizeof(struct dmar_domain), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_domain_cache) { printk(KERN_ERR "Couldn't create iommu_domain cache\n"); ret = -ENOMEM; } return ret; } static inline int iommu_devinfo_cache_init(void) { int ret = 0; iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", sizeof(struct device_domain_info), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_devinfo_cache) { printk(KERN_ERR "Couldn't create devinfo cache\n"); ret = -ENOMEM; } return ret; } static inline int iommu_iova_cache_init(void) { int ret = 0; iommu_iova_cache = kmem_cache_create("iommu_iova", sizeof(struct iova), 0, SLAB_HWCACHE_ALIGN, NULL); if (!iommu_iova_cache) { printk(KERN_ERR "Couldn't create iova cache\n"); ret = -ENOMEM; } return ret; } static int __init iommu_init_mempool(void) { int ret; ret = iommu_iova_cache_init(); if (ret) return ret; ret = iommu_domain_cache_init(); if (ret) goto domain_error; ret = iommu_devinfo_cache_init(); if (!ret) return ret; kmem_cache_destroy(iommu_domain_cache); domain_error: kmem_cache_destroy(iommu_iova_cache); return -ENOMEM; } static void __init iommu_exit_mempool(void) { kmem_cache_destroy(iommu_devinfo_cache); kmem_cache_destroy(iommu_domain_cache); kmem_cache_destroy(iommu_iova_cache); } static void __init init_no_remapping_devices(void) { struct dmar_drhd_unit *drhd; for_each_drhd_unit(drhd) { if (!drhd->include_all) { int i; for (i = 0; i < drhd->devices_cnt; i++) if (drhd->devices[i] != NULL) break; /* ignore DMAR unit if no pci devices exist */ if (i == drhd->devices_cnt) drhd->ignored = 1; } } if (dmar_map_gfx) return; for_each_drhd_unit(drhd) { int i; if (drhd->ignored || drhd->include_all) continue; for (i = 0; i < drhd->devices_cnt; i++) if (drhd->devices[i] && !IS_GFX_DEVICE(drhd->devices[i])) break; if (i < drhd->devices_cnt) continue; /* bypass IOMMU if it is just for gfx devices */ drhd->ignored = 1; for (i = 0; i < drhd->devices_cnt; i++) { if (!drhd->devices[i]) continue; drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; } } } int __init intel_iommu_init(void) { int ret = 0; if (dmar_table_init()) return -ENODEV; if (dmar_dev_scope_init()) return -ENODEV; /* * Check the need for DMA-remapping initialization now. * Above initialization will also be used by Interrupt-remapping. */ if (no_iommu || swiotlb || dmar_disabled) return -ENODEV; iommu_init_mempool(); dmar_init_reserved_ranges(); init_no_remapping_devices(); ret = init_dmars(); if (ret) { printk(KERN_ERR "IOMMU: dmar init failed\n"); put_iova_domain(&reserved_iova_list); iommu_exit_mempool(); return ret; } printk(KERN_INFO "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); init_timer(&unmap_timer); force_iommu = 1; dma_ops = &intel_dma_ops; register_iommu(&intel_iommu_ops); return 0; } static int vm_domain_add_dev_info(struct dmar_domain *domain, struct pci_dev *pdev) { struct device_domain_info *info; unsigned long flags; info = alloc_devinfo_mem(); if (!info) return -ENOMEM; info->bus = pdev->bus->number; info->devfn = pdev->devfn; info->dev = pdev; info->domain = domain; spin_lock_irqsave(&device_domain_lock, flags); list_add(&info->link, &domain->devices); list_add(&info->global, &device_domain_list); pdev->dev.archdata.iommu = info; spin_unlock_irqrestore(&device_domain_lock, flags); return 0; } static void vm_domain_remove_one_dev_info(struct dmar_domain *domain, struct pci_dev *pdev) { struct device_domain_info *info; struct intel_iommu *iommu; unsigned long flags; int found = 0; struct list_head *entry, *tmp; iommu = device_to_iommu(pdev->bus->number, pdev->devfn); if (!iommu) return; spin_lock_irqsave(&device_domain_lock, flags); list_for_each_safe(entry, tmp, &domain->devices) { info = list_entry(entry, struct device_domain_info, link); if (info->bus == pdev->bus->number && info->devfn == pdev->devfn) { list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags); iommu_detach_dev(iommu, info->bus, info->devfn); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags); if (found) break; else continue; } /* if