/* * Serial Attached SCSI (SAS) Expander discovery and configuration * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov * * This file is licensed under GPLv2. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include "sas_internal.h" #include #include #include #include "../scsi_sas_internal.h" static int sas_discover_expander(struct domain_device *dev); static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); static int sas_configure_phy(struct domain_device *dev, int phy_id, u8 *sas_addr, int include); static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); /* ---------- SMP task management ---------- */ static void smp_task_timedout(unsigned long _task) { struct sas_task *task = (void *) _task; unsigned long flags; spin_lock_irqsave(&task->task_state_lock, flags); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) task->task_state_flags |= SAS_TASK_STATE_ABORTED; spin_unlock_irqrestore(&task->task_state_lock, flags); complete(&task->completion); } static void smp_task_done(struct sas_task *task) { if (!del_timer(&task->timer)) return; complete(&task->completion); } /* Give it some long enough timeout. In seconds. */ #define SMP_TIMEOUT 10 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, void *resp, int resp_size) { int res, retry; struct sas_task *task = NULL; struct sas_internal *i = to_sas_internal(dev->port->ha->core.shost->transportt); mutex_lock(&dev->ex_dev.cmd_mutex); for (retry = 0; retry < 3; retry++) { if (test_bit(SAS_DEV_GONE, &dev->state)) { res = -ECOMM; break; } task = sas_alloc_task(GFP_KERNEL); if (!task) { res = -ENOMEM; break; } task->dev = dev; task->task_proto = dev->tproto; sg_init_one(&task->smp_task.smp_req, req, req_size); sg_init_one(&task->smp_task.smp_resp, resp, resp_size); task->task_done = smp_task_done; task->timer.data = (unsigned long) task; task->timer.function = smp_task_timedout; task->timer.expires = jiffies + SMP_TIMEOUT*HZ; add_timer(&task->timer); res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); if (res) { del_timer(&task->timer); SAS_DPRINTK("executing SMP task failed:%d\n", res); break; } wait_for_completion(&task->completion); res = -ECOMM; if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { SAS_DPRINTK("smp task timed out or aborted\n"); i->dft->lldd_abort_task(task); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { SAS_DPRINTK("SMP task aborted and not done\n"); break; } } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAM_STAT_GOOD) { res = 0; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_UNDERRUN) { /* no error, but return the number of bytes of * underrun */ res = task->task_status.residual; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_OVERRUN) { res = -EMSGSIZE; break; } if (task->task_status.resp == SAS_TASK_UNDELIVERED && task->task_status.stat == SAS_DEVICE_UNKNOWN) break; else { SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " "status 0x%x\n", __func__, SAS_ADDR(dev->sas_addr), task->task_status.resp, task->task_status.stat); sas_free_task(task); task = NULL; } } mutex_unlock(&dev->ex_dev.cmd_mutex); BUG_ON(retry == 3 && task != NULL); sas_free_task(task); return res; } /* ---------- Allocations ---------- */ static inline void *alloc_smp_req(int size) { u8 *p = kzalloc(size, GFP_KERNEL); if (p) p[0] = SMP_REQUEST; return p; } static inline void *alloc_smp_resp(int size) { return kzalloc(size, GFP_KERNEL); } static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) { switch (phy->routing_attr) { case TABLE_ROUTING: if (dev->ex_dev.t2t_supp) return 'U'; else return 'T'; case DIRECT_ROUTING: return 'D'; case SUBTRACTIVE_ROUTING: return 'S'; default: return '?'; } } static enum sas_dev_type to_dev_type(struct discover_resp *dr) { /* This is detecting a failure to transmit initial dev to host * FIS as described in section J.5 of sas-2 r16 */ if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev && dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) return SATA_PENDING; else return dr->attached_dev_type; } static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) { enum sas_dev_type dev_type; enum sas_linkrate linkrate; u8 sas_addr[SAS_ADDR_SIZE]; struct smp_resp *resp = rsp; struct discover_resp *dr = &resp->disc; struct expander_device *ex = &dev->ex_dev; struct ex_phy *phy = &ex->ex_phy[phy_id]; struct sas_rphy *rphy = dev->rphy; bool new_phy = !phy->phy; char *type; if (new_phy) { phy->phy = sas_phy_alloc(&rphy->dev, phy_id); /* FIXME: error_handling */ BUG_ON(!phy->phy); } switch (resp->result) { case SMP_RESP_PHY_VACANT: phy->phy_state = PHY_VACANT; break; default: phy->phy_state = PHY_NOT_PRESENT; break; case SMP_RESP_FUNC_ACC: phy->phy_state = PHY_EMPTY; /* do not know yet */ break; } /* check if anything important changed to squelch debug */ dev_type = phy->attached_dev_type; linkrate = phy->linkrate; memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); phy->attached_dev_type = to_dev_type(dr); phy->phy_id = phy_id; phy->linkrate = dr->linkrate; phy->attached_sata_host = dr->attached_sata_host; phy->attached_sata_dev = dr->attached_sata_dev; phy->attached_sata_ps = dr->attached_sata_ps; phy->attached_iproto = dr->iproto << 1; phy->attached_tproto = dr->tproto << 1; memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); phy->attached_phy_id = dr->attached_phy_id; phy->phy_change_count = dr->change_count; phy->routing_attr = dr->routing_attr; phy->virtual = dr->virtual; phy->last_da_index = -1; phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); phy->phy->identify.device_type = dr->attached_dev_type; phy->phy->identify.initiator_port_protocols = phy->attached_iproto; phy->phy->identify.target_port_protocols = phy->attached_tproto; phy->phy->identify.phy_identifier = phy_id; phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; phy->phy->minimum_linkrate = dr->pmin_linkrate; phy->phy->maximum_linkrate = dr->pmax_linkrate; phy->phy->negotiated_linkrate = phy->linkrate; if (new_phy) if (sas_phy_add(phy->phy)) { sas_phy_free(phy->phy); return; } switch (phy->attached_dev_type) { case