/******************************************************************************* * Filename: target_core_device.c (based on iscsi_target_device.c) * * This file contains the iSCSI Virtual Device and Disk Transport * agnostic related functions. * * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc. * Copyright (c) 2005-2006 SBE, Inc. All Rights Reserved. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "target_core_alua.h" #include "target_core_hba.h" #include "target_core_pr.h" #include "target_core_ua.h" static void se_dev_start(struct se_device *dev); static void se_dev_stop(struct se_device *dev); int transport_get_lun_for_cmd( struct se_cmd *se_cmd, unsigned char *cdb, u32 unpacked_lun) { struct se_dev_entry *deve; struct se_lun *se_lun = NULL; struct se_session *se_sess = SE_SESS(se_cmd); unsigned long flags; int read_only = 0; spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); deve = se_cmd->se_deve = &SE_NODE_ACL(se_sess)->device_list[unpacked_lun]; if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) { if (se_cmd) { deve->total_cmds++; deve->total_bytes += se_cmd->data_length; if (se_cmd->data_direction == DMA_TO_DEVICE) { if (deve->lun_flags & TRANSPORT_LUNFLAGS_READ_ONLY) { read_only = 1; goto out; } deve->write_bytes += se_cmd->data_length; } else if (se_cmd->data_direction == DMA_FROM_DEVICE) { deve->read_bytes += se_cmd->data_length; } } deve->deve_cmds++; se_lun = se_cmd->se_lun = deve->se_lun; se_cmd->pr_res_key = deve->pr_res_key; se_cmd->orig_fe_lun = unpacked_lun; se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev; se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD; } out: spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); if (!se_lun) { if (read_only) { se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; printk("TARGET_CORE[%s]: Detected WRITE_PROTECTED LUN" " Access for 0x%08x\n", CMD_TFO(se_cmd)->get_fabric_name(), unpacked_lun); return -1; } else { /* * Use the se_portal_group->tpg_virt_lun0 to allow for * REPORT_LUNS, et al to be returned when no active * MappedLUN=0 exists for this Initiator Port. */ if (unpacked_lun != 0) { se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN; se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; printk("TARGET_CORE[%s]: Detected NON_EXISTENT_LUN" " Access for 0x%08x\n", CMD_TFO(se_cmd)->get_fabric_name(), unpacked_lun); return -1; } /* * Force WRITE PROTECT for virtual LUN 0 */ if ((se_cmd->data_direction != DMA_FROM_DEVICE) && (se_cmd->data_direction != DMA_NONE)) { se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; return -1; } #if 0 printk("TARGET_CORE[%s]: Using virtual LUN0! :-)\n", CMD_TFO(se_cmd)->get_fabric_name()); #endif se_lun = se_cmd->se_lun = &se_sess->se_tpg->tpg_virt_lun0; se_cmd->orig_fe_lun = 0; se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev; se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD; } } /* * Determine if the struct se_lun is online. */ /* #warning FIXME: Check for LUN_RESET + UNIT Attention */ if (se_dev_check_online(se_lun->lun_se_dev) != 0) { se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN; se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; return -1; } { struct se_device *dev = se_lun->lun_se_dev; spin_lock(&dev->stats_lock); dev->num_cmds++; if (se_cmd->data_direction == DMA_TO_DEVICE) dev->write_bytes += se_cmd->data_length; else if (se_cmd->data_direction == DMA_FROM_DEVICE) dev->read_bytes += se_cmd->data_length; spin_unlock(&dev->stats_lock); } /* * Add the iscsi_cmd_t to the struct se_lun's cmd list. This list is used * for tracking state of struct se_cmds during LUN shutdown events. */ spin_lock_irqsave(&se_lun->lun_cmd_lock, flags); list_add_tail(&se_cmd->se_lun_list, &se_lun->lun_cmd_list); atomic_set(&T_TASK(se_cmd)->transport_lun_active, 1); #if 0 printk(KERN_INFO "Adding ITT: 0x%08x to LUN LIST[%d]\n", CMD_TFO(se_cmd)->get_task_tag(se_cmd), se_lun->unpacked_lun); #endif spin_unlock_irqrestore(&se_lun->lun_cmd_lock, flags); return 0; } EXPORT_SYMBOL(transport_get_lun_for_cmd); int transport_get_lun_for_tmr( struct se_cmd *se_cmd, u32 unpacked_lun) { struct se_device *dev = NULL; struct se_dev_entry *deve; struct se_lun *se_lun = NULL; struct se_session *se_sess = SE_SESS(se_cmd); struct se_tmr_req *se_tmr = se_cmd->se_tmr_req; spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); deve = se_cmd->se_deve = &SE_NODE_ACL(se_sess)->device_list[unpacked_lun]; if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) { se_lun = se_cmd->se_lun = se_tmr->tmr_lun = deve->se_lun; dev = se_tmr->tmr_dev = se_lun->lun_se_dev; se_cmd->pr_res_key = deve->pr_res_key; se_cmd->orig_fe_lun = unpacked_lun; se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev; /* se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD; */ } spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); if (!se_lun) { printk(KERN_INFO "TARGET_CORE[%s]: Detected NON_EXISTENT_LUN" " Access for 0x%08x\n", CMD_TFO(se_cmd)->get_fabric_name(), unpacked_lun); se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; return -1; } /* * Determine if the struct se_lun is online. */ /* #warning FIXME: Check for LUN_RESET + UNIT Attention */ if (se_dev_check_online(se_lun->lun_se_dev) != 0) { se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; return -1; } spin_lock(&dev->se_tmr_lock); list_add_tail(&se_tmr->tmr_list, &dev->dev_tmr_list); spin_unlock(&dev->se_tmr_lock); return 0; } EXPORT_SYMBOL(transport_get_lun_for_tmr); /* * This function is called from core_scsi3_emulate_pro_register_and_move() * and core_scsi3_decode_spec_i_port(), and will increment &deve->pr_ref_count * when a matching rtpi is found. */ struct se_dev_entry *core_get_se_deve_from_rtpi( struct se_node_acl *nacl, u16 rtpi) { struct se_dev_entry *deve; struct se_lun *lun; struct se_port *port; struct se_portal_group *tpg = nacl->se_tpg; u32 i; spin_lock_irq(&nacl->device_list_lock); for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) { deve = &nacl->device_list[i]; if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS)) continue; lun = deve->se_lun; if (!