/* * MUSB OTG driver host support * * Copyright 2005 Mentor Graphics Corporation * Copyright (C) 2005-2006 by Texas Instruments * Copyright (C) 2006-2007 Nokia Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include "musb_core.h" #include "musb_host.h" /* MUSB HOST status 22-mar-2006 * * - There's still lots of partial code duplication for fault paths, so * they aren't handled as consistently as they need to be. * * - PIO mostly behaved when last tested. * + including ep0, with all usbtest cases 9, 10 * + usbtest 14 (ep0out) doesn't seem to run at all * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest * configurations, but otherwise double buffering passes basic tests. * + for 2.6.N, for N > ~10, needs API changes for hcd framework. * * - DMA (CPPI) ... partially behaves, not currently recommended * + about 1/15 the speed of typical EHCI implementations (PCI) * + RX, all too often reqpkt seems to misbehave after tx * + TX, no known issues (other than evident silicon issue) * * - DMA (Mentor/OMAP) ...has at least toggle update problems * * - Still no traffic scheduling code to make NAKing for bulk or control * transfers unable to starve other requests; or to make efficient use * of hardware with periodic transfers. (Note that network drivers * commonly post bulk reads that stay pending for a long time; these * would make very visible trouble.) * * - Not tested with HNP, but some SRP paths seem to behave. * * NOTE 24-August-2006: * * - Bulk traffic finally uses both sides of hardware ep1, freeing up an * extra endpoint for periodic use enabling hub + keybd + mouse. That * mostly works, except that with "usbnet" it's easy to trigger cases * with "ping" where RX loses. (a) ping to davinci, even "ping -f", * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses * although ARP RX wins. (That test was done with a full speed link.) */ /* * NOTE on endpoint usage: * * CONTROL transfers all go through ep0. BULK ones go through dedicated IN * and OUT endpoints ... hardware is dedicated for those "async" queue(s). * * (Yes, bulk _could_ use more of the endpoints than that, and would even * benefit from it ... one remote device may easily be NAKing while others * need to perform transfers in that same direction. The same thing could * be done in software though, assuming dma cooperates.) * * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints. * So far that scheduling is both dumb and optimistic: the endpoint will be * "claimed" until its software queue is no longer refilled. No multiplexing * of transfers between endpoints, or anything clever. */ static void musb_ep_program(struct musb *musb, u8 epnum, struct urb *urb, unsigned int nOut, u8 *buf, u32 len); /* * Clear TX fifo. Needed to avoid BABBLE errors. */ static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep) { void __iomem *epio = ep->regs; u16 csr; int retries = 1000; csr = musb_readw(epio, MUSB_TXCSR); while (csr & MUSB_TXCSR_FIFONOTEMPTY) { DBG(5, "Host TX FIFONOTEMPTY csr: %02x\n", csr); csr |= MUSB_TXCSR_FLUSHFIFO; musb_writew(epio, MUSB_TXCSR, csr); csr = musb_readw(epio, MUSB_TXCSR); if (retries-- < 1) { ERR("Could not flush host TX fifo: csr: %04x\n", csr); return; } mdelay(1); } } /* * Start transmit. Caller is responsible for locking shared resources. * musb must be locked. */ static inline void musb_h_tx_start(struct musb_hw_ep *ep) { u16 txcsr; /* NOTE: no locks here; caller should lock and select EP */ if (ep->epnum) { txcsr = musb_readw(ep->regs, MUSB_TXCSR); txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS; musb_writew(ep->regs, MUSB_TXCSR, txcsr); } else { txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY; musb_writew(ep->regs, MUSB_CSR0, txcsr); } } static inline void cppi_host_txdma_start(struct musb_hw_ep *ep) { u16 txcsr; /* NOTE: no locks here; caller should lock and select EP */ txcsr = musb_readw(ep->regs, MUSB_TXCSR); txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS; musb_writew(ep->regs, MUSB_TXCSR, txcsr); } /* * Start the URB at the front of an endpoint's queue * end must be claimed from the caller. * * Context: controller locked, irqs blocked */ static void musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh) { u16 frame; u32 len; void *buf; void __iomem *mbase = musb->mregs; struct urb *urb = next_urb(qh); struct musb_hw_ep *hw_ep = qh->hw_ep; unsigned pipe = urb->pipe; u8 address = usb_pipedevice(pipe); int epnum = hw_ep->epnum; /* initialize software qh state */ qh->offset = 0; qh->segsize = 0; /* gather right source of data */ switch (qh->type) { case USB_ENDPOINT_XFER_CONTROL: /* control transfers always