SATA_PENDING: type = "stp pending"; break; case NO_DEVICE: type = "no device"; break; case SAS_END_DEV: if (phy->attached_iproto) { if (phy->attached_tproto) type = "host+target"; else type = "host"; } else { if (dr->attached_sata_dev) type = "stp"; else type = "ssp"; } break; case EDGE_DEV: case FANOUT_DEV: type = "smp"; break; default: type = "unknown"; } /* this routine is polled by libata error recovery so filter * unimportant messages */ if (new_phy || phy->attached_dev_type != dev_type || phy->linkrate != linkrate || SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) /* pass */; else return; SAS_DPRINTK("ex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", SAS_ADDR(dev->sas_addr), phy->phy_id, sas_route_char(dev, phy), phy->linkrate, SAS_ADDR(phy->attached_sas_addr), type); } /* check if we have an existing attached ata device on this expander phy */ struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) { struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; struct domain_device *dev; struct sas_rphy *rphy; if (!ex_phy->port) return NULL; rphy = ex_phy->port->rphy; if (!rphy) return NULL; dev = sas_find_dev_by_rphy(rphy); if (dev && dev_is_sata(dev)) return dev; return NULL; } #define DISCOVER_REQ_SIZE 16 #define DISCOVER_RESP_SIZE 56 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, u8 *disc_resp, int single) { struct discover_resp *dr; int res; disc_req[9] = single; res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, disc_resp, DISCOVER_RESP_SIZE); if (res) return res; dr = &((struct smp_resp *)disc_resp)->disc; if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { sas_printk("Found loopback topology, just ignore it!\n"); return 0; } sas_set_ex_phy(dev, single, disc_resp); return 0; } int sas_ex_phy_discover(struct domain_device *dev, int single) { struct expander_device *ex = &dev->ex_dev; int res = 0; u8 *disc_req; u8 *disc_resp; disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); if (!disc_req) return -ENOMEM; disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); if (!disc_resp) { kfree(disc_req); return -ENOMEM; } disc_req[1] = SMP_DISCOVER; if (0 <= single && single < ex->num_phys) { res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); } else { int i; for (i = 0; i < ex->num_phys; i++) { res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, i); if (res) goto out_err; } } out_err: kfree(disc_resp); kfree(disc_req); return res; } static int sas_expander_discover(struct domain_device *dev) { struct expander_device *ex = &dev->ex_dev; int res = -ENOMEM; ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); if (!ex->ex_phy) return -ENOMEM; res = sas_ex_phy_discover(dev, -1); if (res) goto out_err; return 0; out_err: kfree(ex->ex_phy); ex->ex_phy = NULL; return res; } #define MAX_EXPANDER_PHYS 128 static void ex_assign_report_general(struct domain_device *dev, struct smp_resp *resp) { struct report_general_resp *rg = &resp->rg; dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); dev->ex_dev.t2t_supp = rg->t2t_supp; dev->ex_dev.conf_route_table = rg->conf_route_table; dev->ex_dev.configuring = rg->configuring; memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); } #define RG_REQ_SIZE 8 #define RG_RESP_SIZE 32 static int sas_ex_general(struct domain_device *dev) { u8 *rg_req; struct smp_resp *rg_resp; int res; int i; rg_req = alloc_smp_req(RG_REQ_SIZE); if (!rg_req) return -ENOMEM; rg_resp = alloc_smp_resp(RG_RESP_SIZE); if (!rg_resp) { kfree(rg_req); return -ENOMEM; } rg_req[1] = SMP_REPORT_GENERAL; for (i = 0; i < 5; i++) { res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, RG_RESP_SIZE); if (res) { SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", SAS_ADDR(dev->sas_addr), res); goto out; } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", SAS_ADDR(dev->sas_addr), rg_resp->result); res = rg_resp->result; goto out; } ex_assign_report_general(dev, rg_resp); if (dev->ex_dev.configuring) { SAS_DPRINTK("RG: ex %llx self-configuring...\n", SAS_ADDR(dev->sas_addr)); schedule_timeout_interruptible(5*HZ); } else break; } out: kfree(rg_req); kfree(rg_resp); return res; } static void ex_assign_manuf_info(struct domain_device *dev, void *_mi_resp) { u8 *mi_resp = _mi_resp; struct sas_rphy *rphy = dev->rphy; struct sas_expander_device *edev = rphy_to_expander_device(rphy); memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); memcpy(edev->product_rev, mi_resp + 36, SAS_EXPANDER_PRODUCT_REV_LEN); if (mi_resp[8] & 1) { memcpy(edev->component_vendor_id, mi_resp + 40, SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); edev->component_id = mi_resp[48] << 8 | mi_resp[49]; edev->component_revision_id = mi_resp[50]; } } #define MI_REQ_SIZE 8 #define MI_RESP_SIZE 64 static int sas_ex_manuf_info(struct domain_device *dev) { u8 *mi_req; u8 *mi_resp; int res; mi_req = alloc_smp_req(MI_REQ_SIZE); if (!mi_req) return -ENOMEM; mi_resp = alloc_smp_resp(MI_RESP_SIZE); if (!mi_resp) { kfree(mi_req); return -ENOMEM; } mi_req[1] = SMP_REPORT_MANUF_INFO; res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); if (res) { SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", SAS_ADDR(dev->sas_addr), res); goto out; } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", SAS_ADDR(dev->sas_addr), mi_resp[2]); goto out; } ex_assign_manuf_info(dev, mi_resp); out: kfree(mi_req); kfree(mi_resp); return res; } #define PC_REQ_SIZE 44 #define PC_RESP_SIZE 8 int sas_smp_phy_control(struct domain_device *dev, int phy_id, enum phy_func phy_func, struct sas_phy_linkrates *rates) { u8 *pc_req; u8 *pc_resp; int res; pc_req = alloc_smp_req(PC_REQ_SIZE); if (!pc_req) return -ENOMEM; pc_resp = alloc_smp_resp(PC_RESP_SIZE); if (!pc_resp) { kfree(pc_req); return -ENOMEM; } pc_req[1] = SMP_PHY_CONTROL; pc_req[9] = phy_id; pc_req[10]= phy_func; if (rates) { pc_req[32] = rates->minimum_linkrate << 4; pc_req[33] = rates->maximum_linkrate << 4; } res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); kfree(pc_resp); kfree(pc_req); return res; } static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) { struct