#include #include #include #include #include #include #include #include #include #include /*-------------------------------------------------------------------------*/ /* FIXME make these public somewhere; usbdevfs.h? */ struct usbtest_param { /* inputs */ unsigned test_num; /* 0..(TEST_CASES-1) */ unsigned iterations; unsigned length; unsigned vary; unsigned sglen; /* outputs */ struct timeval duration; }; #define USBTEST_REQUEST _IOWR('U', 100, struct usbtest_param) /*-------------------------------------------------------------------------*/ #define GENERIC /* let probe() bind using module params */ /* Some devices that can be used for testing will have "real" drivers. * Entries for those need to be enabled here by hand, after disabling * that "real" driver. */ //#define IBOT2 /* grab iBOT2 webcams */ //#define KEYSPAN_19Qi /* grab un-renumerated serial adapter */ /*-------------------------------------------------------------------------*/ struct usbtest_info { const char *name; u8 ep_in; /* bulk/intr source */ u8 ep_out; /* bulk/intr sink */ unsigned autoconf:1; unsigned ctrl_out:1; unsigned iso:1; /* try iso in/out */ int alt; }; /* this is accessed only through usbfs ioctl calls. * one ioctl to issue a test ... one lock per device. * tests create other threads if they need them. * urbs and buffers are allocated dynamically, * and data generated deterministically. */ struct usbtest_dev { struct usb_interface *intf; struct usbtest_info *info; int in_pipe; int out_pipe; int in_iso_pipe; int out_iso_pipe; struct usb_endpoint_descriptor *iso_in, *iso_out; struct mutex lock; #define TBUF_SIZE 256 u8 *buf; }; static struct usb_device *testdev_to_usbdev(struct usbtest_dev *test) { return interface_to_usbdev(test->intf); } /* set up all urbs so they can be used with either bulk or interrupt */ #define INTERRUPT_RATE 1 /* msec/transfer */ #define ERROR(tdev, fmt, args...) \ dev_err(&(tdev)->intf->dev , fmt , ## args) #define WARNING(tdev, fmt, args...) \ dev_warn(&(tdev)->intf->dev , fmt , ## args) #define GUARD_BYTE 0xA5 /*-------------------------------------------------------------------------*/ static int get_endpoints(struct usbtest_dev *dev, struct usb_interface *intf) { int tmp; struct usb_host_interface *alt; struct usb_host_endpoint *in, *out; struct usb_host_endpoint *iso_in, *iso_out; struct usb_device *udev; for (tmp = 0; tmp < intf->num_altsetting; tmp++) { unsigned ep; in = out = NULL; iso_in = iso_out = NULL; alt = intf->altsetting + tmp; /* take the first altsetting with in-bulk + out-bulk; * ignore other endpoints and altsetttings. */ for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) { struct usb_host_endpoint *e; e = alt->endpoint + ep; switch (e->desc.bmAttributes) { case USB_ENDPOINT_XFER_BULK: break; case USB_ENDPOINT_XFER_ISOC: if (dev->info->iso) goto try_iso; /* FALLTHROUGH */ default: continue; } if (usb_endpoint_dir_in(&e->desc)) { if (!in) in = e; } else { if (!out) out = e; } continue; try_iso: if (usb_endpoint_dir_in(&e->desc)) { if (!iso_in) iso_in = e; } else { if (!iso_out) iso_out = e; } } if ((in && out) || iso_in || iso_out) goto found; } return -EINVAL; found: udev = testdev_to_usbdev(dev); if (alt->desc.bAlternateSetting != 0) { tmp = usb_set_interface(udev, alt->desc.bInterfaceNumber, alt->desc.bAlternateSetting); if (tmp < 0) return tmp; } if (in) { dev->in_pipe = usb_rcvbulkpipe(udev, in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); dev->out_pipe = usb_sndbulkpipe(udev, out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } if (iso_in) { dev->iso_in = &iso_in->desc; dev->in_iso_pipe = usb_rcvisocpipe(udev, iso_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } if (iso_out) { dev->iso_out = &iso_out->desc; dev->out_iso_pipe = usb_sndisocpipe(udev, iso_out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } return 0; } /*-------------------------------------------------------------------------*/ /* Support for testing basic non-queued I/O streams. * * These just package urbs as requests that can be easily canceled. * Each urb's data buffer is dynamically allocated; callers can fill * them with non-zero test data (or test for it) when appropriate. */ static void simple_callback(struct urb *urb) { complete(urb->context); } static struct urb *usbtest_alloc_urb( struct usb_device *udev, int pipe, unsigned long bytes, unsigned transfer_flags, unsigned offset) { struct urb *urb; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return urb; usb_fill_bulk_urb(urb, udev, pipe, NULL, bytes, simple_callback, NULL); urb->interval = (udev->speed == USB_SPEED_HIGH) ? (INTERRUPT_RATE << 3) : INTERRUPT_RATE; urb->transfer_flags = transfer_flags; if (usb_pipein(pipe)) urb->transfer_flags |= URB_SHORT_NOT_OK; if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset, GFP_KERNEL, &urb->transfer_dma); else urb->transfer_buffer = kmalloc(bytes + offset, GFP_KERNEL); if (!urb->transfer_buffer) { usb_free_urb(urb); return NULL; } /* To test unaligned transfers add an offset and fill the unused memory with a guard value */ if (offset) { memset(urb->transfer_buffer, GUARD_BYTE, offset); urb->transfer_buffer += offset; if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) urb->transfer_dma += offset; } /* For inbound transfers use guard byte so that test fails if data not correctly copied */ memset(urb->transfer_buffer, usb_pipein(urb->pipe) ? GUARD_BYTE : 0, bytes); return urb; } static struct urb *simple_alloc_urb( struct usb_device *udev, int pipe, unsigned long bytes) { return usbtest_alloc_urb(udev, pipe, bytes, URB_NO_TRANSFER_DMA_MAP, 0); } static unsigned pattern; static unsigned mod_pattern; module_param_named(pattern, mod_pattern, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(mod_pattern, "i/o pattern (0 == zeroes)"); static inline void simple_fill_buf(struct urb *urb) { unsigned i; u8 *buf = urb->transfer_buffer; unsigned len = urb->transfer_buffer_length; switch (pattern) { default: /* FALLTHROUGH */ case 0: memset(buf, 0, len); break; case 1: /* mod63 */ for (i = 0; i < len; i++) *buf++ = (u8) (i % 63); break; } } static inline unsigned long buffer_offset(void *buf) { return (unsigned long)buf & (ARCH_KMALLOC_MINALIGN - 1); } static int check_guard_bytes(struct usbtest_dev *tdev, struct urb *urb) { u8 *buf = urb->transfer_buffer; u8 *guard = buf - buffer_offset(buf); unsigned i; for (i = 0; guard < buf; i++, guard++) { if (*guard != GUARD_BYTE) { ERROR(tdev, "guard byte[%d] %d (not %d)\n", i, *guard, GUARD_BYTE); return -EINVAL; } } return 0; } static int simple_check_buf(struct usbtest_dev *tdev, struct urb *urb) { unsigned i; u8 expected; u8 *buf = urb->transfer_buffer; unsigned len = urb->actual_length; int ret = check_guard_bytes(tdev, urb); if (ret) return ret; for (i = 0; i < len; i++, buf++) { switch (pattern) { /* all-zeroes has no synchronization issues */ case 0: expected = 0; break; /* mod63 stays in sync with short-terminated transfers, * or otherwise when host and gadget agree on how large * each usb transfer request should be. resync is done * with set_interface or set_config. */ case 1: /* mod63 */ expected = i % 63; break; /* always fail unsupported patterns */ default: expected = !