/* * Procfs interface for the PCI bus. * * Copyright (c) 1997--1999 Martin Mares <mj@ucw.cz> */ #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/smp_lock.h> #include <linux/capability.h> #include <asm/uaccess.h> #include <asm/byteorder.h> #include "pci.h" static int proc_initialized; /* = 0 */ static loff_t proc_bus_pci_lseek(struct file *file, loff_t off, int whence) { loff_t new = -1; struct inode *inode = file->f_path.dentry->d_inode; mutex_lock(&inode->i_mutex); switch (whence) { case 0: new = off; break; case 1: new = file->f_pos + off; break; case 2: new = inode->i_size + off; break; } if (new < 0 || new > inode->i_size) new = -EINVAL; else file->f_pos = new; mutex_unlock(&inode->i_mutex); return new; } static ssize_t proc_bus_pci_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { const struct inode *ino = file->f_path.dentry->d_inode; const struct proc_dir_entry *dp = PDE(ino); struct pci_dev *dev = dp->data; unsigned int pos = *ppos; unsigned int cnt, size; /* * Normal users can read only the standardized portion of the * configuration space as several chips lock up when trying to read * undefined locations (think of Intel PIIX4 as a typical example). */ if (capable(CAP_SYS_ADMIN)) size = dp->size; else if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS) size = 128; else size = 64; if (pos >= size) return 0; if (nbytes >= size) nbytes = size; if (pos + nbytes > size) nbytes = size - pos; cnt = nbytes; if (!access_ok(VERIFY_WRITE, buf, cnt)) return -EINVAL; if ((pos & 1) && cnt) { unsigned char val; pci_user_read_config_byte(dev, pos, &val); __put_user(val, buf); buf++; pos++; cnt--; } if ((pos & 3) && cnt > 2) { unsigned short val; pci_user_read_config_word(dev, pos, &val); __put_user(cpu_to_le16(val), (__le16 __user *) buf); buf += 2; pos += 2; cnt -= 2; } while (cnt >= 4) { unsigned int val; pci_user_read_config_dword(dev, pos, &val); __put_user(cpu_to_le32(val), (__le32 __user *) buf); buf += 4; pos += 4; cnt -= 4; } if (cnt >= 2) { unsigned short val; pci_user_read_config_word(dev, pos, &val); __put_user(cpu_to_le16(val), (__le16 __user *) buf); buf += 2; pos += 2; cnt -= 2; } if (cnt) { unsigned char val; pci_user_read_config_byte(dev, pos, &val); __put_user(val, buf); buf++; pos++; cnt--; } *ppos = pos; return nbytes; } static ssize_t proc_bus_pci_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct inode *ino = file->f_path.dentry->d_inode; const struct proc_dir_entry *dp = PDE(ino); struct pci_dev *dev = dp->data; int pos = *ppos; int size = dp->size; int cnt; if (pos >= size) return 0; if (nbytes >= size) nbytes = size; if (pos + nbytes > size) nbytes = size - pos; cnt = nbytes; if (!access_ok(VERIFY_READ, buf, cnt)) return -EINVAL; if ((pos & 1) && cnt) { unsigned char val; __get_user(val, buf); pci_user_write_config_byte(dev, pos, val); buf++; pos++; cnt--; } if ((pos & 3) && cnt > 2) { __le16 val; __get_user(val, (__le16 __user *) buf); pci_user_write_config_word(dev, pos, le16_to_cpu(val)); buf += 2; pos += 2; cnt -= 2; } while (cnt >= 4) { __le32 val; __get_user(val, (__le32 __user *) buf); pci_user_write_config_dword(dev, pos, le32_to_cpu(val)); buf += 4; pos += 4; cnt -= 4; } if (cnt >= 2) { __le16 val; __get_user(val, (__le16 __user *) buf); pci_user_write_config_word(dev, pos, le16_to_cpu(val)); buf += 2; pos += 2; cnt -= 2; } if (cnt) { unsigned char val; __get_user(val, buf); pci_user_write_config_byte(dev, pos, val); buf++; pos++; cnt--; } *ppos = pos; i_size_write(ino, dp->size); return nbytes; } struct pci_filp_private { enum pci_mmap_state mmap_state; int write_combine; }; static long proc_bus_pci_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { const struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode); struct pci_dev *dev = dp->data; #ifdef HAVE_PCI_MMAP struct pci_filp_private *fpriv = file->private_data; #endif /* HAVE_PCI_MMAP */ int ret = 0; lock_kernel(); switch (cmd) { case PCIIOC_CONTROLLER: ret = pci_domain_nr(dev->bus); break; #ifdef HAVE_PCI_MMAP case PCIIOC_MMAP_IS_IO: fpriv->mmap_state = pci_mmap_io; break; case PCIIOC_MMAP_IS_MEM: fpriv->mmap_state = pci_mmap_mem; break; case PCIIOC_WRITE_COMBINE: if (arg) fpriv->write_combine = 1; else fpriv->write_combine = 0; break; #endif /* HAVE_PCI_MMAP */ default: ret = -EINVAL; break; }; unlock_kernel(); return ret; } #ifdef HAVE_PCI_MMAP static int proc_bus_pci_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file->f_path.dentry->d_inode; const struct proc_dir_entry *dp = PDE(inode); struct pci_dev *dev = dp->data; struct pci_filp_private *fpriv = file->private_data; int i, ret; if (!capable(CAP_SYS_RAWIO)) return -EPERM; /* Make sure the caller is mapping a real resource for this