(lun)) { printk(KERN_ERR "%s device entries device pointer is" " NULL, but Initiator has access.\n", TPG_TFO(tpg)->get_fabric_name()); continue; } port = lun->lun_sep; if (!(port)) { printk(KERN_ERR "%s device entries device pointer is" " NULL, but Initiator has access.\n", TPG_TFO(tpg)->get_fabric_name()); continue; } if (port->sep_rtpi != rtpi) continue; atomic_inc(&deve->pr_ref_count); smp_mb__after_atomic_inc(); spin_unlock_irq(&nacl->device_list_lock); return deve; } spin_unlock_irq(&nacl->device_list_lock); return NULL; } int core_free_device_list_for_node( struct se_node_acl *nacl, struct se_portal_group *tpg) { struct se_dev_entry *deve; struct se_lun *lun; u32 i; if (!nacl->device_list) return 0; spin_lock_irq(&nacl->device_list_lock); for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) { deve = &nacl->device_list[i]; if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS)) continue; if (!deve->se_lun) { printk(KERN_ERR "%s device entries device pointer is" " NULL, but Initiator has access.\n", TPG_TFO(tpg)->get_fabric_name()); continue; } lun = deve->se_lun; spin_unlock_irq(&nacl->device_list_lock); core_update_device_list_for_node(lun, NULL, deve->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0); spin_lock_irq(&nacl->device_list_lock); } spin_unlock_irq(&nacl->device_list_lock); kfree(nacl->device_list); nacl->device_list = NULL; return 0; } void core_dec_lacl_count(struct se_node_acl *se_nacl, struct se_cmd *se_cmd) { struct se_dev_entry *deve; spin_lock_irq(&se_nacl->device_list_lock); deve = &se_nacl->device_list[se_cmd->orig_fe_lun]; deve->deve_cmds--; spin_unlock_irq(&se_nacl->device_list_lock); return; } void core_update_device_list_access( u32 mapped_lun, u32 lun_access, struct se_node_acl *nacl) { struct se_dev_entry *deve; spin_lock_irq(&nacl->device_list_lock); deve = &nacl->device_list[mapped_lun]; if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) { deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY; deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE; } else { deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE; deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY; } spin_unlock_irq(&nacl->device_list_lock); return; } /* core_update_device_list_for_node(): * * */ int core_update_device_list_for_node( struct se_lun *lun, struct se_lun_acl *lun_acl, u32 mapped_lun, u32 lun_access, struct se_node_acl *nacl, struct se_portal_group *tpg, int enable) { struct se_port *port = lun->lun_sep; struct se_dev_entry *deve = &nacl->device_list[mapped_lun]; int trans = 0; /* * If the MappedLUN entry is being disabled, the entry in * port->sep_alua_list must be removed now before clearing the * struct se_dev_entry pointers below as logic in * core_alua_do_transition_tg_pt() depends on these being present. */ if (!(enable)) { /* * deve->se_lun_acl will be NULL for demo-mode created LUNs * that have not been explictly concerted to MappedLUNs -> * struct se_lun_acl, but we remove deve->alua_port_list from * port->sep_alua_list. This also means that active UAs and * NodeACL context specific PR metadata for demo-mode * MappedLUN *deve will be released below.. */ spin_lock_bh(&port->sep_alua_lock); list_del(&deve->alua_port_list); spin_unlock_bh(&port->sep_alua_lock); } spin_lock_irq(&nacl->device_list_lock); if (enable) { /* * Check if the call is handling demo mode -> explict LUN ACL * transition. This transition must be for the same struct se_lun * + mapped_lun that was setup in demo mode.. */ if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) { if (deve->se_lun_acl != NULL) { printk(KERN_ERR "struct se_dev_entry->se_lun_acl" " already set for demo mode -> explict" " LUN ACL transition\n"); spin_unlock_irq(&nacl->device_list_lock); return -1; } if (deve->se_lun != lun) { printk(KERN_ERR "struct se_dev_entry->se_lun does" " match passed struct se_lun for demo mode" " -> explict LUN ACL transition\n"); spin_unlock_irq(&nacl->device_list_lock); return -1; } deve->se_lun_acl = lun_acl; trans = 1; } else { deve->se_lun = lun; deve->se_lun_acl = lun_acl; deve->mapped_lun = mapped_lun; deve->lun_flags |= TRANSPORT_LUNFLAGS_INITIATOR_ACCESS; } if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) { deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY; deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE; } else { deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE; deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY; } if (trans) { spin_unlock_irq(&nacl->device_list_lock); return 0; } deve->creation_time = get_jiffies_64(); deve->attach_count++; spin_unlock_irq(&nacl->device_list_lock); spin_lock_bh(&port->sep_alua_lock); list_add_tail(&deve->alua_port_list, &port->sep_alua_list); spin_unlock_bh(&port->sep_alua_lock); return 