*buf; break; } if (*buf == expected) continue; ERROR(tdev, "buf[%d] = %d (not %d)\n", i, *buf, expected); return -EINVAL; } return 0; } static void simple_free_urb(struct urb *urb) { unsigned long offset = buffer_offset(urb->transfer_buffer); if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) usb_free_coherent( urb->dev, urb->transfer_buffer_length + offset, urb->transfer_buffer - offset, urb->transfer_dma - offset); else kfree(urb->transfer_buffer - offset); usb_free_urb(urb); } static int simple_io( struct usbtest_dev *tdev, struct urb *urb, int iterations, int vary, int expected, const char *label ) { struct usb_device *udev = urb->dev; int max = urb->transfer_buffer_length; struct completion completion; int retval = 0; urb->context = &completion; while (retval == 0 && iterations-- > 0) { init_completion(&completion); if (usb_pipeout(urb->pipe)) simple_fill_buf(urb); retval = usb_submit_urb(urb, GFP_KERNEL); if (retval != 0) break; /* NOTE: no timeouts; can't be broken out of by interrupt */ wait_for_completion(&completion); retval = urb->status; urb->dev = udev; if (retval == 0 && usb_pipein(urb->pipe)) retval = simple_check_buf(tdev, urb); if (vary) { int len = urb->transfer_buffer_length; len += vary; len %= max; if (len == 0) len = (vary < max) ? vary : max; urb->transfer_buffer_length = len; } /* FIXME if endpoint halted, clear halt (and log) */ } urb->transfer_buffer_length = max; if (expected != retval) dev_err(&udev->dev, "%s failed, iterations left %d, status %d (not %d)\n", label, iterations, retval, expected); return retval; } /*-------------------------------------------------------------------------*/ /* We use scatterlist primitives to test queued I/O. * Yes, this also tests the scatterlist primitives. */ static void free_sglist(struct scatterlist *sg, int nents) { unsigned i; if (!sg) return; for (i = 0; i < nents; i++) { if (!sg_page(&sg[i])) continue; kfree(sg_virt(&sg[i])); } kfree(sg); } static struct scatterlist * alloc_sglist(int nents, int max, int vary) { struct scatterlist *sg; unsigned i; unsigned size = max; sg = kmalloc(nents * sizeof *sg, GFP_KERNEL); if (!sg) return NULL; sg_init_table(sg, nents); for (i = 0; i < nents; i++) { char *buf; unsigned j; buf = kzalloc(size, GFP_KERNEL); if (!buf) { free_sglist(sg, i); return NULL; } /* kmalloc pages are always physically contiguous! */ sg_set_buf(&sg[i], buf, size); switch (pattern) { case 0: /* already zeroed */ break; case 1: for (j = 0; j < size; j++) *buf++ = (u8) (j % 63); break; } if (vary) { size += vary; size %= max; if (size == 0) size = (vary < max) ? vary : max; } } return sg; } static int perform_sglist( struct usbtest_dev *tdev, unsigned iterations, int pipe, struct usb_sg_request *req, struct scatterlist *sg, int nents ) { struct usb_device *udev = testdev_to_usbdev(tdev); int retval = 0; while (retval == 0 && iterations-- > 0) { retval = usb_sg_init(req, udev, pipe, (udev->speed == USB_SPEED_HIGH) ? (INTERRUPT_RATE << 3) : INTERRUPT_RATE, sg, nents, 0, GFP_KERNEL); if (retval) break; usb_sg_wait(req); retval = req->status; /* FIXME check resulting data pattern */ /* FIXME if endpoint halted, clear halt (and log) */ } /* FIXME for unlink or fault handling tests, don't report * failure if retval is as we expected ... */ if (retval) ERROR(tdev, "perform_sglist failed, " "iterations left %d, status %d\n", iterations, retval); return retval; } /*-------------------------------------------------------------------------*/ /* unqueued control message testing * * there's a nice set of device functional requirements in chapter 9 of the * usb 2.0 spec, which we can apply to ANY device, even ones that don't use * special test firmware. * * we know the device is configured (or suspended) by the time it's visible * through usbfs. we can't change that, so we won't test enumeration (which * worked 'well enough' to get here, this time), power management (ditto), * or remote wakeup (which needs human interaction). */ static unsigned realworld = 1; module_param(realworld, uint, 0); MODULE_PARM_DESC(realworld, "clear to demand stricter spec compliance"); static int get_altsetting(struct usbtest_dev *dev) { struct usb_interface *iface = dev->intf; struct usb_device *udev = interface_to_usbdev(iface); int retval; retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), USB_REQ_GET_INTERFACE, USB_DIR_IN|USB_RECIP_INTERFACE, 0, iface->altsetting[0].desc.bInterfaceNumber, dev->buf, 1, USB_CTRL_GET_TIMEOUT); switch (retval) { case 1: return dev->buf[0]; case 0: retval = -ERANGE; /* FALLTHROUGH */ default: return retval; } } static int set_altsetting(struct usbtest_dev *dev, int alternate) { struct usb_interface *iface = dev->intf; struct usb_device *udev; if (alternate < 0 || alternate >= 256) return -EINVAL; udev = interface_to_usbdev(iface); return usb_set_interface(udev, iface->altsetting[0].desc.bInterfaceNumber, alternate); } static int is_good_config(struct usbtest_dev *tdev, int len) { struct usb_config_descriptor *config; if (len < sizeof *config) return 0; config = (struct usb_config_descriptor *) tdev->buf; switch (config->bDescriptorType) { case USB_DT_CONFIG: case USB_DT_OTHER_SPEED_CONFIG: if (config->bLength != 9) { ERROR(tdev, "bogus config descriptor length\n"); return 0; } /* this bit 'must be 1' but often isn't */ if (!realworld && !(config->bmAttributes & 0x80)) { ERROR(tdev, "high bit of config attributes not set\n"); return 0; } if (config->bmAttributes & 0x1f) { /* reserved == 0 */ ERROR(tdev, "reserved config bits set\n"); return 0; } break; default: return 0; } if (le16_to_cpu(config->wTotalLength) == len) /* read it all */ return 1; if (le16_to_cpu(config->wTotalLength) >= TBUF_SIZE) /* max partial read */ return 1; ERROR(tdev, "bogus config descriptor read size\n"); return 0; } /* sanity test for standard requests working with usb_control_mesg() and some * of the utility functions which use it. * * this doesn't test how endpoint halts behave or data toggles get set, since * we won't do I/O to bulk/interrupt endpoints here (which is how to change * halt or toggle). toggle testing is impractical without support from hcds. * * this avoids failing devices linux would normally work with, by not testing * config/altsetting operations for devices that only support their defaults. * such devices rarely support those needless operations. * * NOTE that since this is a sanity test, it's not examining boundary cases * to see if usbcore, hcd, and device all behave right. such testing would * involve varied read sizes and other operation sequences. */ static int ch9_postconfig(struct usbtest_dev *dev) { struct usb_interface *iface = dev->intf; struct usb_device *udev = interface_to_usbdev(iface); int i, alt, retval; /* [9.2.3] if there's more than one altsetting, we need to be able to * set and get each one. mostly trusts the descriptors from usbcore. */ for (i = 0; i < iface->num_altsetting; i++) { /* 9.2.3 constrains the range here */ alt = iface->altsetting[i].desc.bAlternateSetting; if (alt < 0 || alt >= iface->num_altsetting) { dev_err(&iface->dev, "invalid alt [%d].bAltSetting = %d\n", i, alt); } /* [real world] get/set unimplemented if there's only one */ if (realworld && iface->num_altsetting == 1) continue; /* [9.4.10] set_interface */ retval = set_altsetting(dev, alt); if (retval) { dev_err(&iface->dev, "can't set_interface = %d, %d\n", alt, retval); return retval; } /* [9.4.4] get_interface always works */ retval = get_altsetting(dev); if (retval != alt) { dev_err(&iface->dev, "get alt should be %d, was %d\n", alt, retval); return (retval < 0) ? retval : -EDOM; } } /* [real world] get_config unimplemented if there's only one */ if (!realworld || udev->descriptor.bNumConfigurations != 1) { int expected = udev->actconfig->desc.bConfigurationValue; /* [9.4.2] get_configuration always works * ... although some