/* * linux/drivers/s390/crypto/zcrypt_cex2a.c * * zcrypt 2.1.0 * * Copyright (C) 2001, 2006 IBM Corporation * Author(s): Robert Burroughs * Eric Rossman (edrossma@us.ibm.com) * * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) * Major cleanup & driver split: Martin Schwidefsky * Ralph Wuerthner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "ap_bus.h" #include "zcrypt_api.h" #include "zcrypt_error.h" #include "zcrypt_cex2a.h" #define CEX2A_MIN_MOD_SIZE 1 /* 8 bits */ #define CEX2A_MAX_MOD_SIZE 256 /* 2048 bits */ #define CEX2A_SPEED_RATING 970 #define CEX2A_MAX_MESSAGE_SIZE 0x390 /* sizeof(struct type50_crb2_msg) */ #define CEX2A_MAX_RESPONSE_SIZE 0x110 /* max outputdatalength + type80_hdr */ #define CEX2A_CLEANUP_TIME (15*HZ) static struct ap_device_id zcrypt_cex2a_ids[] = { { AP_DEVICE(AP_DEVICE_TYPE_CEX2A) }, { AP_DEVICE(AP_DEVICE_TYPE_CEX2A2) }, { /* end of list */ }, }; #ifndef CONFIG_ZCRYPT_MONOLITHIC MODULE_DEVICE_TABLE(ap, zcrypt_cex2a_ids); MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("CEX2A Cryptographic Coprocessor device driver, " "Copyright 2001, 2006 IBM Corporation"); MODULE_LICENSE("GPL"); #endif static int zcrypt_cex2a_probe(struct ap_device *ap_dev); static void zcrypt_cex2a_remove(struct ap_device *ap_dev); static void zcrypt_cex2a_receive(struct ap_device *, struct ap_message *, struct ap_message *); static struct ap_driver zcrypt_cex2a_driver = { .probe = zcrypt_cex2a_probe, .remove = zcrypt_cex2a_remove, .receive = zcrypt_cex2a_receive, .ids = zcrypt_cex2a_ids, .request_timeout = CEX2A_CLEANUP_TIME, }; /** * Convert a ICAMEX message to a type50 MEX message. * * @zdev: crypto device pointer * @zreq: crypto request pointer * @mex: pointer to user input data * * Returns 0 on success or -EFAULT. */ static int ICAMEX_msg_to_type50MEX_msg(struct zcrypt_device *zdev, struct ap_message *ap_msg, struct ica_rsa_modexpo *mex) { unsigned char *mod, *exp, *inp; int mod_len; mod_len = mex->inputdatalength; if (mod_len <= 128) { struct type50_meb1_msg *meb1 = ap_msg->message; memset(meb1, 0, sizeof(*meb1)); ap_msg->length = sizeof(*meb1); meb1->header.msg_type_code = TYPE50_TYPE_CODE; meb1->header.msg_len = sizeof(*meb1); meb1->keyblock_type = TYPE50_MEB1_FMT; mod = meb1->modulus + sizeof(meb1->modulus) - mod_len; exp = meb1->exponent + sizeof(meb1->exponent) - mod_len; inp = meb1->message + sizeof(meb1->message) - mod_len; } else { struct type50_meb2_msg *meb2 = ap_msg->message; memset(meb2, 0, sizeof(*meb2)); ap_msg->length = sizeof(*meb2); meb2->header.msg_type_code = TYPE50_TYPE_CODE; meb2->header.msg_len = sizeof(*meb2); meb2->keyblock_type = TYPE50_MEB2_FMT; mod = meb2->modulus + sizeof(meb2->modulus) - mod_len; exp = meb2->exponent + sizeof(meb2->exponent) - mod_len; inp = meb2->message + sizeof(meb2->message) - mod_len; } if (copy_from_user(mod, mex->n_modulus, mod_len) || copy_from_user(exp, mex->b_key, mod_len) || copy_from_user(inp, mex->inputdata, mod_len)) return -EFAULT; return 0; } /** * Convert a ICACRT message to a type50 CRT message. * * @zdev: crypto device pointer * @zreq: crypto request pointer * @crt: pointer to user input data * * Returns 0 on success or -EFAULT. */ static int ICACRT_msg_to_type50CRT_msg(struct zcrypt_device *zdev, struct ap_message *ap_msg, struct ica_rsa_modexpo_crt *crt) { int mod_len, short_len, long_len, long_offset; unsigned char *p, *q, *dp, *dq, *u, *inp; mod_len = crt->inputdatalength; short_len = mod_len / 2; long_len = mod_len / 2 + 8; /* * CEX2A cannot handle p, dp, or U > 128 bytes. * If we have one of these, we need to do extra checking. */ if (long_len > 128) { /* * zcrypt_rsa_crt already checked for the leading * zeroes of np_prime, bp_key and u_mult_inc. */ long_offset = long_len - 128; long_len = 128; } else long_offset = 0; /* * Instead