there is no other devices under the same iommu * owned by this domain, clear this iommu in iommu_bmp * update iommu count and coherency */ if (device_to_iommu(info->bus, info->devfn) == iommu) found = 1; } if (found == 0) { unsigned long tmp_flags; spin_lock_irqsave(&domain->iommu_lock, tmp_flags); clear_bit(iommu->seq_id, &domain->iommu_bmp); domain->iommu_count--; domain_update_iommu_coherency(domain); spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); } spin_unlock_irqrestore(&device_domain_lock, flags); } static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) { struct device_domain_info *info; struct intel_iommu *iommu; unsigned long flags1, flags2; spin_lock_irqsave(&device_domain_lock, flags1); while (!list_empty(&domain->devices)) { info = list_entry(domain->devices.next, struct device_domain_info, link); list_del(&info->link); list_del(&info->global); if (info->dev) info->dev->dev.archdata.iommu = NULL; spin_unlock_irqrestore(&device_domain_lock, flags1); iommu = device_to_iommu(info->bus, info->devfn); iommu_detach_dev(iommu, info->bus, info->devfn); /* clear this iommu in iommu_bmp, update iommu count * and coherency */ spin_lock_irqsave(&domain->iommu_lock, flags2); if (test_and_clear_bit(iommu->seq_id, &domain->iommu_bmp)) { domain->iommu_count--; domain_update_iommu_coherency(domain); } spin_unlock_irqrestore(&domain->iommu_lock, flags2); free_devinfo_mem(info); spin_lock_irqsave(&device_domain_lock, flags1); } spin_unlock_irqrestore(&device_domain_lock, flags1); } /* domain id for virtual machine, it won't be set in context */ static unsigned long vm_domid; static int vm_domain_min_agaw(struct dmar_domain *domain) { int i; int min_agaw = domain->agaw; i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); for (; i < g_num_of_iommus; ) { if (min_agaw > g_iommus[i]->agaw) min_agaw = g_iommus[i]->agaw; i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1); } return min_agaw; } static struct dmar_domain *iommu_alloc_vm_domain(void) { struct dmar_domain *domain; domain = alloc_domain_mem(); if (!domain) return NULL; domain->id = vm_domid++; memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; return domain; } static int vm_domain_init(struct dmar_domain *domain, int guest_width) { int adjust_width; init_iova_domain(&domain->iovad, DMA_32BIT_PFN); spin_lock_init(&domain->mapping_lock); spin_lock_init(&domain->iommu_lock); domain_reserve_special_ranges(domain); /* calculate AGAW */ domain->gaw = guest_width; adjust_width = guestwidth_to_adjustwidth(guest_width); domain->agaw = width_to_agaw(adjust_width); INIT_LIST_HEAD(&domain->devices); domain->iommu_count = 0; domain->iommu_coherency = 0; domain->max_addr = 0; /* always allocate the top pgd */ domain->pgd = (struct dma_pte *)alloc_pgtable_page(); if (!domain->pgd) return -ENOMEM; domain_flush_cache(domain, domain->pgd, PAGE_SIZE); return 0; } static void iommu_free_vm_domain(struct dmar_domain *domain) { unsigned long flags; struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; unsigned long i; unsigned long ndomains; for_each_drhd_unit(drhd) { if (drhd->ignored) continue; iommu = drhd->iommu; ndomains = cap_ndoms(iommu->cap); i = find_first_bit(iommu->domain_ids, ndomains); for (; i < ndomains; ) { if (iommu->domains[i] == domain) { spin_lock_irqsave(&iommu->lock, flags); clear_bit(i, iommu->domain_ids); iommu->domains[i] = NULL; spin_unlock_irqrestore(&iommu->lock, flags); break; } i = find_next_bit(iommu->domain_ids, ndomains, i+1); } } } static void vm_domain_exit(struct dmar_domain *domain) { u64 end; /* Domain 0 is reserved, so dont process it */ if (!domain) return; vm_domain_remove_all_dev_info(domain); /* destroy iovas */ put_iova_domain(&domain->iovad); end = DOMAIN_MAX_ADDR(domain->gaw); end = end & (~VTD_PAGE_MASK); /* clear ptes */ dma_pte_clear_range(domain, 0, end); /* free page tables */ dma_pte_free_pagetable(domain, 0, end); iommu_free_vm_domain(domain); free_domain_mem(domain); } static int intel_iommu_domain_init(struct iommu_domain *domain) { struct