expander_device *ex = &dev->ex_dev; struct ex_phy *phy = &ex->ex_phy[phy_id]; sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); phy->linkrate = SAS_PHY_DISABLED; } static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) { struct expander_device *ex = &dev->ex_dev; int i; for (i = 0; i < ex->num_phys; i++) { struct ex_phy *phy = &ex->ex_phy[i]; if (phy->phy_state == PHY_VACANT || phy->phy_state == PHY_NOT_PRESENT) continue; if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) sas_ex_disable_phy(dev, i); } } static int sas_dev_present_in_domain(struct asd_sas_port *port, u8 *sas_addr) { struct domain_device *dev; if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) return 1; list_for_each_entry(dev, &port->dev_list, dev_list_node) { if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) return 1; } return 0; } #define RPEL_REQ_SIZE 16 #define RPEL_RESP_SIZE 32 int sas_smp_get_phy_events(struct sas_phy *phy) { int res; u8 *req; u8 *resp; struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *dev = sas_find_dev_by_rphy(rphy); req = alloc_smp_req(RPEL_REQ_SIZE); if (!req) return -ENOMEM; resp = alloc_smp_resp(RPEL_RESP_SIZE); if (!resp) { kfree(req); return -ENOMEM; } req[1] = SMP_REPORT_PHY_ERR_LOG; req[9] = phy->number; res = smp_execute_task(dev, req, RPEL_REQ_SIZE, resp, RPEL_RESP_SIZE); if (!res) goto out; phy->invalid_dword_count = scsi_to_u32(&resp[12]); phy->running_disparity_error_count = scsi_to_u32(&resp[16]); phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); out: kfree(resp); return res; } #ifdef CONFIG_SCSI_SAS_ATA #define RPS_REQ_SIZE 16 #define RPS_RESP_SIZE 60 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, struct smp_resp *rps_resp) { int res; u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); u8 *resp = (u8 *)rps_resp; if (!rps_req) return -ENOMEM; rps_req[1] = SMP_REPORT_PHY_SATA; rps_req[9] = phy_id; res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, rps_resp, RPS_RESP_SIZE); /* 0x34 is the FIS type for the D2H fis. There's a potential * standards cockup here. sas-2 explicitly specifies the FIS * should be encoded so that FIS type is in resp[24]. * However, some expanders endian reverse this. Undo the * reversal here */ if (!res && resp[27] == 0x34 && resp[24] != 0x34) { int i; for (i = 0; i < 5; i++) { int j = 24 + (i*4); u8 a, b; a = resp[j + 0]; b = resp[j + 1]; resp[j + 0] = resp[j + 3]; resp[j + 1] = resp[j + 2]; resp[j + 2] = b; resp[j + 3] = a; } } kfree(rps_req); return res; } #endif static void sas_ex_get_linkrate(struct domain_device *parent, struct domain_device *child, struct ex_phy *parent_phy) { struct expander_device *parent_ex = &parent->ex_dev; struct sas_port *port; int i; child->pathways = 0; port = parent_phy->port; for (i = 0; i < parent_ex->num_phys; i++) { struct ex_phy *phy = &parent_ex->ex_phy[i]; if (phy->phy_state == PHY_VACANT || phy->phy_state == PHY_NOT_PRESENT) continue; if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(child->sas_addr)) { child->min_linkrate = min(parent->min_linkrate, phy->linkrate); child->max_linkrate = max(parent->max_linkrate, phy->linkrate); child->pathways++; sas_port_add_phy(port, phy->phy); } } child->linkrate = min(parent_phy->linkrate, child->max_linkrate); child->pathways = min(child->pathways, parent->pathways); } static struct domain_device *sas_ex_discover_end_dev( struct domain_device *parent, int phy_id) { struct expander_device *parent_ex = &parent->ex_dev; struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; struct domain_device *child = NULL; struct sas_rphy *rphy; int res; if (phy->attached_sata_host || phy->attached_sata_ps) return NULL; child = sas_alloc_device(); if (!child) return NULL; kref_get(&parent->kref); child->parent = parent; child->port = parent->port; child->iproto = phy->attached_iproto; memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); sas_hash_addr(child->hashed_sas_addr, child->sas_addr); if (!phy->port) { phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); if (unlikely(!phy->port)) goto out_err; if (unlikely(sas_port_add(phy->port) != 0)) { sas_port_free(phy->port); goto out_err; } } sas_ex_get_linkrate(parent, child, phy); sas_device_set_phy(child, phy->port); #ifdef CONFIG_SCSI_SAS_ATA if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { res = sas_get_ata_info(child, phy); if (res) goto out_free; rphy = sas_end_device_alloc(phy->port); if (unlikely(!rphy)) goto out_free; sas_init_dev(child); child->rphy = rphy; list_add_tail(&child->disco_list_node, &parent->port->disco_list); res = sas_discover_sata(child); if (res) { SAS_DPRINTK("sas_discover_sata() for device %16llx at " "%016llx:0x%x returned 0x%x\n", SAS_ADDR(child->sas_addr), SAS_ADDR(parent->sas_addr), phy_id, res); goto out_list_del; } } else #endif if (phy->attached_tproto & SAS_PROTOCOL_SSP) { child->dev_type = SAS_END_DEV; rphy = sas_end_device_alloc(phy->port); /* FIXME: error handling */ if (unlikely(!rphy)) goto out_free; child->tproto = phy->attached_tproto; sas_init_dev(child); child->rphy = rphy; sas_fill_in_rphy(child, rphy); spin_lock_irq(&parent->port->dev_list_lock); list_add_tail(&child->dev_list_node, &parent->port->dev_list); spin_unlock_irq(&parent->port->dev_list_lock); res = sas_discover_end_dev(child); if (res) { SAS_DPRINTK("sas_discover_end_dev() for device %16llx " "at %016llx:0x%x returned 0x%x\n", SAS_ADDR(child->sas_addr), SAS_ADDR(parent->sas_addr), phy_id, res); goto out_list_del; } } else { SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", phy->attached_tproto, SAS_ADDR(parent->sas_addr), phy_id); goto out_free; } list_add_tail(&child->siblings, &parent_ex->children); return child; out_list_del: sas_rphy_free(child->rphy); child->rphy = NULL; list_del(&child->disco_list_node); spin_lock_irq(&parent->port->dev_list_lock); list_del(&child->dev_list_node); spin_unlock_irq(&parent->port->dev_list_lock); out_free: sas_port_delete(phy->port); out_err: phy->port = NULL; sas_put_device(child); return NULL; } /* See if this phy is part of a wide