of doing extra work for p, dp, U > 64 bytes, we'll just use * the larger message structure. */ if (long_len <= 64) { struct type50_crb1_msg *crb1 = ap_msg->message; memset(crb1, 0, sizeof(*crb1)); ap_msg->length = sizeof(*crb1); crb1->header.msg_type_code = TYPE50_TYPE_CODE; crb1->header.msg_len = sizeof(*crb1); crb1->keyblock_type = TYPE50_CRB1_FMT; p = crb1->p + sizeof(crb1->p) - long_len; q = crb1->q + sizeof(crb1->q) - short_len; dp = crb1->dp + sizeof(crb1->dp) - long_len; dq = crb1->dq + sizeof(crb1->dq) - short_len; u = crb1->u + sizeof(crb1->u) - long_len; inp = crb1->message + sizeof(crb1->message) - mod_len; } else { struct type50_crb2_msg *crb2 = ap_msg->message; memset(crb2, 0, sizeof(*crb2)); ap_msg->length = sizeof(*crb2); crb2->header.msg_type_code = TYPE50_TYPE_CODE; crb2->header.msg_len = sizeof(*crb2); crb2->keyblock_type = TYPE50_CRB2_FMT; p = crb2->p + sizeof(crb2->p) - long_len; q = crb2->q + sizeof(crb2->q) - short_len; dp = crb2->dp + sizeof(crb2->dp) - long_len; dq = crb2->dq + sizeof(crb2->dq) - short_len; u = crb2->u + sizeof(crb2->u) - long_len; inp = crb2->message + sizeof(crb2->message) - mod_len; } if (copy_from_user(p, crt->np_prime + long_offset, long_len) || copy_from_user(q, crt->nq_prime, short_len) || copy_from_user(dp, crt->bp_key + long_offset, long_len) || copy_from_user(dq, crt->bq_key, short_len) || copy_from_user(u, crt->u_mult_inv + long_offset, long_len) || copy_from_user(inp, crt->inputdata, mod_len)) return -EFAULT; return 0; } /** * Copy results from a type 80 reply message back to user space. * * @zdev: crypto device pointer * @reply: reply AP message. * @data: pointer to user output data * @length: size of user output data * * Returns 0 on success or -EFAULT. */ static int convert_type80(struct zcrypt_device *zdev, struct ap_message *reply, char __user *outputdata, unsigned int outputdatalength) { struct type80_hdr *t80h = reply->message; unsigned char *data; if (t80h->len < sizeof(*t80h) + outputdatalength) { /* The result is too short, the CEX2A card may not do that.. */ zdev->online = 0; return -EAGAIN; /* repeat the request on a different device. */ } BUG_ON(t80h->len > CEX2A_MAX_RESPONSE_SIZE); data = reply->message + t80h->len - outputdatalength; if (copy_to_user(outputdata, data, outputdatalength)) return -EFAULT; return 0; } static int convert_response(struct zcrypt_device *zdev, struct ap_message *reply, char __user *outputdata, unsigned int outputdatalength) { /* Response type byte is the second byte in the response. */ switch (((unsigned char *) reply->message)[1]) { case TYPE82_RSP_CODE: case TYPE88_RSP_CODE: return convert_error(zdev, reply); case TYPE80_RSP_CODE: return convert_type80(zdev, reply, outputdata, outputdatalength); default: /* Unknown response type, this should NEVER EVER happen */ zdev->online = 0; return -EAGAIN; /* repeat the request on a different device. */ } } /** * This function is called from the AP bus code after a crypto request * "msg" has finished with the reply message "reply". * It is called from tasklet context. * @ap_dev: pointer to the AP device * @msg: pointer to the AP message * @reply: pointer to the AP reply message */ static void zcrypt_cex2a_receive(struct ap_device *ap_dev, struct ap_message *msg, struct ap_message *reply) { static struct error_hdr error_reply = { .type = TYPE82_RSP_CODE, .reply_code = REP82_ERROR_MACHINE_FAILURE, }; struct type80_hdr *t80h; int length; /* Copy the reply message to the request message buffer. */ if (IS_ERR(reply)) { memcpy(msg->message, &error_reply, sizeof(error_reply)); goto out; } t80h = reply->message; if (t80h->type == TYPE80_RSP_CODE) { length = min(CEX2A_MAX_RESPONSE_SIZE, (int) t80h->len); memcpy(msg->message, reply->message, length); } else memcpy(msg->message, reply->message, sizeof