cheap devices (like one TI Hub I've got) * won't return config descriptors except before set_config. */ retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), USB_REQ_GET_CONFIGURATION, USB_DIR_IN | USB_RECIP_DEVICE, 0, 0, dev->buf, 1, USB_CTRL_GET_TIMEOUT); if (retval != 1 || dev->buf[0] != expected) { dev_err(&iface->dev, "get config --> %d %d (1 %d)\n", retval, dev->buf[0], expected); return (retval < 0) ? retval : -EDOM; } } /* there's always [9.4.3] a device descriptor [9.6.1] */ retval = usb_get_descriptor(udev, USB_DT_DEVICE, 0, dev->buf, sizeof udev->descriptor); if (retval != sizeof udev->descriptor) { dev_err(&iface->dev, "dev descriptor --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } /* there's always [9.4.3] at least one config descriptor [9.6.3] */ for (i = 0; i < udev->descriptor.bNumConfigurations; i++) { retval = usb_get_descriptor(udev, USB_DT_CONFIG, i, dev->buf, TBUF_SIZE); if (!is_good_config(dev, retval)) { dev_err(&iface->dev, "config [%d] descriptor --> %d\n", i, retval); return (retval < 0) ? retval : -EDOM; } /* FIXME cross-checking udev->config[i] to make sure usbcore * parsed it right (etc) would be good testing paranoia */ } /* and sometimes [9.2.6.6] speed dependent descriptors */ if (le16_to_cpu(udev->descriptor.bcdUSB) == 0x0200) { struct usb_qualifier_descriptor *d = NULL; /* device qualifier [9.6.2] */ retval = usb_get_descriptor(udev, USB_DT_DEVICE_QUALIFIER, 0, dev->buf, sizeof(struct usb_qualifier_descriptor)); if (retval == -EPIPE) { if (udev->speed == USB_SPEED_HIGH) { dev_err(&iface->dev, "hs dev qualifier --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } /* usb2.0 but not high-speed capable; fine */ } else if (retval != sizeof(struct usb_qualifier_descriptor)) { dev_err(&iface->dev, "dev qualifier --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } else d = (struct usb_qualifier_descriptor *) dev->buf; /* might not have [9.6.2] any other-speed configs [9.6.4] */ if (d) { unsigned max = d->bNumConfigurations; for (i = 0; i < max; i++) { retval = usb_get_descriptor(udev, USB_DT_OTHER_SPEED_CONFIG, i, dev->buf, TBUF_SIZE); if (!is_good_config(dev, retval)) { dev_err(&iface->dev, "other speed config --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } } } } /* FIXME fetch strings from at least the device descriptor */ /* [9.4.5] get_status always works */ retval = usb_get_status(udev, USB_RECIP_DEVICE, 0, dev->buf); if (retval != 2) { dev_err(&iface->dev, "get dev status --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } /* FIXME configuration.bmAttributes says if we could try to set/clear * the device's remote wakeup feature ... if we can, test that here */ retval = usb_get_status(udev, USB_RECIP_INTERFACE, iface->altsetting[0].desc.bInterfaceNumber, dev->buf); if (retval != 2) { dev_err(&iface->dev, "get interface status --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } /* FIXME get status for each endpoint in the interface */ return 0; } /*-------------------------------------------------------------------------*/ /* use ch9 requests to test whether: * (a) queues work for control, keeping N subtests queued and * active (auto-resubmit) for M loops through the queue. * (b) protocol stalls (control-only) will autorecover. * it's not like bulk/intr; no halt clearing. * (c) short control reads are reported and handled. * (d) queues are always processed in-order */ struct ctrl_ctx { spinlock_t lock; struct usbtest_dev *dev; struct completion complete; unsigned count; unsigned pending; int status; struct urb **urb; struct usbtest_param *param; int last; }; #define NUM_SUBCASES 15 /* how many test subcases here? */ struct subcase { struct usb_ctrlrequest setup; int number; int expected; }; static void ctrl_complete(struct urb *urb) { struct ctrl_ctx *ctx = urb->context; struct usb_ctrlrequest *reqp; struct subcase *subcase; int status = urb->status; reqp = (struct usb_ctrlrequest *)urb->setup_packet; subcase = container_of(reqp, struct subcase, setup); spin_lock(&ctx->lock); ctx->count--; ctx->pending--; /* queue must transfer and complete in fifo order, unless * usb_unlink_urb() is used to unlink something not at the * physical queue head (not tested). */ if (subcase->number > 0) { if ((subcase->number - ctx->last) != 1) { ERROR(ctx->dev, "subcase %d completed out of order, last %d\n", subcase->number, ctx->last); status = -EDOM; ctx->last = subcase->number; goto error; } } ctx->last = subcase->number; /* succeed or fault in only one way? */ if (status == subcase->expected) status = 0; /* async unlink for cleanup? */ else if (status != -ECONNRESET) { /* some faults are allowed, not required */ if (subcase->expected > 0 && ( ((status == -subcase->expected /* happened */ || status == 0)))) /* didn't */ status = 0; /* sometimes more than one fault is allowed */ else if (subcase->number == 12 && status == -EPIPE) status = 0; else ERROR(ctx->dev, "subtest %d error, status %d\n", subcase->number, status); } /* unexpected status codes mean errors; ideally, in hardware */ if (status) { error: if (ctx->status == 0) { int i; ctx->status = status; ERROR(ctx->dev, "control queue %02x.%02x, err %d, " "%d left, subcase %d, len %d/%d\n", reqp->bRequestType, reqp->bRequest, status, ctx->count, subcase->number, urb->actual_length, urb->transfer_buffer_length); /* FIXME this "unlink everything" exit route should * be a separate test case. */ /* unlink whatever's still pending */ for (i = 1; i < ctx->param->sglen; i++) { struct urb *u = ctx->urb[ (i + subcase->number) % ctx->param->sglen]; if (u == urb || !u->dev) continue; spin_unlock(&ctx->lock); status = usb_unlink_urb(u); spin_lock(&ctx->lock); switch (status) { case -EINPROGRESS: case -EBUSY: case -EIDRM: continue; default: ERROR(ctx->dev, "urb unlink --> %d\n", status); } } status = ctx->status; } } /* resubmit if we need to, else mark this as done */ if ((status == 0) && (ctx->pending < ctx->count)) { status = usb_submit_urb(urb, GFP_ATOMIC); if (status != 0) { ERROR(ctx->dev, "can't resubmit ctrl %02x.%02x, err %d\n", reqp->bRequestType, reqp->bRequest, status); urb->dev = NULL; } else ctx->pending++; } else urb->dev = NULL; /* signal completion when nothing's queued */ if (ctx->pending == 0) complete(&ctx->complete); spin_unlock(&ctx->lock); } static int test_ctrl_queue(struct usbtest_dev *dev, struct usbtest_param *param) { struct usb_device *udev = testdev_to_usbdev(dev); struct urb **urb; struct ctrl_ctx context; int i; spin_lock_init(&context.lock); context.dev = dev; init_completion(&context.complete); context.count = param->sglen * param->iterations; context.pending = 0; context.status = -ENOMEM; context.param = param; context.last = -1; /* allocate and init the urbs we'll queue. * as with bulk/intr sglists, sglen is the queue depth; it also * controls which subtests run (more tests than sglen) or rerun. */ urb = kcalloc(param->sglen, sizeof(struct urb *), GFP_KERNEL); if (!urb) return -ENOMEM; for (i = 0; i < param->sglen; i++) { int pipe = usb_rcvctrlpipe(udev, 0); unsigned len; struct urb *u; struct usb_ctrlrequest req; struct subcase *reqp; /* sign of this variable means: * -: tested code must return this (negative) error code * +: tested code may return this (negative too) error code */ int expected = 0; /* requests here are mostly expected to succeed on any * device, but some are chosen to trigger protocol stalls * or short reads. */ memset(&req, 0, sizeof req); req.bRequest = USB_REQ_GET_DESCRIPTOR; req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE; switch (i % NUM_SUBCASES) { case 0: /* get device descriptor */ req.wValue = cpu_to_le16(USB_DT_DEVICE << 8); len = sizeof(struct usb_device_descriptor); break; case 1: /* get first config descriptor (only) */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = sizeof(struct usb_config_descriptor); break; case 2: /* get altsetting (OFTEN STALLS) */ req.bRequest = USB_REQ_GET_INTERFACE; req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE; /* index = 0 means first interface */ len = 1; expected = EPIPE; break; case 3: /* get interface status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE; /* interface 0 */ len = 2; break; case 4: /* get device status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE; len = 2; break; case 5: /* get device qualifier (MAY STALL) */ req.wValue = cpu_to_le16 (USB_DT_DEVICE_QUALIFIER << 8); len = sizeof(struct usb_qualifier_descriptor); if (udev->speed != USB_SPEED_HIGH) expected = EPIPE; break; case 6: /* get first config descriptor, plus interface */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = sizeof(struct usb_config_descriptor); len += sizeof(struct usb_interface_descriptor); break; case 7: /* get interface descriptor (ALWAYS STALLS) */ req.wValue = cpu_to_le16 (USB_DT_INTERFACE << 8); /* interface == 0 */ len = sizeof(struct usb_interface_descriptor); expected = -EPIPE; break; /* NOTE: two consecutive stalls in the queue here. * that tests fault recovery a bit more aggressively. */ case 8: /* clear endpoint halt (MAY STALL) */ req.bRequest = USB_REQ_CLEAR_FEATURE; req.bRequestType = USB_RECIP_ENDPOINT; /* wValue 0 == ep halt */ /* wIndex 0 == ep0 (shouldn't halt!) */ len = 0; pipe = usb_sndctrlpipe(udev, 0); expected = EPIPE; break; case 9: /* get endpoint status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_ENDPOINT; /* endpoint 0 */ len = 2; break; case 10: /* trigger short read (EREMOTEIO) */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = 1024; expected = -EREMOTEIO; break; /* NOTE: two consecutive _different_ faults in the queue. */ case 11: /* get endpoint descriptor (ALWAYS STALLS) */ req.wValue = cpu_to_le16(USB_DT_ENDPOINT << 8); /* endpoint == 0 */ len = sizeof(struct usb_interface_descriptor); expected = EPIPE; break; /* NOTE: sometimes even a third fault in the queue! */ case 12: /* get string 0 descriptor (MAY STALL) */ req.wValue = cpu_to_le16(USB_DT_STRING << 8); /* string == 0, for language IDs */ len = sizeof(struct usb_interface_descriptor); /* may succeed when > 4 languages */ expected = EREMOTEIO; /* or EPIPE, if no strings */ break; case 13: /* short read, resembling case 10 */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); /* last data packet "should" be DATA1, not DATA0 */ len = 1024 - udev->descriptor.bMaxPacketSize0; expected = -EREMOTEIO; break; case 14: /* short read; try to fill the last packet */ req.wValue = cpu_to_le16((USB_DT_DEVICE << 8) | 0); /* device descriptor size == 18 bytes */ len = udev->descriptor.bMaxPacketSize0; if (udev->speed == USB_SPEED_SUPER) len = 512; switch (len) { case 8: len = 24; break; case 16: len = 32; break; } expected = -EREMOTEIO; break; default: ERROR(dev, "bogus number of ctrl queue testcases!\n"); context.status = -EINVAL; goto cleanup; } req.wLength = cpu_to_le16(len); urb[i] = u = simple_alloc_urb(udev, pipe, len); if (!u) goto cleanup; reqp = kmalloc(sizeof *reqp, GFP_KERNEL); if (!reqp) goto cleanup; reqp->setup = req; reqp->number = i % NUM_SUBCASES; reqp->expected = expected; u->setup_packet = (char *) &reqp->setup; u->context = &context; u->complete = ctrl_complete; } /* queue the urbs */ context.urb = urb; spin_lock_irq(&context.lock); for (i = 0; i < param->sglen; i++) { context.status = usb_submit_urb(urb[i], GFP_ATOMIC); if (context.status != 0) { ERROR(dev, "can't submit urb[%d], status %d\n", i, context.status); context.count = context.pending; break; } context.pending++; } spin_unlock_irq(&context.lock); /* FIXME set timer and time out; provide a disconnect hook */ /* wait for the last one to complete */ if (context.pending > 0) wait_for_completion(&context.complete); cleanup: for (i = 0; i < param->sglen; i++) { if (!urb[i]) continue; urb[i]->dev = udev; kfree(urb[i]->setup_packet); simple_free_urb(urb[i]); } kfree(urb); return context.status; } #undef NUM_SUBCASES /*-------------------------------------------------------------------------*/ static void unlink1_callback(struct urb *urb) { int status = urb->status; /* we "know" -EPIPE (stall) never happens */ if (!status) status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { urb->status = status; complete(urb->context); } } static int unlink1(struct usbtest_dev *dev, int pipe, int size, int async) { struct urb *urb; struct completion completion; int retval = 0; init_completion(&completion); urb = simple_alloc_urb(testdev_to_usbdev(dev), pipe, size); if (!urb) return -ENOMEM; urb->context = &completion; urb->complete = unlink1_callback; /* keep the endpoint busy. there are lots of hc/hcd-internal * states, and testing should get to all of them over time. * * FIXME want additional tests for when endpoint is STALLing * due to errors, or is just NAKing requests. */ retval = usb_submit_urb(urb, GFP_KERNEL); if (retval != 0) { dev_err(&dev->intf->dev, "submit fail %d\n", retval); return retval; } /* unlinking that should always work. variable delay tests more * hcd states and code paths, even with little other system load. */ msleep(jiffies % (2 * INTERRUPT_RATE)); if (async) { while (!completion_done(&completion)) { retval = usb_unlink_urb(urb); switch (retval) { case -EBUSY: case -EIDRM: /* we can't unlink urbs while they're completing * or if they've completed, and we haven't * resubmitted. "normal" drivers would prevent * resubmission, but since we're testing unlink * paths, we can't. */ ERROR(dev, "unlink retry\n"); continue; case 0: case -EINPROGRESS: break; default: dev_err(&dev->intf->dev, "unlink fail %d\n", retval); return retval; } break; } } else usb_kill_urb(urb); wait_for_completion(&completion); retval = urb->status; simple_free_urb(urb); if (async) return (retval == -ECONNRESET) ? 0 : retval - 1000; else return (retval == -ENOENT || retval == -EPERM) ? 0 : retval - 2000; } static int unlink_simple(struct usbtest_dev *dev, int pipe, int len) { int retval = 0; /* test sync and async paths */ retval = unlink1(dev, pipe, len, 1); if (!retval) retval = unlink1(dev, pipe, len, 0); return retval; } /*-------------------------------------------------------------------------*/ struct queued_ctx { struct completion complete; atomic_t pending; unsigned num; int status; struct urb **urbs; }; static void unlink_queued_callback(struct urb *urb) { int status = urb->status; struct queued_ctx *ctx = urb->context; if (ctx->status) goto done; if (urb == ctx->urbs[ctx->num - 4] || urb == ctx->urbs[ctx->num - 2]) { if (status == -ECONNRESET) goto done; /* What error should we report if the URB completed normally? */ } if (status != 0) ctx->status = status; done: if (atomic_dec_and_test(&ctx->pending)) complete(&ctx->complete); } static int unlink_queued(struct usbtest_dev *dev, int pipe, unsigned num, unsigned size) { struct queued_ctx ctx; struct usb_device *udev = testdev_to_usbdev(dev); void *buf; dma_addr_t buf_dma; int i; int retval = -ENOMEM; init_completion(&ctx.complete); atomic_set(&ctx.pending, 1); /* One more than the actual value */ ctx.num = num; ctx.status = 0; buf = usb_alloc_coherent(udev, size, GFP_KERNEL, &buf_dma); if (!buf) return retval; memset(buf, 