port */ static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) { struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; int i; for (i = 0; i < parent->ex_dev.num_phys; i++) { struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; if (ephy == phy) continue; if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, SAS_ADDR_SIZE) && ephy->port) { sas_port_add_phy(ephy->port, phy->phy); phy->port = ephy->port; phy->phy_state = PHY_DEVICE_DISCOVERED; return 0; } } return -ENODEV; } static struct domain_device *sas_ex_discover_expander( struct domain_device *parent, int phy_id) { struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; struct domain_device *child = NULL; struct sas_rphy *rphy; struct sas_expander_device *edev; struct asd_sas_port *port; int res; if (phy->routing_attr == DIRECT_ROUTING) { SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " "allowed\n", SAS_ADDR(parent->sas_addr), phy_id, SAS_ADDR(phy->attached_sas_addr), phy->attached_phy_id); return NULL; } child = sas_alloc_device(); if (!child) return NULL; phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); /* FIXME: better error handling */ BUG_ON(sas_port_add(phy->port) != 0); switch (phy->attached_dev_type) { case EDGE_DEV: rphy = sas_expander_alloc(phy->port, SAS_EDGE_EXPANDER_DEVICE); break; case FANOUT_DEV: rphy = sas_expander_alloc(phy->port, SAS_FANOUT_EXPANDER_DEVICE); break; default: rphy = NULL; /* shut gcc up */ BUG(); } port = parent->port; child->rphy = rphy; edev = rphy_to_expander_device(rphy); child->dev_type = phy->attached_dev_type; kref_get(&parent->kref); child->parent = parent; child->port = port; child->iproto = phy->attached_iproto; child->tproto = phy->attached_tproto; memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); sas_hash_addr(child->hashed_sas_addr, child->sas_addr); sas_ex_get_linkrate(parent, child, phy); edev->level = parent_ex->level + 1; parent->port->disc.max_level = max(parent->port->disc.max_level, edev->level); sas_init_dev(child); sas_fill_in_rphy(child, rphy); sas_rphy_add(rphy); spin_lock_irq(&parent->port->dev_list_lock); list_add_tail(&child->dev_list_node, &parent->port->dev_list); spin_unlock_irq(&parent->port->dev_list_lock); res = sas_discover_expander(child); if (res) { spin_lock_irq(&parent->port->dev_list_lock); list_del(&child->dev_list_node); spin_unlock_irq(&parent->port->dev_list_lock); sas_put_device(child); return NULL; } list_add_tail(&child->siblings, &parent->ex_dev.children); return child; } static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) { struct expander_device *ex = &dev->ex_dev; struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; struct domain_device *child = NULL; int res = 0; /* Phy state */ if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) res = sas_ex_phy_discover(dev, phy_id); if (res) return res; } /* Parent and domain coherency */ if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == SAS_ADDR(dev->port->sas_addr))) { sas_add_parent_port(dev, phy_id); return 0; } if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == SAS_ADDR(dev->parent->sas_addr))) { sas_add_parent_port(dev, phy_id); if (ex_phy->routing_attr == TABLE_ROUTING) sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); return 0; } if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) sas_ex_disable_port(dev, ex_phy->attached_sas_addr); if (ex_phy->attached_dev_type == NO_DEVICE) { if (ex_phy->routing_attr == DIRECT_ROUTING) { memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); sas_configure_routing(dev, ex_phy->attached_sas_addr); } return 0; } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) return 0; if (ex_phy->attached_dev_type != SAS_END_DEV && ex_phy->attached_dev_type != FANOUT_DEV && ex_phy->attached_dev_type != EDGE_DEV && ex_phy->attached_dev_type != SATA_PENDING) { SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " "phy 0x%x\n", ex_phy->attached_dev_type, SAS_ADDR(dev->sas_addr), phy_id); return 0; } res = sas_configure_routing(dev, ex_phy->attached_sas_addr); if (res) { SAS_DPRINTK("configure routing for dev %016llx " "reported 0x%x. Forgotten\n", SAS_ADDR(ex_phy->attached_sas_addr), res); sas_disable_routing(dev, ex_phy->attached_sas_addr); return res; } res = sas_ex_join_wide_port(dev, phy_id); if (!res) { SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); return res; } switch (ex_phy->attached_dev_type) { case SAS_END_DEV: case SATA_PENDING: child = sas_ex_discover_end_dev(dev, phy_id); break; case FANOUT_DEV: if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { SAS_DPRINTK("second fanout expander %016llx phy 0x%x " "attached to ex %016llx phy 0x%x\n", SAS_ADDR(ex_phy->attached_sas_addr), ex_phy->attached_phy_id, SAS_ADDR(dev->sas_addr), phy_id); sas_ex_disable_phy(dev, phy_id); break; } else memcpy(dev->port->disc.fanout_sas_addr, ex_phy->attached_sas_addr, SAS_ADDR_SIZE); /* fallthrough */ case EDGE_DEV: child = sas_ex_discover_expander(dev, phy_id); break; default: break; } if (child) { int i; for (i = 0; i < ex->num_phys; i++) { if (ex->ex_phy[i].phy_state == PHY_VACANT || ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) continue; /* * Due to races, the phy might not get added to the * wide port, so we add the phy to the wide port here. */ if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == SAS_ADDR(child->sas_addr)) { ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; res = sas_ex_join_wide_port(dev, i); if (!res) SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); } } } return res; } static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) { struct expander_device *ex = &dev->ex_dev; int i; for (i = 0; i < ex->num_phys; i++) { struct ex_phy *phy = &ex->ex_phy[i]; if (phy->phy_state == PHY_VACANT || phy->phy_state == PHY_NOT_PRESENT) continue; if ((phy->attached_dev_type == EDGE_DEV || phy->attached_dev_type == FANOUT_DEV) && phy->routing_attr == SUBTRACTIVE_ROUTING) { memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); return 1; } } return 0; } static int sas_check_level_subtractive_boundary(struct