error_reply); out: complete((struct completion *) msg->private); } static atomic_t zcrypt_step = ATOMIC_INIT(0); /** * The request distributor calls this function if it picked the CEX2A * device to handle a modexpo request. * @zdev: pointer to zcrypt_device structure that identifies the * CEX2A device to the request distributor * @mex: pointer to the modexpo request buffer */ static long zcrypt_cex2a_modexpo(struct zcrypt_device *zdev, struct ica_rsa_modexpo *mex) { struct ap_message ap_msg; struct completion work; int rc; ap_init_message(&ap_msg); ap_msg.message = kmalloc(CEX2A_MAX_MESSAGE_SIZE, GFP_KERNEL); if (!ap_msg.message) return -ENOMEM; ap_msg.psmid = (((unsigned long long) current->pid) << 32) + atomic_inc_return(&zcrypt_step); ap_msg.private = &work; rc = ICAMEX_msg_to_type50MEX_msg(zdev, &ap_msg, mex); if (rc) goto out_free; init_completion(&work); ap_queue_message(zdev->ap_dev, &ap_msg); rc = wait_for_completion_interruptible(&work); if (rc == 0) rc = convert_response(zdev, &ap_msg, mex->outputdata, mex->outputdatalength); else /* Signal pending. */ ap_cancel_message(zdev->ap_dev, &ap_msg); out_free: kfree(ap_msg.message); return rc; } /** * The request distributor calls this function if it picked the CEX2A * device to handle a modexpo_crt request. * @zdev: pointer to zcrypt_device structure that identifies the * CEX2A device to the request distributor * @crt: pointer to the modexpoc_crt request buffer */ static long zcrypt_cex2a_modexpo_crt(struct zcrypt_device *zdev, struct ica_rsa_modexpo_crt *crt) { struct ap_message ap_msg; struct completion work; int rc; ap_init_message(&ap_msg); ap_msg.message = kmalloc(CEX2A_MAX_MESSAGE_SIZE, GFP_KERNEL); if (!ap_msg.message) return -ENOMEM; ap_msg.psmid = (((unsigned long long) current->pid) << 32) + atomic_inc_return(&zcrypt_step); ap_msg.private = &work; rc = ICACRT_msg_to_type50CRT_msg(zdev, &ap_msg, crt); if (rc) goto out_free; init_completion(&work); ap_queue_message(zdev->ap_dev, &ap_msg); rc = wait_for_completion_interruptible(&work); if (rc == 0) rc = convert_response(zdev, &ap_msg, crt->outputdata, crt->outputdatalength); else /* Signal pending. */ ap_cancel_message(zdev->ap_dev, &ap_msg); out_free: kfree(ap_msg.message); return rc; } /** * The crypto operations for a CEX2A card. */ static struct zcrypt_ops zcrypt_cex2a_ops = { .rsa_modexpo = zcrypt_cex2a_modexpo, .rsa_modexpo_crt = zcrypt_cex2a_modexpo_crt, }; /** * Probe function for CEX2A cards. It always accepts the AP device * since the bus_match already checked the hardware type. * @ap_dev: pointer to the AP device. */ static int zcrypt_cex2a_probe(struct ap_device *ap_dev) { struct zcrypt_device *zdev; int rc; zdev = zcrypt_device_alloc(CEX2A_MAX_RESPONSE_SIZE); if (!zdev) return -ENOMEM; zdev->ap_dev = ap_dev; zdev->ops = &zcrypt_cex2a_ops; zdev->online = 1; zdev->user_space_type = ZCRYPT_CEX2A; zdev->type_string = "CEX2A"; zdev->min_mod_size = CEX2A_MIN_MOD_SIZE; zdev->max_mod_size = CEX2A_MAX_MOD_SIZE; zdev->short_crt = 1; zdev->speed_rating = CEX2A_SPEED_RATING; ap_dev->reply = &zdev->reply; ap_dev->private = zdev; rc = zcrypt_device_register(zdev); if (rc) goto out_free; return 0; out_free: ap_dev->private = NULL; zcrypt_device_free(zdev); return rc; } /** * This is called to remove the extended CEX2A driver information * if an AP device is removed. */ static void zcrypt_cex2a_remove(struct ap_device *ap_dev) { struct zcrypt_device *zdev = ap_dev->private; zcrypt_device_unregister(zdev); } int __init zcrypt_cex2a_init(void) { return ap_driver_register(&zcrypt_cex2a_driver, THIS_MODULE, "cex2a"); } void __exit zcrypt_cex2a_exit(void) { ap_driver_unregister(&zcrypt_cex2a_driver); } #ifndef CONFIG_ZCRYPT_MONOLITHIC module_init(zcrypt_cex2a_init); module_exit(zcrypt_cex2a_exit); #endif