0, size); /* Allocate and init the urbs we'll queue */ ctx.urbs = kcalloc(num, sizeof(struct urb *), GFP_KERNEL); if (!ctx.urbs) goto free_buf; for (i = 0; i < num; i++) { ctx.urbs[i] = usb_alloc_urb(0, GFP_KERNEL); if (!ctx.urbs[i]) goto free_urbs; usb_fill_bulk_urb(ctx.urbs[i], udev, pipe, buf, size, unlink_queued_callback, &ctx); ctx.urbs[i]->transfer_dma = buf_dma; ctx.urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; } /* Submit all the URBs and then unlink URBs num - 4 and num - 2. */ for (i = 0; i < num; i++) { atomic_inc(&ctx.pending); retval = usb_submit_urb(ctx.urbs[i], GFP_KERNEL); if (retval != 0) { dev_err(&dev->intf->dev, "submit urbs[%d] fail %d\n", i, retval); atomic_dec(&ctx.pending); ctx.status = retval; break; } } if (i == num) { usb_unlink_urb(ctx.urbs[num - 4]); usb_unlink_urb(ctx.urbs[num - 2]); } else { while (--i >= 0) usb_unlink_urb(ctx.urbs[i]); } if (atomic_dec_and_test(&ctx.pending)) /* The extra count */ complete(&ctx.complete); wait_for_completion(&ctx.complete); retval = ctx.status; free_urbs: for (i = 0; i < num; i++) usb_free_urb(ctx.urbs[i]); kfree(ctx.urbs); free_buf: usb_free_coherent(udev, size, buf, buf_dma); return retval; } /*-------------------------------------------------------------------------*/ static int verify_not_halted(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; u16 status; /* shouldn't look or act halted */ retval = usb_get_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status); if (retval < 0) { ERROR(tdev, "ep %02x couldn't get no-halt status, %d\n", ep, retval); return retval; } if (status != 0) { ERROR(tdev, "ep %02x bogus status: %04x != 0\n", ep, status); return -EINVAL; } retval = simple_io(tdev, urb, 1, 0, 0, __func__); if (retval != 0) return -EINVAL; return 0; } static int verify_halted(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; u16 status; /* should look and act halted */ retval = usb_get_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status); if (retval < 0) { ERROR(tdev, "ep %02x couldn't get halt status, %d\n", ep, retval); return retval; } le16_to_cpus(&status); if (status != 1) { ERROR(tdev, "ep %02x bogus status: %04x != 1\n", ep, status); return -EINVAL; } retval = simple_io(tdev, urb, 1, 0, -EPIPE, __func__); if (retval != -EPIPE) return -EINVAL; retval = simple_io(tdev, urb, 1, 0, -EPIPE, "verify_still_halted"); if (retval != -EPIPE) return -EINVAL; return 0; } static int test_halt(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; /* shouldn't look or act halted now */ retval = verify_not_halted(tdev, ep, urb); if (retval < 0) return retval; /* set halt (protocol test only), verify it worked */ retval = usb_control_msg(urb->dev, usb_sndctrlpipe(urb->dev, 0), USB_REQ_SET_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, ep, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval < 0) { ERROR(tdev, "ep %02x couldn't set halt, %d\n", ep, retval); return retval; } retval = verify_halted(tdev, ep, urb); if (retval < 0) return retval; /* clear halt (tests API + protocol), verify it worked */ retval = usb_clear_halt(urb->dev, urb->pipe); if (retval < 0) { ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval); return retval; } retval = verify_not_halted(tdev, ep, urb); if (retval < 0) return retval; /* NOTE: could also verify SET_INTERFACE clear halts ... */ return 0; } static int halt_simple(struct usbtest_dev *dev) { int ep; int retval = 0; struct urb *urb; urb = simple_alloc_urb(testdev_to_usbdev(dev), 0, 512); if (urb == NULL) return -ENOMEM; if (dev->in_pipe) { ep = usb_pipeendpoint(dev->in_pipe) | USB_DIR_IN; urb->pipe = dev->in_pipe; retval = test_halt(dev, ep, urb); if (retval < 0) goto done; } if (dev->out_pipe) { ep = usb_pipeendpoint(dev->out_pipe); urb->pipe = dev->out_pipe; retval = test_halt(dev, ep, urb); } done: simple_free_urb(urb); return retval; } /*-------------------------------------------------------------------------*/ /* Control OUT tests use the vendor control requests from Intel's * USB 2.0 compliance test device: write a buffer, read it back. * * Intel's spec only _requires_ that it work for one packet, which * is pretty weak. Some HCDs place limits here; most devices will * need to be able to handle more than one OUT data packet. We'll * try whatever we're told to try. */ static int ctrl_out(struct usbtest_dev *dev, unsigned count, unsigned length, unsigned vary, unsigned offset) { unsigned i, j, len; int retval; u8 *buf; char *what = "?"; struct usb_device *udev; if (length < 1 || length > 0xffff || vary >= length) return -EINVAL; buf = kmalloc(length + offset, GFP_KERNEL); if (!buf) return -ENOMEM; buf += offset; udev = testdev_to_usbdev(dev); len = length; retval = 0; /* NOTE: hardware might well act differently if we pushed it * with lots back-to-back queued requests. */ for (i = 0; i < count; i++) { /* write patterned data */ for (j = 0; j < len; j++) buf[j] = i + j; retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x5b, USB_DIR_OUT|USB_TYPE_VENDOR, 0, 0, buf, len, USB_CTRL_SET_TIMEOUT); if (retval != len) { what = "write"; if (retval >= 0) { ERROR(dev, "ctrl_out, wlen %d (expected %d)\n", retval, len); retval = -EBADMSG; } break; } /* read it back -- assuming nothing intervened!! */ retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x5c, USB_DIR_IN|USB_TYPE_VENDOR, 0, 0, buf, len, USB_CTRL_GET_TIMEOUT); if (retval != len) { what = "read"; if (retval >= 0) { ERROR(dev, "ctrl_out, rlen %d (expected %d)\n", retval, len); retval = -EBADMSG; } break; } /* fail if we can't verify */ for (j = 0; j < len; j++) { if (buf[j] != (u8) (i + j)) { ERROR(dev, "ctrl_out, byte %d is %d not %d\n", j, buf[j], (u8) i + j); retval = -EBADMSG; break; } } if (retval < 0) { what = "verify"; break; } len += vary; /* [real world] the "zero bytes IN" case isn't really used. * hardware can easily trip up in this weird case, since its * status stage is IN, not OUT like other ep0in transfers. */ if (len > length) len = realworld ? 1 : 0; } if (retval < 0) ERROR(dev, "ctrl_out %s failed, code %d, count %d\n", what, retval, i); kfree(buf - offset); return retval; } /*-------------------------------------------------------------------------*/ /* ISO tests ... mimics common usage * - buffer length is split into N packets (mostly maxpacket sized) * - multi-buffers according to sglen */ struct iso_context { unsigned count; unsigned pending; spinlock_t lock; struct completion done; int submit_error; unsigned long errors; unsigned long packet_count; struct usbtest_dev *dev; }; static void iso_callback(struct urb *urb) { struct iso_context *ctx = urb->context; spin_lock(&ctx->lock); ctx->count--; ctx->packet_count += urb->number_of_packets; if (urb->error_count > 0) ctx->errors += urb->error_count; else if (urb->status != 0) ctx->errors += urb->number_of_packets; else if (urb->actual_length != urb->transfer_buffer_length) ctx->errors++; else if (check_guard_bytes(ctx->dev, urb) != 0) ctx->errors++; if (urb->status == 0 && ctx->count > (ctx->pending - 1) && !ctx->submit_error) { int status = usb_submit_urb(urb, GFP_ATOMIC); switch (status) { case 0: goto done; default: dev_err(&ctx->dev->intf->dev, "iso resubmit err %d\n", status); /* FALLTHROUGH */ case -ENODEV: /* disconnected */ case -ESHUTDOWN: /* endpoint disabled */ ctx->submit_error = 1; break; } } ctx->pending--; if (ctx->pending == 0) { if (ctx->errors) dev_err(&ctx->dev->intf->dev, "iso test, %lu errors out of %lu\n", ctx->errors, ctx->packet_count); complete(&ctx->done); } done: spin_unlock(&ctx->lock); } static