domain_device *dev) { struct expander_device *ex = &dev->ex_dev; struct domain_device *child; u8 sub_addr[8] = {0, }; list_for_each_entry(child, &ex->children, siblings) { if (child->dev_type != EDGE_DEV && child->dev_type != FANOUT_DEV) continue; if (sub_addr[0] == 0) { sas_find_sub_addr(child, sub_addr); continue; } else { u8 s2[8]; if (sas_find_sub_addr(child, s2) && (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " "diverges from subtractive " "boundary %016llx\n", SAS_ADDR(dev->sas_addr), SAS_ADDR(child->sas_addr), SAS_ADDR(s2), SAS_ADDR(sub_addr)); sas_ex_disable_port(child, s2); } } } return 0; } /** * sas_ex_discover_devices -- discover devices attached to this expander * dev: pointer to the expander domain device * single: if you want to do a single phy, else set to -1; * * Configure this expander for use with its devices and register the * devices of this expander. */ static int sas_ex_discover_devices(struct domain_device *dev, int single) { struct expander_device *ex = &dev->ex_dev; int i = 0, end = ex->num_phys; int res = 0; if (0 <= single && single < end) { i = single; end = i+1; } for ( ; i < end; i++) { struct ex_phy *ex_phy = &ex->ex_phy[i]; if (ex_phy->phy_state == PHY_VACANT || ex_phy->phy_state == PHY_NOT_PRESENT || ex_phy->phy_state == PHY_DEVICE_DISCOVERED) continue; switch (ex_phy->linkrate) { case SAS_PHY_DISABLED: case SAS_PHY_RESET_PROBLEM: case SAS_SATA_PORT_SELECTOR: continue; default: res = sas_ex_discover_dev(dev, i); if (res) break; continue; } } if (!res) sas_check_level_subtractive_boundary(dev); return res; } static int sas_check_ex_subtractive_boundary(struct domain_device *dev) { struct expander_device *ex = &dev->ex_dev; int i; u8 *sub_sas_addr = NULL; if (dev->dev_type != EDGE_DEV) return 0; for (i = 0; i < ex->num_phys; i++) { struct ex_phy *phy = &ex->ex_phy[i]; if (phy->phy_state == PHY_VACANT || phy->phy_state == PHY_NOT_PRESENT) continue; if ((phy->attached_dev_type == FANOUT_DEV || phy->attached_dev_type == EDGE_DEV) && phy->routing_attr == SUBTRACTIVE_ROUTING) { if (!sub_sas_addr) sub_sas_addr = &phy->attached_sas_addr[0]; else if (SAS_ADDR(sub_sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { SAS_DPRINTK("ex %016llx phy 0x%x " "diverges(%016llx) on subtractive " "boundary(%016llx). Disabled\n", SAS_ADDR(dev->sas_addr), i, SAS_ADDR(phy->attached_sas_addr), SAS_ADDR(sub_sas_addr)); sas_ex_disable_phy(dev, i); } } } return 0; } static void sas_print_parent_topology_bug(struct domain_device *child, struct ex_phy *parent_phy, struct ex_phy *child_phy) { static const char *ex_type[] = { [EDGE_DEV] = "edge", [FANOUT_DEV] = "fanout", }; struct domain_device *parent = child->parent; sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " "phy 0x%x has %c:%c routing link!\n", ex_type[parent->dev_type], SAS_ADDR(parent->sas_addr), parent_phy->phy_id, ex_type[child->dev_type], SAS_ADDR(child->sas_addr), child_phy->phy_id, sas_route_char(parent, parent_phy), sas_route_char(child, child_phy)); } static int sas_check_eeds(struct domain_device *child, struct ex_phy *parent_phy, struct ex_phy *child_phy) { int res = 0; struct domain_device *parent = child->parent; if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { res = -ENODEV; SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " "phy S:0x%x, while there is a fanout ex %016llx\n", SAS_ADDR(parent->sas_addr), parent_phy->phy_id, SAS_ADDR(child->sas_addr), child_phy->phy_id, SAS_ADDR(parent->port->disc.fanout_sas_addr)); } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { memcpy(parent->port->disc.eeds_a, parent->sas_addr, SAS_ADDR_SIZE); memcpy(parent->port->disc.eeds_b, child->sas_addr, SAS_ADDR_SIZE); } else if (((SAS_ADDR(parent->port->disc.eeds_a) == SAS_ADDR(parent->sas_addr)) || (SAS_ADDR(parent->port->disc.eeds_a) == SAS_ADDR(child->sas_addr))) && ((SAS_ADDR(parent->port->disc.eeds_b) == SAS_ADDR(parent->sas_addr)) || (SAS_ADDR(parent->port->disc.eeds_b) == SAS_ADDR(child->sas_addr)))) ; else { res = -ENODEV; SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " "phy 0x%x link forms a third EEDS!\n", SAS_ADDR(parent->sas_addr), parent_phy->phy_id, SAS_ADDR(child->sas_addr), child_phy->phy_id); } return res; } /* Here we spill over 80 columns. It is intentional. */ static int sas_check_parent_topology(struct domain_device *child) { struct expander_device *child_ex = &child->ex_dev; struct expander_device *parent_ex; int i; int res = 0; if (!child->parent) return 0; if (child->parent->dev_type != EDGE_DEV && child->parent->dev_type != FANOUT_DEV) return 0; parent_ex = &child->parent->ex_dev; for (i = 0; i < parent_ex->num_phys; i++) { struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; struct ex_phy *child_phy; if (parent_phy->phy_state == PHY_VACANT || parent_phy->phy_state == PHY_NOT_PRESENT) continue; if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) continue; child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; switch (child->parent->dev_type) { case EDGE_DEV: if (child->dev_type == FANOUT_DEV) { if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || child_phy->routing_attr != TABLE_ROUTING) { sas_print_parent_topology_bug(child, parent_phy, child_phy); res = -ENODEV; } } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { res = sas_check_eeds(child, parent_phy, child_phy); } else if (child_phy->routing_attr != TABLE_ROUTING) { sas_print_parent_topology_bug(child, parent_phy, child_phy); res = -ENODEV; } } else if (parent_phy->routing_attr == TABLE_ROUTING) { if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || (child_phy->routing_attr == TABLE_ROUTING && child_ex->t2t_supp && parent_ex->t2t_supp)) { /* All good */; } else { sas_print_parent_topology_bug(child, parent_phy, child_phy); res = -ENODEV; } } break; case FANOUT_DEV: if (parent_phy->routing_attr != TABLE_ROUTING || child_phy->routing_attr != SUBTRACTIVE_ROUTING) { sas_print_parent_topology_bug(child, parent_phy, child_phy); res = -ENODEV; } break; default: break; } } return res; } #define RRI_REQ_SIZE 16 #define RRI_RESP_SIZE 44 static