0; } /* * Wait for any in process SPEC_I_PT=1 or REGISTER_AND_MOVE * PR operation to complete. */ spin_unlock_irq(&nacl->device_list_lock); while (atomic_read(&deve->pr_ref_count) != 0) cpu_relax(); spin_lock_irq(&nacl->device_list_lock); /* * Disable struct se_dev_entry LUN ACL mapping */ core_scsi3_ua_release_all(deve); deve->se_lun = NULL; deve->se_lun_acl = NULL; deve->lun_flags = 0; deve->creation_time = 0; deve->attach_count--; spin_unlock_irq(&nacl->device_list_lock); core_scsi3_free_pr_reg_from_nacl(lun->lun_se_dev, nacl); return 0; } /* core_clear_lun_from_tpg(): * * */ void core_clear_lun_from_tpg(struct se_lun *lun, struct se_portal_group *tpg) { struct se_node_acl *nacl; struct se_dev_entry *deve; u32 i; spin_lock_bh(&tpg->acl_node_lock); list_for_each_entry(nacl, &tpg->acl_node_list, acl_list) { spin_unlock_bh(&tpg->acl_node_lock); spin_lock_irq(&nacl->device_list_lock); for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) { deve = &nacl->device_list[i]; if (lun != deve->se_lun) continue; spin_unlock_irq(&nacl->device_list_lock); core_update_device_list_for_node(lun, NULL, deve->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0); spin_lock_irq(&nacl->device_list_lock); } spin_unlock_irq(&nacl->device_list_lock); spin_lock_bh(&tpg->acl_node_lock); } spin_unlock_bh(&tpg->acl_node_lock); return; } static struct se_port *core_alloc_port(struct se_device *dev) { struct se_port *port, *port_tmp; port = kzalloc(sizeof(struct se_port), GFP_KERNEL); if (!(port)) { printk(KERN_ERR "Unable to allocate struct se_port\n"); return NULL; } INIT_LIST_HEAD(&port->sep_alua_list); INIT_LIST_HEAD(&port->sep_list); atomic_set(&port->sep_tg_pt_secondary_offline, 0); spin_lock_init(&port->sep_alua_lock); mutex_init(&port->sep_tg_pt_md_mutex); spin_lock(&dev->se_port_lock); if (dev->dev_port_count == 0x0000ffff) { printk(KERN_WARNING "Reached dev->dev_port_count ==" " 0x0000ffff\n"); spin_unlock(&dev->se_port_lock); return NULL; } again: /* * Allocate the next RELATIVE TARGET PORT IDENTIFER for this struct se_device * Here is the table from spc4r17 section 7.7.3.8. * * Table 473 -- RELATIVE TARGET PORT IDENTIFIER field * * Code Description * 0h Reserved * 1h Relative port 1, historically known as port A * 2h Relative port 2, historically known as port B * 3h to FFFFh Relative port 3 through 65 535 */ port->sep_rtpi = dev->dev_rpti_counter++; if (!(port->sep_rtpi)) goto again; list_for_each_entry(port_tmp, &dev->dev_sep_list, sep_list) { /* * Make sure RELATIVE TARGET PORT IDENTIFER is unique * for 16-bit wrap.. */ if (port->sep_rtpi == port_tmp->sep_rtpi) goto again; } spin_unlock(&dev->se_port_lock); return port; } static void core_export_port( struct se_device *dev, struct se_portal_group *tpg, struct se_port *port, struct se_lun *lun) { struct se_subsystem_dev *su_dev = SU_DEV(dev); struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem = NULL; spin_lock(&dev->se_port_lock); spin_lock(&lun->lun_sep_lock); port->sep_tpg = tpg; port->sep_lun = lun; lun->lun_sep = port; spin_unlock(&lun->lun_sep_lock); list_add_tail(&port->sep_list, &dev->dev_sep_list); spin_unlock(&dev->se_port_lock); if (T10_ALUA(su_dev)->alua_type == SPC3_ALUA_EMULATED) { tg_pt_gp_mem = core_alua_allocate_tg_pt_gp_mem(port); if (IS_ERR(tg_pt_gp_mem) || !tg_pt_gp_mem) { printk(KERN_ERR "Unable to allocate t10_alua_tg_pt" "_gp_member_t\n"); return; } spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock); __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem, T10_ALUA(su_dev)->default_tg_pt_gp); spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock); printk(KERN_INFO "%s/%s: Adding to default ALUA Target Port" " Group: alua/default_tg_pt_gp\n", TRANSPORT(dev)->name, TPG_TFO(tpg)->get_fabric_name()); } dev->dev_port_count++; port->sep_index = port->sep_rtpi; /* RELATIVE TARGET PORT IDENTIFER */ } /* * Called with struct se_device->se_port_lock spinlock held. */ static void core_release_port(struct se_device *dev, struct se_port *port) { /* * Wait for any port reference for PR ALL_TG_PT=1 operation * to complete in __core_scsi3_alloc_registration() */ spin_unlock(&dev->se_port_lock); if (atomic_read(&port->sep_tg_pt_ref_cnt)) cpu_relax(); spin_lock(&dev->se_port_lock); core_alua_free_tg_pt_gp_mem(port); list_del(&port->sep_list); dev->dev_port_count--; kfree(port); return; } int core_dev_export( struct se_device *dev, struct se_portal_group *tpg, struct se_lun *lun) { struct se_port *port; port = core_alloc_port(dev); if (!(port)) return -1; lun->lun_se_dev = dev; se_dev_start(dev); atomic_inc(&dev->dev_export_obj.obj_access_count); core_export_port(dev, tpg, port, lun); return 0; } void core_dev_unexport( struct se_device *dev, struct se_portal_group *tpg, struct se_lun *lun) { struct se_port *port = lun->lun_sep; spin_lock(&lun->lun_sep_lock); if (lun->lun_se_dev == NULL) { spin_unlock(&lun->lun_sep_lock); return; } spin_unlock(&lun->lun_sep_lock); spin_lock(&dev->se_port_lock); atomic_dec(&dev->dev_export_obj.obj_access_count); core_release_port(dev, port); spin_unlock(&dev->se_port_lock); se_dev_stop(dev); lun->lun_se_dev = NULL; } int transport_core_report_lun_response(struct se_cmd *se_cmd) { struct se_dev_entry *deve; struct se_lun *se_lun; struct se_session *se_sess = SE_SESS(se_cmd); struct se_task *se_task; unsigned char *buf = (unsigned char *)T_TASK(se_cmd)->t_task_buf; u32 cdb_offset = 0, lun_count = 0, offset = 8; u64 i, lun; list_for_each_entry(se_task, &T_TASK(se_cmd)->t_task_list, t_list) break; if (!