struct urb *iso_alloc_urb( struct usb_device *udev, int pipe, struct usb_endpoint_descriptor *desc, long bytes, unsigned offset ) { struct urb *urb; unsigned i, maxp, packets; if (bytes < 0 || !desc) return NULL; maxp = 0x7ff & le16_to_cpu(desc->wMaxPacketSize); maxp *= 1 + (0x3 & (le16_to_cpu(desc->wMaxPacketSize) >> 11)); packets = DIV_ROUND_UP(bytes, maxp); urb = usb_alloc_urb(packets, GFP_KERNEL); if (!urb) return urb; urb->dev = udev; urb->pipe = pipe; urb->number_of_packets = packets; urb->transfer_buffer_length = bytes; urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset, GFP_KERNEL, &urb->transfer_dma); if (!urb->transfer_buffer) { usb_free_urb(urb); return NULL; } if (offset) { memset(urb->transfer_buffer, GUARD_BYTE, offset); urb->transfer_buffer += offset; urb->transfer_dma += offset; } /* For inbound transfers use guard byte so that test fails if data not correctly copied */ memset(urb->transfer_buffer, usb_pipein(urb->pipe) ? GUARD_BYTE : 0, bytes); for (i = 0; i < packets; i++) { /* here, only the last packet will be short */ urb->iso_frame_desc[i].length = min((unsigned) bytes, maxp); bytes -= urb->iso_frame_desc[i].length; urb->iso_frame_desc[i].offset = maxp * i; } urb->complete = iso_callback; /* urb->context = SET BY CALLER */ urb->interval = 1 << (desc->bInterval - 1); urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; return urb; } static int test_iso_queue(struct usbtest_dev *dev, struct usbtest_param *param, int pipe, struct usb_endpoint_descriptor *desc, unsigned offset) { struct iso_context context; struct usb_device *udev; unsigned i; unsigned long packets = 0; int status = 0; struct urb *urbs[10]; /* FIXME no limit */ if (param->sglen > 10) return -EDOM; memset(&context, 0, sizeof context); context.count = param->iterations * param->sglen; context.dev = dev; init_completion(&context.done); spin_lock_init(&context.lock); memset(urbs, 0, sizeof urbs); udev = testdev_to_usbdev(dev); dev_info(&dev->intf->dev, "... iso period %d %sframes, wMaxPacket %04x\n", 1 << (desc->bInterval - 1), (udev->speed == USB_SPEED_HIGH) ? "micro" : "", le16_to_cpu(desc->wMaxPacketSize)); for (i = 0; i < param->sglen; i++) { urbs[i] = iso_alloc_urb(udev, pipe, desc, param->length, offset); if (!urbs[i]) { status = -ENOMEM; goto fail; } packets += urbs[i]->number_of_packets; urbs[i]->context = &context; } packets *= param->iterations; dev_info(&dev->intf->dev, "... total %lu msec (%lu packets)\n", (packets * (1 << (desc->bInterval - 1))) / ((udev->speed == USB_SPEED_HIGH) ? 8 : 1), packets); spin_lock_irq(&context.lock); for (i = 0; i < param->sglen; i++) { ++context.pending; status = usb_submit_urb(urbs[i], GFP_ATOMIC); if (status < 0) { ERROR(dev, "submit iso[%d], error %d\n", i, status); if (i == 0) { spin_unlock_irq(&context.lock); goto fail; } simple_free_urb(urbs[i]); urbs[i] = NULL; context.pending--; context.submit_error = 1; break; } } spin_unlock_irq(&context.lock); wait_for_completion(&context.done); for (i = 0; i < param->sglen; i++) { if (urbs[i]) simple_free_urb(urbs[i]); } /* * Isochronous transfers are expected to fail sometimes. As an * arbitrary limit, we will report an error if any submissions * fail or if the transfer failure rate is > 10%. */ if (status != 0) ; else if (context.submit_error) status = -EACCES; else if (context.errors > context.packet_count / 10) status = -EIO; return status; fail: for (i = 0; i < param->sglen; i++) { if (urbs[i]) simple_free_urb(urbs[i]); } return status; } static int test_unaligned_bulk( struct usbtest_dev *tdev, int pipe, unsigned length, int iterations, unsigned transfer_flags, const char *label) { int retval; struct urb *urb = usbtest_alloc_urb( testdev_to_usbdev(tdev), pipe, length, transfer_flags, 1); if (!urb) return -ENOMEM; retval = simple_io(tdev, urb, iterations, 0, 0, label); simple_free_urb(urb); return retval; } /*-------------------------------------------------------------------------*/ /* We only have this one interface to user space, through usbfs. * User mode code can scan usbfs to find N different devices (maybe on * different busses) to use when testing, and allocate one thread per * test. So discovery is simplified, and we have no device naming issues. * * Don't use these only as stress/load tests. Use them along with with * other USB bus activity: plugging, unplugging, mousing, mp3 playback, * video capture, and so on. Run different tests at different times, in * different sequences. Nothing here should interact with other devices, * except indirectly by consuming USB bandwidth and CPU resources for test * threads and request completion. But the only way to know that for sure * is to test when HC queues are in use by many devices. * * WARNING: Because usbfs grabs udev->dev.sem before calling this ioctl(), * it locks out usbcore in certain code paths. Notably, if you disconnect * the device-under-test, khubd will wait block forever waiting for the * ioctl to complete ... so that usb_disconnect() can abort the pending * urbs and then call usbtest_disconnect(). To abort a test, you're best * off just killing the userspace task and waiting for it to exit. */ /* No BKL needed */ static int usbtest_ioctl(struct usb_interface *intf, unsigned int code, void *buf) { struct usbtest_dev *dev = usb_get_intfdata(intf); struct usb_device *udev = testdev_to_usbdev(dev); struct usbtest_param *param = buf; int retval = -EOPNOTSUPP; struct urb *urb; struct scatterlist *sg; struct usb_sg_request req; struct timeval start; unsigned i; /* FIXME USBDEVFS_CONNECTINFO doesn't say how fast the device is. */ pattern = mod_pattern; if (code != USBTEST_REQUEST) return -EOPNOTSUPP; if (param->iterations <= 0) return -EINVAL; if (mutex_lock_interruptible(&dev->lock)) return -ERESTARTSYS; /* FIXME: What if a system sleep starts while a test is running? */ /* some devices, like ez-usb default devices, need a non-default * altsetting to have any active endpoints. some tests change * altsettings; force a default so most tests don't need to check. */ if (dev->info->alt >= 0) { int res; if (intf->altsetting->desc.bInterfaceNumber) { mutex_unlock(&dev->lock); return -ENODEV; } res = set_altsetting(dev, dev->info->alt); if (res) { dev_err(&intf->dev, "set altsetting to %d failed, %d\n", dev->info->alt, res); mutex_unlock(&dev->lock); return res; } } /* * Just a bunch of test cases that every HCD is expected to handle. * * Some may need specific firmware, though it'd be good to have * one firmware image to handle all the test cases. * * FIXME add more tests! cancel requests, verify the data, control * queueing, concurrent read+write threads, and so on. */ do_gettimeofday(&start); switch (param->test_num) { case 0: dev_info(&intf->dev, "TEST 0: NOP\n"); retval = 0; break; /* Simple non-queued bulk I/O tests */ case 1: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 1: write %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->out_pipe, param->length); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test1"); simple_free_urb(urb); break; case 2: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 2: read %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->in_pipe, param->length); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test2"); simple_free_urb(urb); break; case 3: if (dev->out_pipe == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 3: write/%d 0..