int sas_configure_present(struct domain_device *dev, int phy_id, u8 *sas_addr, int *index, int *present) { int i, res = 0; struct expander_device *ex = &dev->ex_dev; struct ex_phy *phy = &ex->ex_phy[phy_id]; u8 *rri_req; u8 *rri_resp; *present = 0; *index = 0; rri_req = alloc_smp_req(RRI_REQ_SIZE); if (!rri_req) return -ENOMEM; rri_resp = alloc_smp_resp(RRI_RESP_SIZE); if (!rri_resp) { kfree(rri_req); return -ENOMEM; } rri_req[1] = SMP_REPORT_ROUTE_INFO; rri_req[9] = phy_id; for (i = 0; i < ex->max_route_indexes ; i++) { *(__be16 *)(rri_req+6) = cpu_to_be16(i); res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, RRI_RESP_SIZE); if (res) goto out; res = rri_resp[2]; if (res == SMP_RESP_NO_INDEX) { SAS_DPRINTK("overflow of indexes: dev %016llx " "phy 0x%x index 0x%x\n", SAS_ADDR(dev->sas_addr), phy_id, i); goto out; } else if (res != SMP_RESP_FUNC_ACC) { SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " "result 0x%x\n", __func__, SAS_ADDR(dev->sas_addr), phy_id, i, res); goto out; } if (SAS_ADDR(sas_addr) != 0) { if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { *index = i; if ((rri_resp[12] & 0x80) == 0x80) *present = 0; else *present = 1; goto out; } else if (SAS_ADDR(rri_resp+16) == 0) { *index = i; *present = 0; goto out; } } else if (SAS_ADDR(rri_resp+16) == 0 && phy->last_da_index < i) { phy->last_da_index = i; *index = i; *present = 0; goto out; } } res = -1; out: kfree(rri_req); kfree(rri_resp); return res; } #define CRI_REQ_SIZE 44 #define CRI_RESP_SIZE 8 static int sas_configure_set(struct domain_device *dev, int phy_id, u8 *sas_addr, int index, int include) { int res; u8 *cri_req; u8 *cri_resp; cri_req = alloc_smp_req(CRI_REQ_SIZE); if (!cri_req) return -ENOMEM; cri_resp = alloc_smp_resp(CRI_RESP_SIZE); if (!cri_resp) { kfree(cri_req); return -ENOMEM; } cri_req[1] = SMP_CONF_ROUTE_INFO; *(__be16 *)(cri_req+6) = cpu_to_be16(index); cri_req[9] = phy_id; if (SAS_ADDR(sas_addr) == 0 || !include) cri_req[12] |= 0x80; memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, CRI_RESP_SIZE); if (res) goto out; res = cri_resp[2]; if (res == SMP_RESP_NO_INDEX) { SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " "index 0x%x\n", SAS_ADDR(dev->sas_addr), phy_id, index); } out: kfree(cri_req); kfree(cri_resp); return res; } static int sas_configure_phy(struct domain_device *dev, int phy_id, u8 *sas_addr, int include) { int index; int present; int res; res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); if (res) return res; if (include ^ present) return sas_configure_set(dev, phy_id, sas_addr, index,include); return res; } /** * sas_configure_parent -- configure routing table of parent * parent: parent expander * child: child expander * sas_addr: SAS port identifier of device directly attached to child */ static int sas_configure_parent(struct domain_device *parent, struct domain_device *child, u8 *sas_addr, int include) { struct expander_device *ex_parent = &parent->ex_dev; int res = 0; int i; if (parent->parent) { res = sas_configure_parent(parent->parent, parent, sas_addr, include); if (res) return res; } if (ex_parent->conf_route_table == 0) { SAS_DPRINTK("ex %016llx has self-configuring routing table\n", SAS_ADDR(parent->sas_addr)); return 0; } for (i = 0; i < ex_parent->num_phys; i++) { struct ex_phy *phy = &ex_parent->ex_phy[i]; if ((phy->routing_attr == TABLE_ROUTING) && (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(child->sas_addr))) { res = sas_configure_phy(parent, i, sas_addr, include); if (res) return res; } } return res; } /** * sas_configure_routing -- configure routing * dev: expander device * sas_addr: port identifier of device directly attached to the expander device */ static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) { if (dev->parent) return sas_configure_parent(dev->parent, dev, sas_addr, 1); return 0; } static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) { if (dev->parent) return sas_configure_parent(dev->parent, dev, sas_addr, 0); return 0; } /** * sas_discover_expander -- expander discovery * @ex: pointer to expander domain device * * See comment in sas_discover_sata(). */ static int sas_discover_expander(struct domain_device *dev) { int res; res = sas_notify_lldd_dev_found(dev); if (res) return res; res = sas_ex_general(dev); if (res) goto out_err; res = sas_ex_manuf_info(dev); if (res) goto out_err; res = sas_expander_discover(dev); if (res) { SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", SAS_ADDR(dev->sas_addr), res); goto out_err; } sas_check_ex_subtractive_boundary(dev); res = sas_check_parent_topology(dev); if (res) goto out_err; return 0; out_err: sas_notify_lldd_dev_gone(dev); return res; } static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) { int res = 0; struct domain_device *dev; list_for_each_entry(dev, &port->dev_list, dev_list_node) { if (dev->dev_type == EDGE_DEV || dev->dev_type == FANOUT_DEV) { struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); if (level == ex->level) res = sas_ex_discover_devices(dev, -1); else if (level > 0) res = sas_ex_discover_devices(port->port_dev, -1); } } return res; } static int sas_ex_bfs_disc(struct asd_sas_port *port) { int res; int level; do { level = port->disc.max_level; res = sas_ex_level_discovery(port, level); mb(); } while (level < port->disc.max_level); return res; } int sas_discover_root_expander(struct domain_device *dev) { int res; struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); res = sas_rphy_add(dev->rphy); if (res) goto out_err; ex->level = dev->port->disc.max_level; /* 0 */ res = sas_discover_expander(dev); if (res) goto out_err2; sas_ex_bfs_disc(dev->port); return res; out_err2: sas_rphy_remove(dev->rphy); out_err: return res; } /* ---------- Domain revalidation ---------- */ static int sas_get_phy_discover(struct domain_device *dev, int phy_id, struct smp_resp *disc_resp) { int res; u8 *disc_req; disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); if (!disc_req) return -ENOMEM; disc_req[1] = SMP_DISCOVER; disc_req[9] = phy_id; res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, disc_resp, DISCOVER_RESP_SIZE); if (res) goto out; else if (disc_resp->result != SMP_RESP_FUNC_ACC) { res = disc_resp->result; goto out; } out: kfree(disc_req); return res; } static int sas_get_phy_change_count(struct domain_device *dev, int phy_id, int *pcc) { int res; struct smp_resp *disc_resp; disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); if (!disc_resp) return -ENOMEM; res = sas_get_phy_discover(dev, phy_id, disc_resp); if (!res) *pcc = disc_resp->disc.change_count; kfree(disc_resp); return res; } static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, u8 *sas_addr, enum sas_dev_type *type) { int res; struct smp_resp *disc_resp; struct discover_resp *dr; disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); if (!disc_resp) return -ENOMEM; dr = &disc_resp->disc; res = sas_get_phy_discover(dev, phy_id, disc_resp); if (res == 0) { memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); *type = to_dev_type(dr); if (*type == 0) memset(sas_addr, 0, 8); } kfree(disc_resp); return res; } static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, int from_phy, bool update) { struct expander_device *ex = &dev->ex_dev; int res = 0; int i; for (i = from_phy; i < ex->num_phys; i++) { int phy_change_count = 0; res = sas_get_phy_change_count(dev, i, &phy_change_count); if (res) goto out; else if (phy_change_count != ex->ex_phy[i].phy_change_count) { if (update) ex->ex_phy[i].phy_change_count = phy_change_count; *phy_id = i; return 0; } } out: return res; } static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) { int res; u8 *rg_req; struct smp_resp *rg_resp; rg_req = alloc_smp_req(RG_REQ_SIZE); if (!rg_req) return -ENOMEM; rg_resp = alloc_smp_resp(RG_RESP_SIZE); if (!rg_resp) { kfree(rg_req); return -ENOMEM; } rg_req[1] = SMP_REPORT_GENERAL; res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, RG_RESP_SIZE); if (res) goto out; if (rg_resp->result != SMP_RESP_FUNC_ACC) { res = rg_resp->result; goto out; } *ecc = be16_to_cpu(rg_resp->rg.change_count); out: kfree(rg_resp); kfree(rg_req); return res; } /** * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). * @dev:domain device to be detect. * @src_dev: the device which originated BROADCAST(CHANGE). * * Add self-configuration expander suport. Suppose two expander cascading, * when the first level expander is self-configuring, hotplug the disks in * second level expander, BROADCAST(CHANGE) will not only be originated * in the second level expander, but also be originated in the first level * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, * expander changed count in two level expanders will all increment at least * once, but the phy which chang count has changed is the source device which * we concerned. */ static int sas_find_bcast_dev(struct domain_device *dev, struct domain_device **src_dev) { struct expander_device *ex = &dev->ex_dev; int ex_change_count = -1; int phy_id = -1; int res; struct domain_device *ch; res = sas_get_ex_change_count(dev, &ex_change_count); if (res) goto out; if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { /* Just detect if this expander phys phy change count changed, * in order to determine if this expander originate BROADCAST, * and do not update phy change count field in our structure. */ res = sas_find_bcast_phy(dev, &phy_id, 0, false); if (phy_id != -1) { *src_dev = dev; ex->ex_change_count = ex_change_count; SAS_DPRINTK("Expander phy change count has changed\n"); return res; } else SAS_DPRINTK("Expander phys DID NOT change\n"); } list_for_each_entry(ch, &ex->children, siblings) { if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { res = sas_find_bcast_dev(ch, src_dev); if (*src_dev) return res; } } out: return res; } static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) { struct expander_device *ex = &dev->ex_dev; struct domain_device *child, *n; list_for_each_entry_safe(child, n, &ex->children, siblings) { set_bit(SAS_DEV_GONE, &child->state); if (child->dev_type == EDGE_DEV || child->dev_type == FANOUT_DEV) sas_unregister_ex_tree(port, child); else sas_unregister_dev(port, child); } sas_unregister_dev(port, dev); } static void sas_unregister_devs_sas_addr(struct domain_device *parent, int phy_id, bool last) { struct expander_device *ex_dev = &parent->ex_dev; struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; struct domain_device *child, *n, *found = NULL; if (last) { list_for_each_entry_safe(child, n, &ex_dev->children, siblings) { if (SAS_ADDR(child->sas_addr) == SAS_ADDR(phy->attached_sas_addr)) { set_bit(SAS_DEV_GONE, &child->state); if (child->dev_type == EDGE_DEV || child->dev_type == FANOUT_DEV) sas_unregister_ex_tree(parent->port, child); else sas_unregister_dev(parent->port, child); found = child; break; } } sas_disable_routing(parent, phy->attached_sas_addr); } memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); if (phy->port) { sas_port_delete_phy(phy->port, phy->phy); sas_device_set_phy(found, phy->port); if (phy->port->num_phys == 0) sas_port_delete(phy->port); phy->port = NULL; } } static int sas_discover_bfs_by_root_level(struct domain_device *root, const int level) { struct expander_device *ex_root = &root->ex_dev; struct domain_device *child; int res = 0; list_for_each_entry(child, &ex_root->children, siblings) { if (child->dev_type == EDGE_DEV || child->dev_type == FANOUT_DEV) { struct sas_expander_device *ex = rphy_to_expander_device(child->rphy); if (level > ex->level) res = sas_discover_bfs_by_root_level(child, level); else if (level == ex->level) res = sas_ex_discover_devices(child, -1); } } return res; } static int sas_discover_bfs_by_root(struct domain_device *dev) { int res; struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); int level = ex->level+1; res = sas_ex_discover_devices(dev, -1); if (res) goto out; do { res = sas_discover_bfs_by_root_level(dev, level); mb(); level += 1; } while (level <= dev->port->disc.max_level); out: return res; } static int sas_discover_new(struct domain_device *dev, int