(se_task)) { printk(KERN_ERR "Unable to locate struct se_task for struct se_cmd\n"); return PYX_TRANSPORT_LU_COMM_FAILURE; } /* * If no struct se_session pointer is present, this struct se_cmd is * coming via a target_core_mod PASSTHROUGH op, and not through * a $FABRIC_MOD. In that case, report LUN=0 only. */ if (!(se_sess)) { lun = 0; buf[offset++] = ((lun >> 56) & 0xff); buf[offset++] = ((lun >> 48) & 0xff); buf[offset++] = ((lun >> 40) & 0xff); buf[offset++] = ((lun >> 32) & 0xff); buf[offset++] = ((lun >> 24) & 0xff); buf[offset++] = ((lun >> 16) & 0xff); buf[offset++] = ((lun >> 8) & 0xff); buf[offset++] = (lun & 0xff); lun_count = 1; goto done; } spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) { deve = &SE_NODE_ACL(se_sess)->device_list[i]; if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS)) continue; se_lun = deve->se_lun; /* * We determine the correct LUN LIST LENGTH even once we * have reached the initial allocation length. * See SPC2-R20 7.19. */ lun_count++; if ((cdb_offset + 8) >= se_cmd->data_length) continue; lun = cpu_to_be64(CMD_TFO(se_cmd)->pack_lun(deve->mapped_lun)); buf[offset++] = ((lun >> 56) & 0xff); buf[offset++] = ((lun >> 48) & 0xff); buf[offset++] = ((lun >> 40) & 0xff); buf[offset++] = ((lun >> 32) & 0xff); buf[offset++] = ((lun >> 24) & 0xff); buf[offset++] = ((lun >> 16) & 0xff); buf[offset++] = ((lun >> 8) & 0xff); buf[offset++] = (lun & 0xff); cdb_offset += 8; } spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock); /* * See SPC3 r07, page 159. */ done: lun_count *= 8; buf[0] = ((lun_count >> 24) & 0xff); buf[1] = ((lun_count >> 16) & 0xff); buf[2] = ((lun_count >> 8) & 0xff); buf[3] = (lun_count & 0xff); return PYX_TRANSPORT_SENT_TO_TRANSPORT; } /* se_release_device_for_hba(): * * */ void se_release_device_for_hba(struct se_device *dev) { struct se_hba *hba = dev->se_hba; if ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) || (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) || (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) || (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_ACTIVATED) || (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_DEACTIVATED)) se_dev_stop(dev); if (dev->dev_ptr) { kthread_stop(dev->process_thread); if (dev->transport->free_device) dev->transport->free_device(dev->dev_ptr); } spin_lock(&hba->device_lock); list_del(&dev->dev_list); hba->dev_count--; spin_unlock(&hba->device_lock); core_scsi3_free_all_registrations(dev); se_release_vpd_for_dev(dev); kfree(dev->dev_status_queue_obj); kfree(dev->dev_queue_obj); kfree(dev); return; } void se_release_vpd_for_dev(struct se_device *dev) { struct t10_vpd *vpd, *vpd_tmp; spin_lock(&DEV_T10_WWN(dev)->t10_vpd_lock); list_for_each_entry_safe(vpd, vpd_tmp, &DEV_T10_WWN(dev)->t10_vpd_list, vpd_list) { list_del(&vpd->vpd_list); kfree(vpd); } spin_unlock(&DEV_T10_WWN(dev)->t10_vpd_lock); return; } /* * Called with struct se_hba->device_lock held. */ void se_clear_dev_ports(struct se_device *dev) { struct se_hba *hba = dev->se_hba; struct se_lun *lun; struct se_portal_group *tpg; struct se_port *sep, *sep_tmp; spin_lock(&dev->se_port_lock); list_for_each_entry_safe(sep, sep_tmp, &dev->dev_sep_list, sep_list) { spin_unlock(&dev->se_port_lock); spin_unlock(&hba->device_lock); lun = sep->sep_lun; tpg = sep->sep_tpg; spin_lock(&lun->lun_sep_lock); if (lun->lun_se_dev == NULL) { spin_unlock(&lun->lun_sep_lock); continue; } spin_unlock(&lun->lun_sep_lock); core_dev_del_lun(tpg, lun->unpacked_lun); spin_lock(&hba->device_lock); spin_lock(&dev->se_port_lock); } spin_unlock(&dev->se_port_lock); return; } /* se_free_virtual_device(): * * Used for IBLOCK, RAMDISK, and FILEIO Transport Drivers. */ int se_free_virtual_device(struct se_device *dev, struct se_hba *hba) { spin_lock(&hba->device_lock); se_clear_dev_ports(dev); spin_unlock(&hba->device_lock); core_alua_free_lu_gp_mem(dev); se_release_device_for_hba(dev); return 0; } static void se_dev_start(struct se_device *dev) { struct se_hba *hba = dev->se_hba; spin_lock(&hba->device_lock); atomic_inc(&dev->dev_obj.obj_access_count); if (atomic_read(&dev->dev_obj.obj_access_count) == 1) { if (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) { dev->dev_status &= ~TRANSPORT_DEVICE_DEACTIVATED; dev->dev_status |= TRANSPORT_DEVICE_ACTIVATED; } else if (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_DEACTIVATED) { dev->dev_status &= ~TRANSPORT_DEVICE_OFFLINE_DEACTIVATED; dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_ACTIVATED; } } spin_unlock(&hba->device_lock); } static void se_dev_stop(struct se_device *dev) { struct se_hba *hba = dev->se_hba; spin_lock(&hba->device_lock); atomic_dec(&dev->dev_obj.obj_access_count); if (atomic_read(&dev->dev_obj.obj_access_count) == 0) { if (dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) { dev->dev_status &= ~TRANSPORT_DEVICE_ACTIVATED; dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; } else if (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_ACTIVATED) { dev->dev_status &= ~TRANSPORT_DEVICE_OFFLINE_ACTIVATED; dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_DEACTIVATED; } } spin_unlock(&hba->device_lock); } int se_dev_check_online(struct se_device *dev) { int ret; spin_lock_irq(&dev->dev_status_lock); ret = ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) || (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED)) ? 