%d bytes %u times\n", param->vary, param->length, param->iterations); urb = simple_alloc_urb(udev, dev->out_pipe, param->length); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = simple_io(dev, urb, param->iterations, param->vary, 0, "test3"); simple_free_urb(urb); break; case 4: if (dev->in_pipe == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 4: read/%d 0..%d bytes %u times\n", param->vary, param->length, param->iterations); urb = simple_alloc_urb(udev, dev->in_pipe, param->length); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = simple_io(dev, urb, param->iterations, param->vary, 0, "test4"); simple_free_urb(urb); break; /* Queued bulk I/O tests */ case 5: if (dev->out_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 5: write %d sglists %d entries of %d bytes\n", param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, 0); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = perform_sglist(dev, param->iterations, dev->out_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 6: if (dev->in_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 6: read %d sglists %d entries of %d bytes\n", param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, 0); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = perform_sglist(dev, param->iterations, dev->in_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 7: if (dev->out_pipe == 0 || param->sglen == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 7: write/%d %d sglists %d entries 0..%d bytes\n", param->vary, param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, param->vary); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = perform_sglist(dev, param->iterations, dev->out_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 8: if (dev->in_pipe == 0 || param->sglen == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 8: read/%d %d sglists %d entries 0..%d bytes\n", param->vary, param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, param->vary); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = perform_sglist(dev, param->iterations, dev->in_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; /* non-queued sanity tests for control (chapter 9 subset) */ case 9: retval = 0; dev_info(&intf->dev, "TEST 9: ch9 (subset) control tests, %d times\n", param->iterations); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = ch9_postconfig(dev); if (retval) dev_err(&intf->dev, "ch9 subset failed, " "iterations left %d\n", i); break; /* queued control messaging */ case 10: if (param->sglen == 0) break; retval = 0; dev_info(&intf->dev, "TEST 10: queue %d control calls, %d times\n", param->sglen, param->iterations); retval = test_ctrl_queue(dev, param); break; /* simple non-queued unlinks (ring with one urb) */ case 11: if (dev->in_pipe == 0 || !param->length) break; retval = 0; dev_info(&intf->dev, "TEST 11: unlink %d reads of %d\n", param->iterations, param->length); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = unlink_simple(dev, dev->in_pipe, param->length); if (retval) dev_err(&intf->dev, "unlink reads failed %d, " "iterations left %d\n", retval, i); break; case 12: if (dev->out_pipe == 0 || !param->length) break; retval = 0; dev_info(&intf->dev, "TEST 12: unlink %d writes of %d\n", param->iterations, param->length); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = unlink_simple(dev, dev->out_pipe, param->length); if (retval) dev_err(&intf->dev, "unlink writes failed %d, " "iterations left %d\n", retval, i); break; /* ep halt tests */ case 13: if (dev->out_pipe == 0 && dev->in_pipe == 0) break; retval = 0; dev_info(&intf->dev, "TEST 13: set/clear %d halts\n", param->iterations); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = halt_simple(dev); if (retval) ERROR(dev, "halts failed, iterations left %d\n", i); break; /* control write tests */ case 14: if (!dev->info->ctrl_out) break; dev_info(&intf->dev, "TEST 14: %d ep0out, %d..%d vary %d\n", param->iterations, realworld ? 1 : 0, param->length, param->vary); retval = ctrl_out(dev, param->iterations, param->length, param->vary, 0); break; /* iso write tests */ case 15: if (dev->out_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 15: write %d iso, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); /* FIRMWARE: iso sink */ retval = test_iso_queue(dev, param, dev->out_iso_pipe, dev->iso_out, 0); break; /* iso read tests */ case 16: if (dev->in_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 16: read %d iso, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); /* FIRMWARE: iso source */ retval = test_iso_queue(dev, param, dev->in_iso_pipe, dev->iso_in, 0); break; /* FIXME scatterlist cancel (needs helper thread) */ /* Tests for bulk I/O using DMA mapping by core and odd address */ case 17: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 17: write odd addr %d bytes %u times core map\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->out_pipe, param->length, param->iterations, 0, "test17"); break; case 18: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 18: read odd addr %d bytes %u times core map\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->in_pipe, param->length, param->iterations, 0, "test18"); break; /* Tests for bulk I/O using premapped coherent buffer and odd address */ case 19: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 19: write odd addr %d bytes %u times premapped\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->out_pipe, param->length, param->iterations, URB_NO_TRANSFER_DMA_MAP, "test19"); break; case 20: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 20: read odd addr %d bytes %u times premapped\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->in_pipe, param->length, param->iterations, URB_NO_TRANSFER_DMA_MAP, "test20"); break; /* control write tests with unaligned buffer */ case 21: if (!dev->info->ctrl_out) break; dev_info(&intf->dev, "TEST 21: %d ep0out odd addr, %d..%d vary %d\n", param->iterations, realworld ? 1 : 0, param->length, param->vary); retval = ctrl_out(dev, param->iterations, param->length, param->vary, 1); break; /* unaligned iso tests */ case 22: if (dev->out_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 22: write %d iso odd, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); retval = test_iso_queue(dev, param, dev->out_iso_pipe, dev->iso_out, 1); break; case 23: if (dev->in_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 23: read %d iso odd, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); retval = test_iso_queue(dev, param, dev->in_iso_pipe, dev->iso_in, 1); break; /* unlink URBs from a bulk-OUT queue */ case 24: if (dev->out_pipe == 0 || !param->length || param->sglen < 4) break; retval = 0; dev_info(&intf->dev, "TEST 17: unlink from %d queues of " "%d %d-byte writes\n", param->iterations, param->sglen, param->length); for (i = param->iterations; retval == 0 && i > 0; --i) { retval = unlink_queued(dev, dev->out_pipe, param->sglen, param->length); if (retval) { dev_err(&intf->dev, "unlink queued writes failed %d, " "iterations left %d\n", retval, i); break; } } break; } do_gettimeofday(¶m->duration); param->duration.tv_sec -= start.tv_sec; param->duration.tv_usec -= start.tv_usec; if (param->duration.tv_usec < 0) { param->duration.tv_usec += 1000 * 1000; param->duration.tv_sec -= 1; } mutex_unlock(&dev->lock); return retval; } /*-------------------------------------------------------------------------*/ static unsigned force_interrupt; module_param(force_interrupt, uint, 0); MODULE_PARM_DESC(force_interrupt, "0 = test default; else interrupt"); #ifdef GENERIC static unsigned short vendor; module_param(vendor, ushort, 0); MODULE_PARM_DESC(vendor, "vendor