phy_id) { struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; struct domain_device *child; bool found = false; int res, i; SAS_DPRINTK("ex %016llx phy%d new device attached\n", SAS_ADDR(dev->sas_addr), phy_id); res = sas_ex_phy_discover(dev, phy_id); if (res) goto out; /* to support the wide port inserted */ for (i = 0; i < dev->ex_dev.num_phys; i++) { struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; if (i == phy_id) continue; if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == SAS_ADDR(ex_phy->attached_sas_addr)) { found = true; break; } } if (found) { sas_ex_join_wide_port(dev, phy_id); return 0; } res = sas_ex_discover_devices(dev, phy_id); if (!res) goto out; list_for_each_entry(child, &dev->ex_dev.children, siblings) { if (SAS_ADDR(child->sas_addr) == SAS_ADDR(ex_phy->attached_sas_addr)) { if (child->dev_type == EDGE_DEV || child->dev_type == FANOUT_DEV) res = sas_discover_bfs_by_root(child); break; } } out: return res; } static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old) { if (old == new) return true; /* treat device directed resets as flutter, if we went * SAS_END_DEV to SATA_PENDING the link needs recovery */ if ((old == SATA_PENDING && new == SAS_END_DEV) || (old == SAS_END_DEV && new == SATA_PENDING)) return true; return false; } static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) { struct expander_device *ex = &dev->ex_dev; struct ex_phy *phy = &ex->ex_phy[phy_id]; enum sas_dev_type type = NO_DEVICE; u8 sas_addr[8]; int res; res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); switch (res) { case SMP_RESP_NO_PHY: phy->phy_state = PHY_NOT_PRESENT; sas_unregister_devs_sas_addr(dev, phy_id, last); return res; case SMP_RESP_PHY_VACANT: phy->phy_state = PHY_VACANT; sas_unregister_devs_sas_addr(dev, phy_id, last); return res; case SMP_RESP_FUNC_ACC: break; } if (SAS_ADDR(sas_addr) == 0) { phy->phy_state = PHY_EMPTY; sas_unregister_devs_sas_addr(dev, phy_id, last); return res; } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && dev_type_flutter(type, phy->attached_dev_type)) { struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); char *action = ""; sas_ex_phy_discover(dev, phy_id); if (ata_dev && phy->attached_dev_type == SATA_PENDING) action = ", needs recovery"; SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", SAS_ADDR(dev->sas_addr), phy_id, action); return res; } /* delete the old link */ if (SAS_ADDR(phy->attached_sas_addr) && SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", SAS_ADDR(dev->sas_addr), phy_id, SAS_ADDR(phy->attached_sas_addr)); sas_unregister_devs_sas_addr(dev, phy_id, last); } return sas_discover_new(dev, phy_id); } /** * sas_rediscover - revalidate the domain. * @dev:domain device to be detect. * @phy_id: the phy id will be detected. * * NOTE: this process _must_ quit (return) as soon as any connection * errors are encountered. Connection recovery is done elsewhere. * Discover process only interrogates devices in order to discover the * domain.For plugging out, we un-register the device only when it is * the last phy in the port, for other phys in this port, we just delete it * from the port.For inserting, we do discovery when it is the * first phy,for other phys in this port, we add it to the port to * forming the wide-port. */ static int sas_rediscover(struct domain_device *dev, const int phy_id) { struct expander_device *ex = &dev->ex_dev; struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; int res = 0; int i; bool last = true; /* is this the last phy of the port */ SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", SAS_ADDR(dev->sas_addr), phy_id); if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { for (i = 0; i < ex->num_phys; i++) { struct ex_phy *phy = &ex->ex_phy[i]; if (i == phy_id) continue; if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(changed_phy->attached_sas_addr)) { SAS_DPRINTK("phy%d part of wide port with " "phy%d\n", phy_id, i); last = false; break; } } res = sas_rediscover_dev(dev, phy_id, last); } else res = sas_discover_new(dev, phy_id); return res; } /** * sas_revalidate_domain -- revalidate the domain * @port: port to the domain of interest * * NOTE: this process _must_ quit (return) as soon as any connection * errors are encountered. Connection recovery is done elsewhere. * Discover process only interrogates devices in order to discover the * domain. */ int sas_ex_revalidate_domain(struct domain_device *port_dev) { int res; struct domain_device *dev = NULL; res = sas_find_bcast_dev(port_dev, &dev); if (res) goto out; if (dev) { struct expander_device *ex = &dev->ex_dev; int i = 0, phy_id; do { phy_id = -1; res = sas_find_bcast_phy(dev, &phy_id, i, true); if (phy_id == -1) break; res = sas_rediscover(dev, phy_id); i = phy_id + 1; } while (i < ex->num_phys); } out: return res; } int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, struct request *req) { struct domain_device *dev; int ret, type; struct request *rsp = req->next_rq; if (!rsp) { printk("%s: space for a smp response is missing\n", __func__); return -EINVAL; } /* no rphy means no smp target support (ie aic94xx host) */ if (!rphy) return sas_smp_host_handler(shost, req, rsp); type = rphy->identify.device_type; if (type != SAS_EDGE_EXPANDER_DEVICE && type != SAS_FANOUT_EXPANDER_DEVICE) { printk("%s: can we send a smp request to a device?\n", __func__); return -EINVAL; } dev = sas_find_dev_by_rphy(rphy); if (!dev) { printk("%s: fail to find a domain_device?\n", __func__); return -EINVAL; } /* do we need to support multiple segments? */ if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { printk("%s: multiple segments req %u %u, rsp %u %u\n", __func__, req->bio->bi_vcnt, blk_rq_bytes(req), rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); return -EINVAL; } ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), bio_data(rsp->bio), blk_rq_bytes(rsp)); if (ret > 0) { /* positive number is the untransferred residual */ rsp->resid_len = ret; req->resid_len = 0; ret = 0; } else if (ret == 0) { rsp->resid_len = 0; req->resid_len = 0; } return ret; }