device */ for (i = 0; i < PCI_ROM_RESOURCE; i++) { if (pci_mmap_fits(dev, i, vma)) break; } if (i >= PCI_ROM_RESOURCE) return -ENODEV; ret = pci_mmap_page_range(dev, vma, fpriv->mmap_state, fpriv->write_combine); if (ret < 0) return ret; return 0; } static int proc_bus_pci_open(struct inode *inode, struct file *file) { struct pci_filp_private *fpriv = kmalloc(sizeof(*fpriv), GFP_KERNEL); if (!fpriv) return -ENOMEM; fpriv->mmap_state = pci_mmap_io; fpriv->write_combine = 0; file->private_data = fpriv; return 0; } static int proc_bus_pci_release(struct inode *inode, struct file *file) { kfree(file->private_data); file->private_data = NULL; return 0; } #endif /* HAVE_PCI_MMAP */ static const struct file_operations proc_bus_pci_operations = { .owner = THIS_MODULE, .llseek = proc_bus_pci_lseek, .read = proc_bus_pci_read, .write = proc_bus_pci_write, .unlocked_ioctl = proc_bus_pci_ioctl, #ifdef HAVE_PCI_MMAP .open = proc_bus_pci_open, .release = proc_bus_pci_release, .mmap = proc_bus_pci_mmap, #ifdef HAVE_ARCH_PCI_GET_UNMAPPED_AREA .get_unmapped_area = get_pci_unmapped_area, #endif /* HAVE_ARCH_PCI_GET_UNMAPPED_AREA */ #endif /* HAVE_PCI_MMAP */ }; /* iterator */ static void *pci_seq_start(struct seq_file *m, loff_t *pos) { struct pci_dev *dev = NULL; loff_t n = *pos; for_each_pci_dev(dev) { if (!n--) break; } return dev; } static void *pci_seq_next(struct seq_file *m, void *v, loff_t *pos) { struct pci_dev *dev = v; (*pos)++; dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev); return dev; } static void pci_seq_stop(struct seq_file *m, void *v) { if (v) { struct pci_dev *dev = v; pci_dev_put(dev); } } static int show_device(struct seq_file *m, void *v) { const struct pci_dev *dev = v; const struct pci_driver *drv; int i; if (dev == NULL) return 0; drv = pci_dev_driver(dev); seq_printf(m, "%02x%02x\t%04x%04x\t%x", dev->bus->number, dev->devfn, dev->vendor, dev->device, dev->irq); /* only print standard and ROM resources to preserve compatibility */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { resource_size_t start, end; pci_resource_to_user(dev, i, &dev->resource[i], &start, &end); seq_printf(m, "\t%16llx", (unsigned long long)(start | (dev->resource[i].flags & PCI_REGION_FLAG_MASK))); } for (i = 0; i <= PCI_ROM_RESOURCE; i++) { resource_size_t start, end; pci_resource_to_user(dev, i, &dev->resource[i], &start, &end); seq_printf(m, "\t%16llx", dev->resource[i].start < dev->resource[i].end ? (unsigned long long)(end - start) + 1 : 0); } seq_putc(m, '\t'); if (drv) seq_printf(m, "%s", drv->name); seq_putc(m, '\n'); return 0; } static const struct seq_operations proc_bus_pci_devices_op = { .start = pci_seq_start, .next = pci_seq_next, .stop = pci_seq_stop, .show = show_device }; static struct proc_dir_entry *proc_bus_pci_dir; int pci_proc_attach_device(struct pci_dev *dev) { struct pci_bus *bus = dev->bus; struct proc_dir_entry *e; char name[16]; if (!proc_initialized) return -EACCES; if (!bus->procdir) { if (pci_proc_domain(bus)) { sprintf(name, "%04x:%02x", pci_domain_nr(bus), bus->number); } else { sprintf(name, "%02x", bus->number); } bus->procdir = proc_mkdir(name, proc_bus_pci_dir); if (!bus->procdir) return -ENOMEM; } sprintf(name, "%02x.%x", PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn)); e = proc_create_data(name, S_IFREG | S_IRUGO | S_IWUSR, bus->procdir, &proc_bus_pci_operations, dev); if (!e) return -ENOMEM; e->size = dev->cfg_size; dev->procent = e; return 0; } int pci_proc_detach_device(struct pci_dev *dev) { struct proc_dir_entry *e; if ((e = dev->procent)) { remove_proc_entry(e->name, dev->bus->procdir); dev->procent = NULL; } return 0; } #if 0 int pci_proc_attach_bus(struct pci_bus* bus) { struct proc_dir_entry *de = bus->procdir; if (!proc_initialized) return -EACCES; if (!de) { char name[16]; sprintf(name, "%02x", bus->number); de = bus->procdir = proc_mkdir(name, proc_bus_pci_dir); if (!de) return -ENOMEM; } return 0; } #endif /* 0 */ int pci_proc_detach_bus(struct pci_bus* bus) { struct proc_dir_entry *de = bus->procdir; if (de) remove_proc_entry(de->name, proc_bus_pci_dir); return 0; } static int proc_bus_pci_dev_open(struct inode *inode, struct file *file) { return seq_open(file, &proc_bus_pci_devices_op); } static const struct file_operations proc_bus_pci_dev_operations = { .owner = THIS_MODULE, .open = proc_bus_pci_dev_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int __init pci_proc_init(void) { struct pci_dev *dev = NULL; proc_bus_pci_dir = proc_mkdir("bus/pci", NULL); proc_create("devices", 0, proc_bus_pci_dir, &proc_bus_pci_dev_operations); proc_initialized = 1; for_each_pci_dev(dev) pci_proc_attach_device(dev); return 0; } device_initcall(pci_proc_init);