0 : 1; spin_unlock_irq(&dev->dev_status_lock); return ret; } int se_dev_check_shutdown(struct se_device *dev) { int ret; spin_lock_irq(&dev->dev_status_lock); ret = (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN); spin_unlock_irq(&dev->dev_status_lock); return ret; } void se_dev_set_default_attribs( struct se_device *dev, struct se_dev_limits *dev_limits) { struct queue_limits *limits = &dev_limits->limits; DEV_ATTRIB(dev)->emulate_dpo = DA_EMULATE_DPO; DEV_ATTRIB(dev)->emulate_fua_write = DA_EMULATE_FUA_WRITE; DEV_ATTRIB(dev)->emulate_fua_read = DA_EMULATE_FUA_READ; DEV_ATTRIB(dev)->emulate_write_cache = DA_EMULATE_WRITE_CACHE; DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = DA_EMULATE_UA_INTLLCK_CTRL; DEV_ATTRIB(dev)->emulate_tas = DA_EMULATE_TAS; DEV_ATTRIB(dev)->emulate_tpu = DA_EMULATE_TPU; DEV_ATTRIB(dev)->emulate_tpws = DA_EMULATE_TPWS; DEV_ATTRIB(dev)->emulate_reservations = DA_EMULATE_RESERVATIONS; DEV_ATTRIB(dev)->emulate_alua = DA_EMULATE_ALUA; DEV_ATTRIB(dev)->enforce_pr_isids = DA_ENFORCE_PR_ISIDS; /* * The TPU=1 and TPWS=1 settings will be set in TCM/IBLOCK * iblock_create_virtdevice() from struct queue_limits values * if blk_queue_discard()==1 */ DEV_ATTRIB(dev)->max_unmap_lba_count = DA_MAX_UNMAP_LBA_COUNT; DEV_ATTRIB(dev)->max_unmap_block_desc_count = DA_MAX_UNMAP_BLOCK_DESC_COUNT; DEV_ATTRIB(dev)->unmap_granularity = DA_UNMAP_GRANULARITY_DEFAULT; DEV_ATTRIB(dev)->unmap_granularity_alignment = DA_UNMAP_GRANULARITY_ALIGNMENT_DEFAULT; /* * block_size is based on subsystem plugin dependent requirements. */ DEV_ATTRIB(dev)->hw_block_size = limits->logical_block_size; DEV_ATTRIB(dev)->block_size = limits->logical_block_size; /* * max_sectors is based on subsystem plugin dependent requirements. */ DEV_ATTRIB(dev)->hw_max_sectors = limits->max_hw_sectors; DEV_ATTRIB(dev)->max_sectors = limits->max_sectors; /* * Set optimal_sectors from max_sectors, which can be lowered via * configfs. */ DEV_ATTRIB(dev)->optimal_sectors = limits->max_sectors; /* * queue_depth is based on subsystem plugin dependent requirements. */ DEV_ATTRIB(dev)->hw_queue_depth = dev_limits->hw_queue_depth; DEV_ATTRIB(dev)->queue_depth = dev_limits->queue_depth; } int se_dev_set_task_timeout(struct se_device *dev, u32 task_timeout) { if (task_timeout > DA_TASK_TIMEOUT_MAX) { printk(KERN_ERR "dev[%p]: Passed task_timeout: %u larger then" " DA_TASK_TIMEOUT_MAX\n", dev, task_timeout); return -1; } else { DEV_ATTRIB(dev)->task_timeout = task_timeout; printk(KERN_INFO "dev[%p]: Set SE Device task_timeout: %u\n", dev, task_timeout); } return 0; } int se_dev_set_max_unmap_lba_count( struct se_device *dev, u32 max_unmap_lba_count) { DEV_ATTRIB(dev)->max_unmap_lba_count = max_unmap_lba_count; printk(KERN_INFO "dev[%p]: Set max_unmap_lba_count: %u\n", dev, DEV_ATTRIB(dev)->max_unmap_lba_count); return 0; } int se_dev_set_max_unmap_block_desc_count( struct se_device *dev, u32 max_unmap_block_desc_count) { DEV_ATTRIB(dev)->max_unmap_block_desc_count = max_unmap_block_desc_count; printk(KERN_INFO "dev[%p]: Set max_unmap_block_desc_count: %u\n", dev, DEV_ATTRIB(dev)->max_unmap_block_desc_count); return 0; } int se_dev_set_unmap_granularity( struct se_device *dev, u32 unmap_granularity) { DEV_ATTRIB(dev)->unmap_granularity = unmap_granularity; printk(KERN_INFO "dev[%p]: Set unmap_granularity: %u\n", dev, DEV_ATTRIB(dev)->unmap_granularity); return 0; } int se_dev_set_unmap_granularity_alignment( struct se_device *dev, u32 unmap_granularity_alignment) { DEV_ATTRIB(dev)->unmap_granularity_alignment = unmap_granularity_alignment; printk(KERN_INFO "dev[%p]: Set unmap_granularity_alignment: %u\n", dev, DEV_ATTRIB(dev)->unmap_granularity_alignment); return 0; } int se_dev_set_emulate_dpo(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (TRANSPORT(dev)->dpo_emulated == NULL) { printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated is NULL\n"); return -1; } if (TRANSPORT(dev)->dpo_emulated(dev) == 0) { printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated not supported\n"); return -1; } DEV_ATTRIB(dev)->emulate_dpo = flag; printk(KERN_INFO "dev[%p]: SE Device Page Out (DPO) Emulation" " bit: %d\n", dev, DEV_ATTRIB(dev)->emulate_dpo); return 0; } int se_dev_set_emulate_fua_write(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (TRANSPORT(dev)->fua_write_emulated == NULL) { printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated is NULL\n"); return -1; } if (TRANSPORT(dev)->fua_write_emulated(dev) == 0) { printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated not supported\n"); return -1; } DEV_ATTRIB(dev)->emulate_fua_write = flag; printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access WRITEs: %d\n", dev, DEV_ATTRIB(dev)->emulate_fua_write); return 0; } int se_dev_set_emulate_fua_read(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (TRANSPORT(dev)->fua_read_emulated == NULL) { printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated is NULL\n"); return -1; } if (TRANSPORT(dev)->fua_read_emulated(dev) == 0) { printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated not supported\n"); return -1; } DEV_ATTRIB(dev)->emulate_fua_read = flag; printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access READs: %d\n", dev, DEV_ATTRIB(dev)->emulate_fua_read); return 0; } int se_dev_set_emulate_write_cache(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (TRANSPORT(dev)->write_cache_emulated == NULL) { printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated is NULL\n"); return -1; } if (TRANSPORT(dev)->write_cache_emulated(dev) == 0) { printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated not supported\n"); return -1; } DEV_ATTRIB(dev)->emulate_write_cache = flag; printk(KERN_INFO "dev[%p]: SE Device WRITE_CACHE_EMULATION flag: %d\n", dev, DEV_ATTRIB(dev)->emulate_write_cache); return 0; } int se_dev_set_emulate_ua_intlck_ctrl(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1) && (flag != 2)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device" " UA_INTRLCK_CTRL while dev_export_obj: %d count" " exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -1; } DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = flag; printk(KERN_INFO "dev[%p]: SE Device UA_INTRLCK_CTRL flag: %d\n", dev, DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl); return 0; } int se_dev_set_emulate_tas(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device TAS while" " dev_export_obj: %d count exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -1; } DEV_ATTRIB(dev)->emulate_tas = flag; printk(KERN_INFO "dev[%p]: SE Device TASK_ABORTED status bit: %s\n", dev, (DEV_ATTRIB(dev)->emulate_tas) ? "Enabled" : "Disabled"); return 0; } int se_dev_set_emulate_tpu(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } /* * We expect this value to be non-zero when generic Block Layer * Discard supported is detected iblock_create_virtdevice(). */ if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) { printk(KERN_ERR "Generic Block Discard not supported\n"); return -ENOSYS; } DEV_ATTRIB(dev)->emulate_tpu = flag; printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning UNMAP bit: %d\n", dev, flag); return 0; } int se_dev_set_emulate_tpws(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } /* * We expect this value to be non-zero when generic Block Layer * Discard supported is detected iblock_create_virtdevice(). */ if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) { printk(KERN_ERR "Generic Block Discard not supported\n"); return -ENOSYS; } DEV_ATTRIB(dev)->emulate_tpws = flag; printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning WRITE_SAME: %d\n", dev, flag); return 0; } int se_dev_set_enforce_pr_isids(struct se_device *dev, int flag) { if ((flag != 0) && (flag != 1)) { printk(KERN_ERR "Illegal value %d\n", flag); return -1; } DEV_ATTRIB(dev)->enforce_pr_isids = flag; printk(KERN_INFO "dev[%p]: SE Device enforce_pr_isids bit: %s\n", dev, (DEV_ATTRIB(dev)->enforce_pr_isids) ? "Enabled" : "Disabled"); return 0; } /* * Note, this can only be called on unexported SE Device Object. */ int se_dev_set_queue_depth(struct se_device *dev, u32 queue_depth) { u32 orig_queue_depth = dev->queue_depth; if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device TCQ while" " dev_export_obj: %d count exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -1; } if (!(queue_depth)) { printk(KERN_ERR "dev[%p]: Illegal ZERO value for queue" "_depth\n", dev); return -1; } if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) { printk(KERN_ERR "dev[%p]: Passed queue_depth: %u" " exceeds TCM/SE_Device TCQ: %u\n", dev, queue_depth, DEV_ATTRIB(dev)->hw_queue_depth); return -1; } } else { if (queue_depth > DEV_ATTRIB(dev)->queue_depth) { if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) { printk(KERN_ERR "dev[%p]: Passed queue_depth:" " %u exceeds TCM/SE_Device MAX" " TCQ: %u\n", dev, queue_depth, DEV_ATTRIB(dev)->hw_queue_depth); return -1; } } } DEV_ATTRIB(dev)->queue_depth = dev->queue_depth = queue_depth; if (queue_depth > orig_queue_depth) atomic_add(queue_depth - orig_queue_depth, &dev->depth_left); else if (queue_depth < orig_queue_depth) atomic_sub(orig_queue_depth - queue_depth, &dev->depth_left); printk(KERN_INFO "dev[%p]: SE Device TCQ Depth changed to: %u\n", dev, queue_depth); return 0; } int se_dev_set_max_sectors(struct se_device *dev, u32 max_sectors) { int force = 0; /* Force setting for VDEVS */ if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device" " max_sectors while dev_export_obj: %d count exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -1; } if (!(max_sectors)) { printk(KERN_ERR "dev[%p]: Illegal ZERO value for" " max_sectors\n", dev); return -1; } if (max_sectors < DA_STATUS_MAX_SECTORS_MIN) { printk(KERN_ERR "dev[%p]: Passed max_sectors: %u less than" " DA_STATUS_MAX_SECTORS_MIN: %u\n", dev, max_sectors, DA_STATUS_MAX_SECTORS_MIN); return -1; } if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { if (max_sectors > DEV_ATTRIB(dev)->hw_max_sectors) { printk(KERN_ERR "dev[%p]: Passed max_sectors: %u" " greater than TCM/SE_Device max_sectors:" " %u\n", dev, max_sectors, DEV_ATTRIB(dev)->hw_max_sectors); return -1; } } else { if (!(force) && (max_sectors > DEV_ATTRIB(dev)->hw_max_sectors)) { printk(KERN_ERR "dev[%p]: Passed max_sectors: %u" " greater than TCM/SE_Device max_sectors" ": %u, use force=1 to override.