/* * Sonics Silicon Backplane * PCMCIA-Hostbus related functions * * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> * Copyright 2007-2008 Michael Buesch <mb@bu3sch.de> * * Licensed under the GNU/GPL. See COPYING for details. */ #include <linux/ssb/ssb.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/etherdevice.h> #include <pcmcia/cs_types.h> #include <pcmcia/cs.h> #include <pcmcia/cistpl.h> #include <pcmcia/ciscode.h> #include <pcmcia/ds.h> #include <pcmcia/cisreg.h> #include "ssb_private.h" /* Define the following to 1 to enable a printk on each coreswitch. */ #define SSB_VERBOSE_PCMCIACORESWITCH_DEBUG 0 /* PCMCIA configuration registers */ #define SSB_PCMCIA_ADDRESS0 0x2E #define SSB_PCMCIA_ADDRESS1 0x30 #define SSB_PCMCIA_ADDRESS2 0x32 #define SSB_PCMCIA_MEMSEG 0x34 #define SSB_PCMCIA_SPROMCTL 0x36 #define SSB_PCMCIA_SPROMCTL_IDLE 0 #define SSB_PCMCIA_SPROMCTL_WRITE 1 #define SSB_PCMCIA_SPROMCTL_READ 2 #define SSB_PCMCIA_SPROMCTL_WRITEEN 4 #define SSB_PCMCIA_SPROMCTL_WRITEDIS 7 #define SSB_PCMCIA_SPROMCTL_DONE 8 #define SSB_PCMCIA_SPROM_DATALO 0x38 #define SSB_PCMCIA_SPROM_DATAHI 0x3A #define SSB_PCMCIA_SPROM_ADDRLO 0x3C #define SSB_PCMCIA_SPROM_ADDRHI 0x3E /* Hardware invariants CIS tuples */ #define SSB_PCMCIA_CIS 0x80 #define SSB_PCMCIA_CIS_ID 0x01 #define SSB_PCMCIA_CIS_BOARDREV 0x02 #define SSB_PCMCIA_CIS_PA 0x03 #define SSB_PCMCIA_CIS_PA_PA0B0_LO 0 #define SSB_PCMCIA_CIS_PA_PA0B0_HI 1 #define SSB_PCMCIA_CIS_PA_PA0B1_LO 2 #define SSB_PCMCIA_CIS_PA_PA0B1_HI 3 #define SSB_PCMCIA_CIS_PA_PA0B2_LO 4 #define SSB_PCMCIA_CIS_PA_PA0B2_HI 5 #define SSB_PCMCIA_CIS_PA_ITSSI 6 #define SSB_PCMCIA_CIS_PA_MAXPOW 7 #define SSB_PCMCIA_CIS_OEMNAME 0x04 #define SSB_PCMCIA_CIS_CCODE 0x05 #define SSB_PCMCIA_CIS_ANTENNA 0x06 #define SSB_PCMCIA_CIS_ANTGAIN 0x07 #define SSB_PCMCIA_CIS_BFLAGS 0x08 #define SSB_PCMCIA_CIS_LEDS 0x09 /* PCMCIA SPROM size. */ #define SSB_PCMCIA_SPROM_SIZE 256 #define SSB_PCMCIA_SPROM_SIZE_BYTES (SSB_PCMCIA_SPROM_SIZE * sizeof(u16)) /* Write to a PCMCIA configuration register. */ static int ssb_pcmcia_cfg_write(struct ssb_bus *bus, u8 offset, u8 value) { conf_reg_t reg; int res; memset(®, 0, sizeof(reg)); reg.Offset = offset; reg.Action = CS_WRITE; reg.Value = value; res = pcmcia_access_configuration_register(bus->host_pcmcia, ®); if (unlikely(res != 0)) return -EBUSY; return 0; } /* Read from a PCMCIA configuration register. */ static int ssb_pcmcia_cfg_read(struct ssb_bus *bus, u8 offset, u8 *value) { conf_reg_t reg; int res; memset(®, 0, sizeof(reg)); reg.Offset = offset; reg.Action = CS_READ; res = pcmcia_access_configuration_register(bus->host_pcmcia, ®); if (unlikely(res != 0)) return -EBUSY; *value = reg.Value; return 0; } int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus, u8 coreidx) { int err; int attempts = 0; u32 cur_core; u32 addr; u32 read_addr; u8 val; addr = (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE; while (1) { err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS0, (addr & 0x0000F000) >> 12); if (err) goto error; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS1, (addr & 0x00FF0000) >> 16); if (err) goto error; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_ADDRESS2, (addr & 0xFF000000) >> 24); if (err) goto error; read_addr = 0; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS0, &val); if (err) goto error; read_addr |= ((u32)(val & 0x0F)) << 12; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS1, &val); if (err) goto error; read_addr |= ((u32)val) << 16; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_ADDRESS2, &val); if (err) goto error; read_addr |= ((u32)val) << 24; cur_core = (read_addr - SSB_ENUM_BASE) / SSB_CORE_SIZE; if (cur_core == coreidx) break; err = -ETIMEDOUT; if (attempts++ > SSB_BAR0_MAX_RETRIES) goto error; udelay(10); } return 0; error: ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx); return err; } int ssb_pcmcia_switch_core(struct ssb_bus *bus, struct ssb_device *dev) { int err; #if SSB_VERBOSE_PCMCIACORESWITCH_DEBUG ssb_printk(KERN_INFO PFX "Switching to %s core, index %d\n", ssb_core_name(dev->id.coreid), dev->core_index); #endif err = ssb_pcmcia_switch_coreidx(bus, dev->core_index); if (!err) bus->mapped_device = dev; return err; } int ssb_pcmcia_switch_segment(struct ssb_bus *bus, u8 seg) { int attempts = 0; int err; u8 val; SSB_WARN_ON((seg != 0) && (seg != 1)); while (1) { err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_MEMSEG, seg); if (err) goto error; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_MEMSEG, &val); if (err) goto error; if (val == seg) break; err = -ETIMEDOUT; if (unlikely(attempts++ > SSB_BAR0_MAX_RETRIES)) goto error; udelay(10); } bus->mapped_pcmcia_seg = seg; return 0; error: ssb_printk(KERN_ERR PFX "Failed to switch pcmcia segment\n"); return err; } static int select_core_and_segment(struct ssb_device *dev, u16 *offset) { struct ssb_bus *bus = dev->bus; int err; u8 need_segment; if (*offset >= 0x800) { *offset -= 0x800; need_segment = 1; } else need_segment = 0; if (unlikely(dev != bus->mapped_device)) { err = ssb_pcmcia_switch_core(bus, dev); if (unlikely(err)) return err; } if (unlikely(need_segment != bus->mapped_pcmcia_seg)) { err = ssb_pcmcia_switch_segment(bus, need_segment); if (unlikely(err)) return err; } return 0; } static u8 ssb_pcmcia_read8(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; u8 value = 0xFF; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) value = readb(bus->mmio + offset); spin_unlock_irqrestore(&bus->bar_lock, flags); return value; } static u16 ssb_pcmcia_read16(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; u16 value = 0xFFFF; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) value = readw(bus->mmio + offset); spin_unlock_irqrestore(&bus->bar_lock, flags); return value; } static u32 ssb_pcmcia_read32(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; u32 lo = 0xFFFFFFFF, hi = 0xFFFFFFFF; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) { lo = readw(bus->mmio + offset); hi = readw(bus->mmio + offset + 2); } spin_unlock_irqrestore(&bus->bar_lock, flags); return (lo | (hi << 16)); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pcmcia_block_read(struct ssb_device *dev, void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; unsigned long flags; void __iomem *addr = bus->mmio + offset; int err; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (unlikely(err)) { memset(buffer, 0xFF, count); goto unlock; } switch (reg_width) { case sizeof(u8): { u8 *buf = buffer; while (count) { *buf = __raw_readb(addr); buf++; count--; } break; } case sizeof(u16): { __le16 *buf = buffer; SSB_WARN_ON(count & 1); while (count) { *buf = (__force __le16)__raw_readw(addr); buf++; count -= 2; } break; } case sizeof(u32): { __le16 *buf = buffer; SSB_WARN_ON(count & 3); while (count) { *buf = (__force __le16)__raw_readw(addr); buf++; *buf = (__force __le16)__raw_readw(addr + 2); buf++; count -= 4; } break; } default: SSB_WARN_ON(1); } unlock: spin_unlock_irqrestore(&bus->bar_lock, flags); } #endif /* CONFIG_SSB_BLOCKIO */ static void ssb_pcmcia_write8(struct ssb_device *dev, u16 offset, u8 value) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) writeb(value, bus->mmio + offset); mmiowb(); spin_unlock_irqrestore(&bus->bar_lock, flags); } static void ssb_pcmcia_write16(struct ssb_device *dev, u16 offset, u16 value) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) writew(value, bus->mmio + offset); mmiowb(); spin_unlock_irqrestore(&bus->bar_lock, flags); } static void ssb_pcmcia_write32(struct ssb_device *dev, u16 offset, u32 value) { struct ssb_bus *bus = dev->bus; unsigned long flags; int err; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (likely(!err)) { writew((value & 0x0000FFFF), bus->mmio + offset); writew(((value & 0xFFFF0000) >> 16), bus->mmio + offset + 2); } mmiowb(); spin_unlock_irqrestore(&bus->bar_lock, flags); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pcmcia_block_write(struct ssb_device *dev, const void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; unsigned long flags; void __iomem *addr = bus->mmio + offset; int err; spin_lock_irqsave(&bus->bar_lock, flags); err = select_core_and_segment(dev, &offset); if (unlikely(err)) goto unlock; switch (reg_width) { case sizeof(u8): { const u8 *buf = buffer; while (count) { __raw_writeb(*buf, addr); buf++; count--; } break; } case sizeof(u16): { const __le16 *buf = buffer; SSB_WARN_ON(count & 1); while (count) { __raw_writew((__force u16)(*buf), addr); buf++; count -= 2; } break; } case sizeof(u32): { const __le16 *buf = buffer; SSB_WARN_ON(count & 3); while (count) { __raw_writew((__force u16)(*buf), addr); buf++; __raw_writew((__force u16)(*buf), addr + 2); buf++; count -= 4; } break; } default: SSB_WARN_ON(1); } unlock: mmiowb(); spin_unlock_irqrestore(&bus->bar_lock, flags); } #endif /* CONFIG_SSB_BLOCKIO */ /* Not "static", as it's used in main.c */ const struct ssb_bus_ops ssb_pcmcia_ops = { .read8 = ssb_pcmcia_read8, .read16 = ssb_pcmcia_read16, .read32 = ssb_pcmcia_read32, .write8 = ssb_pcmcia_write8, .write16 = ssb_pcmcia_write16, .write32 = ssb_pcmcia_write32, #ifdef CONFIG_SSB_BLOCKIO .block_read = ssb_pcmcia_block_read, .block_write = ssb_pcmcia_block_write, #endif }; static int ssb_pcmcia_sprom_command(struct ssb_bus *bus, u8 command) { unsigned int i; int err; u8 value; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROMCTL, command); if (err) return err; for (i = 0; i < 1000; i++) { err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROMCTL, &value); if (err) return err; if (value & SSB_PCMCIA_SPROMCTL_DONE) return 0; udelay(10); } return -ETIMEDOUT; } /* offset is the 16bit word offset */ static int ssb_pcmcia_sprom_read(struct ssb_bus *bus, u16 offset, u16 *value) { int err; u8 lo, hi; offset *= 2; /* Make byte offset */ err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRLO, (offset & 0x00FF)); if (err) return err; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRHI, (offset & 0xFF00) >> 8); if (err) return err; err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_READ); if (err) return err; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROM_DATALO, &lo); if (err) return err; err = ssb_pcmcia_cfg_read(bus, SSB_PCMCIA_SPROM_DATAHI, &hi); if (err) return err; *value = (lo | (((u16)hi) << 8)); return 0; } /* offset is the 16bit word offset */ static int ssb_pcmcia_sprom_write(struct ssb_bus *bus, u16 offset, u16 value) { int err; offset *= 2; /* Make byte offset */ err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRLO, (offset & 0x00FF)); if (err) return err; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_ADDRHI, (offset & 0xFF00) >> 8); if (err) return err; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_DATALO, (value & 0x00FF)); if (err) return err; err = ssb_pcmcia_cfg_write(bus, SSB_PCMCIA_SPROM_DATAHI, (value & 0xFF00) >> 8); if (err) return err; err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITE); if (err) return err; msleep(20); return 0; } /* Read the SPROM image. bufsize is in 16bit words. */ static int ssb_pcmcia_sprom_read_all(struct ssb_bus *bus, u16 *sprom) { int err, i; for (i = 0; i < SSB_PCMCIA_SPROM_SIZE; i++) { err = ssb_pcmcia_sprom_read(bus, i, &sprom[i]); if (err) return err; } return 0; } /* Write the SPROM image. size is in 16bit words. */ static int ssb_pcmcia_sprom_write_all(struct ssb_bus *bus, const u16 *sprom) { int i, err; bool failed = 0; size_t size = SSB_PCMCIA_SPROM_SIZE; ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! " "Please stand by...\n"); err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITEEN); if (err) { ssb_printk(KERN_NOTICE PFX "Could not enable SPROM write access.\n"); return -EBUSY; } ssb_printk(KERN_NOTICE PFX "[ 0%%"); msleep(500); for (i = 0; i < size; i++) { if (i == size / 4) ssb_printk("25%%"); else if (i == size / 2) ssb_printk("50%%"); else if (i == (size * 3) / 4) ssb_printk("75%%"); else if (i % 2) ssb_printk("."); err = ssb_pcmcia_sprom_write(bus, i, sprom[i]); if (err) { ssb_printk(KERN_NOTICE PFX "Failed to write to SPROM.\n"); failed = 1; break; } } err = ssb_pcmcia_sprom_command(bus, SSB_PCMCIA_SPROMCTL_WRITEDIS); if (err) { ssb_printk(KERN_NOTICE PFX "Could not disable SPROM write access.\n"); failed = 1; } msleep(500); if (!failed) { ssb_printk("100%% ]\n"); ssb_printk(KERN_NOTICE PFX "SPROM written.