dmar_domain *dmar_domain; dmar_domain = iommu_alloc_vm_domain(); if (!dmar_domain) { printk(KERN_ERR "intel_iommu_domain_init: dmar_domain == NULL\n"); return -ENOMEM; } if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { printk(KERN_ERR "intel_iommu_domain_init() failed\n"); vm_domain_exit(dmar_domain); return -ENOMEM; } domain->priv = dmar_domain; return 0; } static void intel_iommu_domain_destroy(struct iommu_domain *domain) { struct dmar_domain *dmar_domain = domain->priv; domain->priv = NULL; vm_domain_exit(dmar_domain); } static int intel_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct dmar_domain *dmar_domain = domain->priv; struct pci_dev *pdev = to_pci_dev(dev); struct intel_iommu *iommu; int addr_width; u64 end; int ret; /* normally pdev is not mapped */ if (unlikely(domain_context_mapped(pdev))) { struct dmar_domain *old_domain; old_domain = find_domain(pdev); if (old_domain) { if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) vm_domain_remove_one_dev_info(old_domain, pdev); else domain_remove_dev_info(old_domain); } } iommu = device_to_iommu(pdev->bus->number, pdev->devfn); if (!iommu) return -ENODEV; /* check if this iommu agaw is sufficient for max mapped address */ addr_width = agaw_to_width(iommu->agaw); end = DOMAIN_MAX_ADDR(addr_width); end = end & VTD_PAGE_MASK; if (end < dmar_domain->max_addr) { printk(KERN_ERR "%s: iommu agaw (%d) is not " "sufficient for the mapped address (%llx)\n", __func__, iommu->agaw, dmar_domain->max_addr); return -EFAULT; } ret = domain_context_mapping(dmar_domain, pdev); if (ret) return ret; ret = vm_domain_add_dev_info(dmar_domain, pdev); return ret; } static void intel_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct dmar_domain *dmar_domain = domain->priv; struct pci_dev *pdev = to_pci_dev(dev); vm_domain_remove_one_dev_info(dmar_domain, pdev); } static int intel_iommu_map_range(struct iommu_domain *domain, unsigned long iova, phys_addr_t hpa, size_t size, int iommu_prot) { struct dmar_domain *dmar_domain = domain->priv; u64 max_addr; int addr_width; int prot = 0; int ret; if (iommu_prot & IOMMU_READ) prot |= DMA_PTE_READ; if (iommu_prot & IOMMU_WRITE) prot |= DMA_PTE_WRITE; max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size); if (dmar_domain->max_addr < max_addr) { int min_agaw; u64 end; /* check if minimum agaw is sufficient for mapped address */ min_agaw = vm_domain_min_agaw(dmar_domain); addr_width = agaw_to_width(min_agaw); end = DOMAIN_MAX_ADDR(addr_width); end = end & VTD_PAGE_MASK; if (end < max_addr) { printk(KERN_ERR "%s: iommu agaw (%d) is not " "sufficient for the mapped address (%llx)\n", __func__, min_agaw, max_addr); return -EFAULT; } dmar_domain->max_addr = max_addr; } ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot); return ret; } static void intel_iommu_unmap_range(struct iommu_domain *domain, unsigned long iova, size_t size) { struct dmar_domain *dmar_domain = domain->priv; dma_addr_t base; /* The address might not be aligned */ base = iova & VTD_PAGE_MASK; size = VTD_PAGE_ALIGN(size); dma_pte_clear_range(dmar_domain, base, base + size); if (dmar_domain->max_addr == base + size) dmar_domain->max_addr = base; } static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, unsigned long iova) { struct dmar_domain *dmar_domain = domain->priv; struct dma_pte *pte; u64 phys = 0; pte = addr_to_dma_pte(dmar_domain, iova); if (pte) phys = dma_pte_addr(pte); return phys; } static struct iommu_ops intel_iommu_ops = { .domain_init = intel_iommu_domain_init, .domain_destroy = intel_iommu_domain_destroy, .attach_dev = intel_iommu_attach_device, .detach_dev = intel_iommu_detach_device, .map = intel_iommu_map_range, .unmap = intel_iommu_unmap_range, .iova_to_phys = intel_iommu_iova_to_phys, }; static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) { /* * Mobile 4 Series Chipset neglects to set RWBF capability, * but needs it: */ printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); rwbf_quirk = 1; } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);