\n", dev, max_sectors, DEV_ATTRIB(dev)->hw_max_sectors); return -1; } if (max_sectors > DA_STATUS_MAX_SECTORS_MAX) { printk(KERN_ERR "dev[%p]: Passed max_sectors: %u" " greater than DA_STATUS_MAX_SECTORS_MAX:" " %u\n", dev, max_sectors, DA_STATUS_MAX_SECTORS_MAX); return -1; } } DEV_ATTRIB(dev)->max_sectors = max_sectors; printk("dev[%p]: SE Device max_sectors changed to %u\n", dev, max_sectors); return 0; } int se_dev_set_optimal_sectors(struct se_device *dev, u32 optimal_sectors) { if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device" " optimal_sectors while dev_export_obj: %d count exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -EINVAL; } if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { printk(KERN_ERR "dev[%p]: Passed optimal_sectors cannot be" " changed for TCM/pSCSI\n", dev); return -EINVAL; } if (optimal_sectors > DEV_ATTRIB(dev)->max_sectors) { printk(KERN_ERR "dev[%p]: Passed optimal_sectors %u cannot be" " greater than max_sectors: %u\n", dev, optimal_sectors, DEV_ATTRIB(dev)->max_sectors); return -EINVAL; } DEV_ATTRIB(dev)->optimal_sectors = optimal_sectors; printk(KERN_INFO "dev[%p]: SE Device optimal_sectors changed to %u\n", dev, optimal_sectors); return 0; } int se_dev_set_block_size(struct se_device *dev, u32 block_size) { if (atomic_read(&dev->dev_export_obj.obj_access_count)) { printk(KERN_ERR "dev[%p]: Unable to change SE Device block_size" " while dev_export_obj: %d count exists\n", dev, atomic_read(&dev->dev_export_obj.obj_access_count)); return -1; } if ((block_size != 512) && (block_size != 1024) && (block_size != 2048) && (block_size != 4096)) { printk(KERN_ERR "dev[%p]: Illegal value for block_device: %u" " for SE device, must be 512, 1024, 2048 or 4096\n", dev, block_size); return -1; } if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { printk(KERN_ERR "dev[%p]: Not allowed to change block_size for" " Physical Device, use for Linux/SCSI to change" " block_size for underlying hardware\n", dev); return -1; } DEV_ATTRIB(dev)->block_size = block_size; printk(KERN_INFO "dev[%p]: SE Device block_size changed to %u\n", dev, block_size); return 0; } struct se_lun *core_dev_add_lun( struct se_portal_group *tpg, struct se_hba *hba, struct se_device *dev, u32 lun) { struct se_lun *lun_p; u32 lun_access = 0; if (atomic_read(&dev->dev_access_obj.obj_access_count) != 0) { printk(KERN_ERR "Unable to export struct se_device while dev_access_obj: %d\n", atomic_read(&dev->dev_access_obj.obj_access_count)); return NULL; } lun_p = core_tpg_pre_addlun(tpg, lun); if ((IS_ERR(lun_p)) || !(lun_p)) return NULL; if (dev->dev_flags & DF_READ_ONLY) lun_access = TRANSPORT_LUNFLAGS_READ_ONLY; else lun_access = TRANSPORT_LUNFLAGS_READ_WRITE; if (core_tpg_post_addlun(tpg, lun_p, lun_access, dev) < 0) return NULL; printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Activated %s Logical Unit from" " CORE HBA: %u\n", TPG_TFO(tpg)->get_fabric_name(), TPG_TFO(tpg)->tpg_get_tag(tpg), lun_p->unpacked_lun, TPG_TFO(tpg)->get_fabric_name(), hba->hba_id); /* * Update LUN maps for dynamically added initiators when * generate_node_acl is enabled. */ if (TPG_TFO(tpg)->tpg_check_demo_mode(tpg)) { struct se_node_acl *acl; spin_lock_bh(&tpg->acl_node_lock); list_for_each_entry(acl, &tpg->acl_node_list, acl_list) { if (acl->dynamic_node_acl) { spin_unlock_bh(&tpg->acl_node_lock); core_tpg_add_node_to_devs(acl, tpg); spin_lock_bh(&tpg->acl_node_lock); } } spin_unlock_bh(&tpg->acl_node_lock); } return lun_p; } /* core_dev_del_lun(): * * */ int core_dev_del_lun( struct se_portal_group *tpg, u32 unpacked_lun) { struct se_lun *lun; int ret = 0; lun = core_tpg_pre_dellun(tpg, unpacked_lun, &ret); if (!(lun)) return ret; core_tpg_post_dellun(tpg, lun); printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Deactivated %s Logical Unit from" " device object\n", TPG_TFO(tpg)->get_fabric_name(), TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun, TPG_TFO(tpg)->get_fabric_name()); return 0; } struct se_lun *core_get_lun_from_tpg(struct se_portal_group *tpg, u32 unpacked_lun) { struct se_lun *lun; spin_lock(&tpg->tpg_lun_lock); if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) { printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS" "_PER_TPG-1: %u for Target Portal Group: %hu\n", TPG_TFO(tpg)->get_fabric_name(), unpacked_lun, TRANSPORT_MAX_LUNS_PER_TPG-1, TPG_TFO(tpg)->tpg_get_tag(tpg)); spin_unlock(&tpg->tpg_lun_lock); return NULL; } lun = &tpg->tpg_lun_list[unpacked_lun]; if (lun->lun_status != TRANSPORT_LUN_STATUS_FREE) { printk(KERN_ERR "%s Logical Unit Number: %u is not free on" " Target Portal Group: %hu, ignoring request.\n", TPG_TFO(tpg)->get_fabric_name(), unpacked_lun, TPG_TFO(tpg)->tpg_get_tag(tpg)); spin_unlock(&tpg->tpg_lun_lock); return NULL; } spin_unlock(&tpg->tpg_lun_lock); return lun; } /* core_dev_get_lun(): * * */ static struct se_lun *core_dev_get_lun(struct se_portal_group *tpg, u32 unpacked_lun) { struct se_lun *lun; spin_lock(&tpg->tpg_lun_lock); if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) { printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS_PER" "_TPG-1: %u for Target Portal Group: %hu\n", TPG_TFO(tpg)->get_fabric_name(), unpacked_lun, TRANSPORT_MAX_LUNS_PER_TPG-1, TPG_TFO(tpg)->tpg_get_tag(tpg)); spin_unlock(&tpg->tpg_lun_lock); return NULL; } lun = &tpg->tpg_lun_list[unpacked_lun]; if (lun->lun_status != TRANSPORT_LUN_STATUS_ACTIVE) { printk(KERN_ERR "%s Logical Unit Number: %u is not active on" " Target Portal Group: %hu, ignoring request.\n", TPG_TFO(tpg)->get_fabric_name(), unpacked_lun, TPG_TFO(tpg)->tpg_get_tag(tpg)); spin_unlock(&tpg->tpg_lun_lock); return NULL; } spin_unlock(&tpg->tpg_lun_lock); return lun; } struct se_lun_acl *core_dev_init_initiator_node_lun_acl( struct se_portal_group *tpg, u32 mapped_lun, char *initiatorname, int *ret) { struct se_lun_acl *lacl; struct se_node_acl *nacl; if (strlen(initiatorname) > TRANSPORT_IQN_LEN) { printk(KERN_ERR "%s InitiatorName exceeds maximum size.