\n"); } return failed ? -EBUSY : 0; } static int ssb_pcmcia_sprom_check_crc(const u16 *sprom, size_t size) { //TODO return 0; } #define GOTO_ERROR_ON(condition, description) do { \ if (unlikely(condition)) { \ error_description = description; \ goto error; \ } \ } while (0) int ssb_pcmcia_get_invariants(struct ssb_bus *bus, struct ssb_init_invariants *iv) { tuple_t tuple; int res; unsigned char buf[32]; struct ssb_sprom *sprom = &iv->sprom; struct ssb_boardinfo *bi = &iv->boardinfo; const char *error_description; memset(sprom, 0xFF, sizeof(*sprom)); sprom->revision = 1; sprom->boardflags_lo = 0; sprom->boardflags_hi = 0; /* First fetch the MAC address. */ memset(&tuple, 0, sizeof(tuple)); tuple.DesiredTuple = CISTPL_FUNCE; tuple.TupleData = buf; tuple.TupleDataMax = sizeof(buf); res = pcmcia_get_first_tuple(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "MAC first tpl"); res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "MAC first tpl data"); while (1) { GOTO_ERROR_ON(tuple.TupleDataLen < 1, "MAC tpl < 1"); if (tuple.TupleData[0] == CISTPL_FUNCE_LAN_NODE_ID) break; res = pcmcia_get_next_tuple(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "MAC next tpl"); res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "MAC next tpl data"); } GOTO_ERROR_ON(tuple.TupleDataLen != ETH_ALEN + 2, "MAC tpl size"); memcpy(sprom->il0mac, &tuple.TupleData[2], ETH_ALEN); /* Fetch the vendor specific tuples. */ memset(&tuple, 0, sizeof(tuple)); tuple.DesiredTuple = SSB_PCMCIA_CIS; tuple.TupleData = buf; tuple.TupleDataMax = sizeof(buf); res = pcmcia_get_first_tuple(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "VEN first tpl"); res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "VEN first tpl data"); while (1) { GOTO_ERROR_ON(tuple.TupleDataLen < 1, "VEN tpl < 1"); switch (tuple.TupleData[0]) { case SSB_PCMCIA_CIS_ID: GOTO_ERROR_ON((tuple.TupleDataLen != 5) && (tuple.TupleDataLen != 7), "id tpl size"); bi->vendor = tuple.TupleData[1] | ((u16)tuple.TupleData[2] << 8); break; case SSB_PCMCIA_CIS_BOARDREV: GOTO_ERROR_ON(tuple.TupleDataLen != 2, "boardrev tpl size"); sprom->board_rev = tuple.TupleData[1]; break; case SSB_PCMCIA_CIS_PA: GOTO_ERROR_ON((tuple.TupleDataLen != 9) && (tuple.TupleDataLen != 10), "pa tpl size"); sprom->pa0b0 = tuple.TupleData[1] | ((u16)tuple.TupleData[2] << 8); sprom->pa0b1 = tuple.TupleData[3] | ((u16)tuple.TupleData[4] << 8); sprom->pa0b2 = tuple.TupleData[5] | ((u16)tuple.TupleData[6] << 8); sprom->itssi_a = tuple.TupleData[7]; sprom->itssi_bg = tuple.TupleData[7]; sprom->maxpwr_a = tuple.TupleData[8]; sprom->maxpwr_bg = tuple.TupleData[8]; break; case SSB_PCMCIA_CIS_OEMNAME: /* We ignore this. */ break; case SSB_PCMCIA_CIS_CCODE: GOTO_ERROR_ON(tuple.TupleDataLen != 2, "ccode tpl size"); sprom->country_code = tuple.TupleData[1]; break; case SSB_PCMCIA_CIS_ANTENNA: GOTO_ERROR_ON(tuple.TupleDataLen != 2, "ant tpl size"); sprom->ant_available_a = tuple.TupleData[1]; sprom->ant_available_bg = tuple.TupleData[1]; break; case SSB_PCMCIA_CIS_ANTGAIN: GOTO_ERROR_ON(tuple.TupleDataLen != 2, "antg tpl size"); sprom->antenna_gain.ghz24.a0 = tuple.TupleData[1]; sprom->antenna_gain.ghz24.a1 = tuple.TupleData[1]; sprom->antenna_gain.ghz24.a2 = tuple.TupleData[1]; sprom->antenna_gain.ghz24.a3 = tuple.TupleData[1]; sprom->antenna_gain.ghz5.a0 = tuple.TupleData[1]; sprom->antenna_gain.ghz5.a1 = tuple.TupleData[1]; sprom->antenna_gain.ghz5.a2 = tuple.TupleData[1]; sprom->antenna_gain.ghz5.a3 = tuple.TupleData[1]; break; case SSB_PCMCIA_CIS_BFLAGS: GOTO_ERROR_ON((tuple.TupleDataLen != 3) && (tuple.TupleDataLen != 5), "bfl tpl size"); sprom->boardflags_lo = tuple.TupleData[1] | ((u16)tuple.TupleData[2] << 8); break; case SSB_PCMCIA_CIS_LEDS: GOTO_ERROR_ON(tuple.TupleDataLen != 5, "leds tpl size"); sprom->gpio0 = tuple.TupleData[1]; sprom->gpio1 = tuple.TupleData[2]; sprom->gpio2 = tuple.TupleData[3]; sprom->gpio3 = tuple.TupleData[4]; break; } res = pcmcia_get_next_tuple(bus->host_pcmcia, &tuple); if (res == -ENOSPC) break; GOTO_ERROR_ON(res != 0, "VEN next tpl"); res = pcmcia_get_tuple_data(bus->host_pcmcia, &tuple); GOTO_ERROR_ON(res != 0, "VEN next tpl data"); } return 0; error: ssb_printk(KERN_ERR PFX "PCMCIA: Failed to fetch device invariants: %s\n", error_description); return -ENODEV; } static ssize_t ssb_pcmcia_attr_sprom_show(struct device *pcmciadev, struct device_attribute *attr, char *buf) { struct pcmcia_device *pdev = container_of(pcmciadev, struct pcmcia_device, dev); struct ssb_bus *bus; bus = ssb_pcmcia_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_show(bus, buf, ssb_pcmcia_sprom_read_all); } static ssize_t ssb_pcmcia_attr_sprom_store(struct device *pcmciadev, struct device_attribute *attr, const char *buf, size_t count) { struct pcmcia_device *pdev = container_of(pcmciadev, struct pcmcia_device, dev); struct ssb_bus *bus; bus = ssb_pcmcia_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_store(bus, buf, count, ssb_pcmcia_sprom_check_crc, ssb_pcmcia_sprom_write_all); } static DEVICE_ATTR(ssb_sprom, 0600, ssb_pcmcia_attr_sprom_show, ssb_pcmcia_attr_sprom_store); static int ssb_pcmcia_cor_setup(struct ssb_bus *bus, u8 cor) { u8 val; int err; err = ssb_pcmcia_cfg_read(bus, cor, &val); if (err) return err; val &= ~COR_SOFT_RESET; val |= COR_FUNC_ENA | COR_IREQ_ENA | COR_LEVEL_REQ; err = ssb_pcmcia_cfg_write(bus, cor, val); if (err) return err; msleep(40); return 0; } /* Initialize the PCMCIA hardware. This is called on Init and Resume. */ int ssb_pcmcia_hardware_setup(struct ssb_bus *bus) { int err; if (bus->bustype != SSB_BUSTYPE_PCMCIA) return 0; /* Switch segment to a known state and sync * bus->mapped_pcmcia_seg with hardware state. */ ssb_pcmcia_switch_segment(bus, 0); /* Init the COR register. */ err = ssb_pcmcia_cor_setup(bus, CISREG_COR); if (err) return err; /* Some cards also need this register to get poked. */ err = ssb_pcmcia_cor_setup(bus, CISREG_COR + 0x80); if (err) return err; return 0; } void ssb_pcmcia_exit(struct ssb_bus *bus) { if (bus->bustype != SSB_BUSTYPE_PCMCIA) return; device_remove_file(&bus->host_pcmcia->dev, &dev_attr_ssb_sprom); } int ssb_pcmcia_init(struct ssb_bus *bus) { int err; if (bus->bustype != SSB_BUSTYPE_PCMCIA) return 0; err = ssb_pcmcia_hardware_setup(bus); if (err) goto error; bus->sprom_size = SSB_PCMCIA_SPROM_SIZE; mutex_init(&bus->sprom_mutex); err = device_create_file(&bus->host_pcmcia->dev, &dev_attr_ssb_sprom); if (err) goto error; return 0; error: ssb_printk(KERN_ERR PFX "Failed to initialize PCMCIA host device\n"); return err; }