code (from usb-if)"); static unsigned short product; module_param(product, ushort, 0); MODULE_PARM_DESC(product, "product code (from vendor)"); #endif static int usbtest_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev; struct usbtest_dev *dev; struct usbtest_info *info; char *rtest, *wtest; char *irtest, *iwtest; udev = interface_to_usbdev(intf); #ifdef GENERIC /* specify devices by module parameters? */ if (id->match_flags == 0) { /* vendor match required, product match optional */ if (!vendor || le16_to_cpu(udev->descriptor.idVendor) != (u16)vendor) return -ENODEV; if (product && le16_to_cpu(udev->descriptor.idProduct) != (u16)product) return -ENODEV; dev_info(&intf->dev, "matched module params, " "vend=0x%04x prod=0x%04x\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); } #endif dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; info = (struct usbtest_info *) id->driver_info; dev->info = info; mutex_init(&dev->lock); dev->intf = intf; /* cacheline-aligned scratch for i/o */ dev->buf = kmalloc(TBUF_SIZE, GFP_KERNEL); if (dev->buf == NULL) { kfree(dev); return -ENOMEM; } /* NOTE this doesn't yet test the handful of difference that are * visible with high speed interrupts: bigger maxpacket (1K) and * "high bandwidth" modes (up to 3 packets/uframe). */ rtest = wtest = ""; irtest = iwtest = ""; if (force_interrupt || udev->speed == USB_SPEED_LOW) { if (info->ep_in) { dev->in_pipe = usb_rcvintpipe(udev, info->ep_in); rtest = " intr-in"; } if (info->ep_out) { dev->out_pipe = usb_sndintpipe(udev, info->ep_out); wtest = " intr-out"; } } else { if (info->autoconf) { int status; status = get_endpoints(dev, intf); if (status < 0) { WARNING(dev, "couldn't get endpoints, %d\n", status); return status; } /* may find bulk or ISO pipes */ } else { if (info->ep_in) dev->in_pipe = usb_rcvbulkpipe(udev, info->ep_in); if (info->ep_out) dev->out_pipe = usb_sndbulkpipe(udev, info->ep_out); } if (dev->in_pipe) rtest = " bulk-in"; if (dev->out_pipe) wtest = " bulk-out"; if (dev->in_iso_pipe) irtest = " iso-in"; if (dev->out_iso_pipe) iwtest = " iso-out"; } usb_set_intfdata(intf, dev); dev_info(&intf->dev, "%s\n", info->name); dev_info(&intf->dev, "%s speed {control%s%s%s%s%s} tests%s\n", ({ char *tmp; switch (udev->speed) { case USB_SPEED_LOW: tmp = "low"; break; case USB_SPEED_FULL: tmp = "full"; break; case USB_SPEED_HIGH: tmp = "high"; break; case USB_SPEED_SUPER: tmp = "super"; break; default: tmp = "unknown"; break; }; tmp; }), info->ctrl_out ? " in/out" : "", rtest, wtest, irtest, iwtest, info->alt >= 0 ? " (+alt)" : ""); return 0; } static int usbtest_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int usbtest_resume(struct usb_interface *intf) { return 0; } static void usbtest_disconnect(struct usb_interface *intf) { struct usbtest_dev *dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); dev_dbg(&intf->dev, "disconnect\n"); kfree(dev); } /* Basic testing only needs a device that can source or sink bulk traffic. * Any device can test control transfers (default with GENERIC binding). * * Several entries work with the default EP0 implementation that's built * into EZ-USB chips. There's a default vendor ID which can be overridden * by (very) small config EEPROMS, but otherwise all these devices act * identically until firmware is loaded: only EP0 works. It turns out * to be easy to make other endpoints work, without modifying that EP0 * behavior. For now, we expect that kind of firmware. */ /* an21xx or fx versions of ez-usb */ static struct usbtest_info ez1_info = { .name = "EZ-USB device", .ep_in = 2, .ep_out = 2, .alt = 1, }; /* fx2 version of ez-usb */ static struct usbtest_info ez2_info = { .name = "FX2 device", .ep_in = 6, .ep_out = 2, .alt = 1, }; /* ezusb family device with dedicated usb test firmware, */ static struct usbtest_info fw_info = { .name = "usb test device", .ep_in = 2, .ep_out = 2, .alt = 1, .autoconf = 1, /* iso and ctrl_out need autoconf */ .ctrl_out = 1, .iso = 1, /* iso_ep's are #8 in/out */ }; /* peripheral running Linux and 'zero.c' test firmware, or * its user-mode cousin. different versions of this use * different hardware with the same vendor/product codes. * host side MUST rely on the endpoint descriptors. */ static struct usbtest_info gz_info = { .name = "Linux gadget zero", .autoconf = 1, .ctrl_out = 1, .alt = 0, }; static struct usbtest_info um_info = { .name = "Linux user mode test driver", .autoconf = 1, .alt = -1, }; static struct usbtest_info um2_info = { .name = "Linux user mode ISO test driver", .autoconf = 1, .iso = 1, .alt = -1, }; #ifdef IBOT2 /* this is a nice source of high speed bulk data; * uses an FX2, with firmware provided in the device */ static struct usbtest_info ibot2_info = { .name = "iBOT2 webcam", .ep_in = 2, .alt = -1, }; #endif #ifdef GENERIC /* we can use any device to test control traffic */ static struct usbtest_info generic_info = { .name = "Generic USB device", .alt = -1, }; #endif static const struct usb_device_id id_table[] = { /*-------------------------------------------------------------*/ /* EZ-USB devices which download firmware to replace (or in our * case augment) the default device implementation. */ /* generic EZ-USB FX controller */ { USB_DEVICE(0x0547, 0x2235), .driver_info = (unsigned long) &ez1_info, }, /* CY3671 development board with EZ-USB FX */ { USB_DEVICE(0x0547, 0x0080), .driver_info = (unsigned long) &ez1_info, }, /* generic EZ-USB FX2 controller (or development board) */ { USB_DEVICE(0x04b4, 0x8613), .driver_info = (unsigned long) &ez2_info, }, /* re-enumerated usb test device firmware */ { USB_DEVICE(0xfff0, 0xfff0), .driver_info = (unsigned long) &fw_info, }, /* "Gadget Zero" firmware runs under Linux */ { USB_DEVICE(0x0525, 0xa4a0), .driver_info = (unsigned long) &gz_info, }, /* so does a user-mode variant */ { USB_DEVICE(0x0525, 0xa4a4), .driver_info = (unsigned long) &um_info, }, /* ... and a user-mode variant that talks iso */ { USB_DEVICE(0x0525, 0xa4a3), .driver_info = (unsigned long) &um2_info, }, #ifdef KEYSPAN_19Qi /* Keyspan 19qi uses an21xx (original EZ-USB) */ /* this does not coexist with the real Keyspan 19qi driver! */ { USB_DEVICE(0x06cd, 0x010b), .driver_info = (unsigned long) &ez1_info, }, #endif /*-------------------------------------------------------------*/ #ifdef IBOT2 /* iBOT2 makes a nice source of high speed bulk-in data */ /* this does not coexist with a real iBOT2 driver! */ { USB_DEVICE(0x0b62, 0x0059), .driver_info = (unsigned long) &ibot2_info, }, #endif /*-------------------------------------------------------------*/ #ifdef GENERIC /* module params can specify devices to use for control tests */ { .driver_info = (unsigned long) &generic_info, }, #endif /*-------------------------------------------------------------*/ { } }; MODULE_DEVICE_TABLE(usb, id_table); static struct usb_driver usbtest_driver = { .name = "usbtest", .id_table = id_table, .probe = usbtest_probe, .unlocked_ioctl = usbtest_ioctl, .disconnect = usbtest_disconnect, .suspend = usbtest_suspend, .resume = usbtest_resume, }; /*-------------------------------------------------------------------------*/ static int __init usbtest_init(void) { #ifdef GENERIC if (vendor) pr_debug("params: vend=0x%04x prod=0x%04x\n", vendor, product); #endif return usb_register(&usbtest_driver); } module_init(usbtest_init); static void __exit usbtest_exit(void) { usb_deregister(&usbtest_driver); } module_exit(usbtest_exit); MODULE_DESCRIPTION("USB Core/HCD Testing Driver"); MODULE_LICENSE("GPL");