\n", TPG_TFO(tpg)->get_fabric_name()); *ret = -EOVERFLOW; return NULL; } nacl = core_tpg_get_initiator_node_acl(tpg, initiatorname); if (!(nacl)) { *ret = -EINVAL; return NULL; } lacl = kzalloc(sizeof(struct se_lun_acl), GFP_KERNEL); if (!(lacl)) { printk(KERN_ERR "Unable to allocate memory for struct se_lun_acl.\n"); *ret = -ENOMEM; return NULL; } INIT_LIST_HEAD(&lacl->lacl_list); lacl->mapped_lun = mapped_lun; lacl->se_lun_nacl = nacl; snprintf(lacl->initiatorname, TRANSPORT_IQN_LEN, "%s", initiatorname); return lacl; } int core_dev_add_initiator_node_lun_acl( struct se_portal_group *tpg, struct se_lun_acl *lacl, u32 unpacked_lun, u32 lun_access) { struct se_lun *lun; struct se_node_acl *nacl; lun = core_dev_get_lun(tpg, unpacked_lun); if (!(lun)) { printk(KERN_ERR "%s Logical Unit Number: %u is not active on" " Target Portal Group: %hu, ignoring request.\n", TPG_TFO(tpg)->get_fabric_name(), unpacked_lun, TPG_TFO(tpg)->tpg_get_tag(tpg)); return -EINVAL; } nacl = lacl->se_lun_nacl; if (!(nacl)) return -EINVAL; if ((lun->lun_access & TRANSPORT_LUNFLAGS_READ_ONLY) && (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE)) lun_access = TRANSPORT_LUNFLAGS_READ_ONLY; lacl->se_lun = lun; if (core_update_device_list_for_node(lun, lacl, lacl->mapped_lun, lun_access, nacl, tpg, 1) < 0) return -EINVAL; spin_lock(&lun->lun_acl_lock); list_add_tail(&lacl->lacl_list, &lun->lun_acl_list); atomic_inc(&lun->lun_acl_count); smp_mb__after_atomic_inc(); spin_unlock(&lun->lun_acl_lock); printk(KERN_INFO "%s_TPG[%hu]_LUN[%u->%u] - Added %s ACL for " " InitiatorNode: %s\n", TPG_TFO(tpg)->get_fabric_name(), TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun, lacl->mapped_lun, (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) ? "RW" : "RO", lacl->initiatorname); /* * Check to see if there are any existing persistent reservation APTPL * pre-registrations that need to be enabled for this LUN ACL.. */ core_scsi3_check_aptpl_registration(lun->lun_se_dev, tpg, lun, lacl); return 0; } /* core_dev_del_initiator_node_lun_acl(): * * */ int core_dev_del_initiator_node_lun_acl( struct se_portal_group *tpg, struct se_lun *lun, struct se_lun_acl *lacl) { struct se_node_acl *nacl; nacl = lacl->se_lun_nacl; if (!(nacl)) return -EINVAL; spin_lock(&lun->lun_acl_lock); list_del(&lacl->lacl_list); atomic_dec(&lun->lun_acl_count); smp_mb__after_atomic_dec(); spin_unlock(&lun->lun_acl_lock); core_update_device_list_for_node(lun, NULL, lacl->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0); lacl->se_lun = NULL; printk(KERN_INFO "%s_TPG[%hu]_LUN[%u] - Removed ACL for" " InitiatorNode: %s Mapped LUN: %u\n", TPG_TFO(tpg)->get_fabric_name(), TPG_TFO(tpg)->tpg_get_tag(tpg), lun->unpacked_lun, lacl->initiatorname, lacl->mapped_lun); return 0; } void core_dev_free_initiator_node_lun_acl( struct se_portal_group *tpg, struct se_lun_acl *lacl) { printk("%s_TPG[%hu] - Freeing ACL for %s InitiatorNode: %s" " Mapped LUN: %u\n", TPG_TFO(tpg)->get_fabric_name(), TPG_TFO(tpg)->tpg_get_tag(tpg), TPG_TFO(tpg)->get_fabric_name(), lacl->initiatorname, lacl->mapped_lun); kfree(lacl); } int core_dev_setup_virtual_lun0(void) { struct se_hba *hba; struct se_device *dev; struct se_subsystem_dev *se_dev = NULL; struct se_subsystem_api *t; char buf[16]; int ret; hba = core_alloc_hba("rd_dr", 0, HBA_FLAGS_INTERNAL_USE); if (IS_ERR(hba)) return PTR_ERR(hba); se_global->g_lun0_hba = hba; t = hba->transport; se_dev = kzalloc(sizeof(struct se_subsystem_dev), GFP_KERNEL); if (!(se_dev)) { printk(KERN_ERR "Unable to allocate memory for" " struct se_subsystem_dev\n"); ret = -ENOMEM; goto out; } INIT_LIST_HEAD(&se_dev->g_se_dev_list); INIT_LIST_HEAD(&se_dev->t10_wwn.t10_vpd_list); spin_lock_init(&se_dev->t10_wwn.t10_vpd_lock); INIT_LIST_HEAD(&se_dev->t10_reservation.registration_list); INIT_LIST_HEAD(&se_dev->t10_reservation.aptpl_reg_list); spin_lock_init(&se_dev->t10_reservation.registration_lock); spin_lock_init(&se_dev->t10_reservation.aptpl_reg_lock); INIT_LIST_HEAD(&se_dev->t10_alua.tg_pt_gps_list); spin_lock_init(&se_dev->t10_alua.tg_pt_gps_lock); spin_lock_init(&se_dev->se_dev_lock); se_dev->t10_reservation.pr_aptpl_buf_len = PR_APTPL_BUF_LEN; se_dev->t10_wwn.t10_sub_dev = se_dev; se_dev->t10_alua.t10_sub_dev = se_dev; se_dev->se_dev_attrib.da_sub_dev = se_dev; se_dev->se_dev_hba = hba; se_dev->se_dev_su_ptr = t->allocate_virtdevice(hba, "virt_lun0"); if (!(se_dev->se_dev_su_ptr)) { printk(KERN_ERR "Unable to locate subsystem dependent pointer" " from allocate_virtdevice()\n"); ret = -ENOMEM; goto out; } se_global->g_lun0_su_dev = se_dev; memset(buf, 0, 16); sprintf(buf, "rd_pages=8"); t->set_configfs_dev_params(hba, se_dev, buf, sizeof(buf)); dev = t->create_virtdevice(hba, se_dev, se_dev->se_dev_su_ptr); if (!(dev) || IS_ERR(dev)) { ret = -ENOMEM; goto out; } se_dev->se_dev_ptr = dev; se_global->g_lun0_dev = dev; return 0; out: se_global->g_lun0_su_dev = NULL; kfree(se_dev); if (se_global->g_lun0_hba) { core_delete_hba(se_global->g_lun0_hba); se_global->g_lun0_hba = NULL; } return ret; } void core_dev_release_virtual_lun0(void) { struct se_hba *hba = se_global->g_lun0_hba; struct se_subsystem_dev *su_dev = se_global->g_lun0_su_dev; if (!(hba)) return; if (se_global->g_lun0_dev) se_free_virtual_device(se_global->g_lun0_dev, hba); kfree(su_dev); core_delete_hba(hba); }