start with SETUP */ is_in = 0; hw_ep->out_qh = qh; musb->ep0_stage = MUSB_EP0_START; buf = urb->setup_packet; len = 8; break; case USB_ENDPOINT_XFER_ISOC: qh->iso_idx = 0; qh->frame = 0; buf = urb->transfer_buffer + urb->iso_frame_desc[0].offset; len = urb->iso_frame_desc[0].length; break; default: /* bulk, interrupt */ buf = urb->transfer_buffer; len = urb->transfer_buffer_length; } DBG(4, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n", qh, urb, address, qh->epnum, is_in ? "in" : "out", ({char *s; switch (qh->type) { case USB_ENDPOINT_XFER_CONTROL: s = ""; break; case USB_ENDPOINT_XFER_BULK: s = "-bulk"; break; case USB_ENDPOINT_XFER_ISOC: s = "-iso"; break; default: s = "-intr"; break; }; s; }), epnum, buf, len); /* Configure endpoint */ if (is_in || hw_ep->is_shared_fifo) hw_ep->in_qh = qh; else hw_ep->out_qh = qh; musb_ep_program(musb, epnum, urb, !is_in, buf, len); /* transmit may have more work: start it when it is time */ if (is_in) return; /* determine if the time is right for a periodic transfer */ switch (qh->type) { case USB_ENDPOINT_XFER_ISOC: case USB_ENDPOINT_XFER_INT: DBG(3, "check whether there's still time for periodic Tx\n"); qh->iso_idx = 0; frame = musb_readw(mbase, MUSB_FRAME); /* FIXME this doesn't implement that scheduling policy ... * or handle framecounter wrapping */ if ((urb->transfer_flags & URB_ISO_ASAP) || (frame >= urb->start_frame)) { /* REVISIT the SOF irq handler shouldn't duplicate * this code; and we don't init urb->start_frame... */ qh->frame = 0; goto start; } else { qh->frame = urb->start_frame; /* enable SOF interrupt so we can count down */ DBG(1, "SOF for %d\n", epnum); #if 1 /* ifndef CONFIG_ARCH_DAVINCI */ musb_writeb(mbase, MUSB_INTRUSBE, 0xff); #endif } break; default: start: DBG(4, "Start TX%d %s\n", epnum, hw_ep->tx_channel ? "dma" : "pio"); if (!hw_ep->tx_channel) musb_h_tx_start(hw_ep); else if (is_cppi_enabled() || tusb_dma_omap()) cppi_host_txdma_start(hw_ep); } } /* caller owns controller lock, irqs are blocked */ static void __musb_giveback(struct musb *musb, struct urb *urb, int status) __releases(musb->lock) __acquires(musb->lock) { DBG(({ int level; switch (urb->status) { case 0: level = 4; break; /* common/boring faults */ case -EREMOTEIO: case -ESHUTDOWN: case -ECONNRESET: case -EPIPE: level = 3; break; default: level = 2; break; }; level; }), "complete %p (%d), dev%d ep%d%s, %d/%d\n", urb, urb->status, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", urb->actual_length, urb->transfer_buffer_length ); usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb); spin_unlock(&musb->lock); usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status); spin_lock(&musb->lock); } /* for bulk/interrupt endpoints only */ static inline void musb_save_toggle(struct musb_hw_ep *ep, int is_in, struct urb *urb) { struct usb_device *udev = urb->dev; u16 csr; void __iomem *epio = ep->regs; struct musb_qh *qh; /* FIXME: the current Mentor DMA code seems to have * problems getting toggle correct. */ if (is_in || ep->is_shared_fifo) qh = ep->in_qh; else qh = ep->out_qh; if (!is_in) { csr = musb_readw(epio, MUSB_TXCSR); usb_settoggle(udev, qh->epnum, 1, (csr & MUSB_TXCSR_H_DATATOGGLE) ? 1 : 0); } else { csr = musb_readw(epio, MUSB_RXCSR); usb_settoggle(udev, qh->epnum, 0, (csr & MUSB_RXCSR_H_DATATOGGLE) ? 1 : 0); } } /* caller owns controller lock, irqs are blocked */ static struct musb_qh * musb_giveback(struct musb_qh *qh, struct urb *urb, int status) { int is_in; struct musb_hw_ep *ep = qh->hw_ep; struct musb *musb = ep->musb; int ready = qh->is_ready; if (ep->is_shared_fifo) is_in = 1; else is_in = usb_pipein(urb->pipe); /* save toggle eagerly, for paranoia */ switch (qh->type) { case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: musb_save_toggle(ep, is_in, urb); break; case USB_ENDPOINT_XFER_ISOC: if (status == 0 && urb->error_count) status = -EXDEV; break; } qh->is_ready = 0; __musb_giveback(musb, urb, status); qh->is_ready = ready; /* reclaim resources (and bandwidth) ASAP; deschedule it, and * invalidate qh as soon as list_empty(&hep->urb_list) */ if (list_empty(&qh->hep->urb_list)) { struct list_head *head; if (is_in) ep->rx_reinit = 1; else ep->tx_reinit = 1; /* clobber old pointers to this qh */ if (is_in || ep->is_shared_fifo) ep->in_qh = NULL; else ep->out_qh = NULL; qh->hep->hcpriv = NULL; switch (qh->type) { case USB_ENDPOINT_XFER_ISOC: case USB_ENDPOINT_XFER_INT: /* this is where periodic bandwidth should be * de-allocated if it's tracked and allocated; * and where we'd update the schedule tree... */ musb->periodic[ep->epnum] = NULL; kfree(qh); qh = NULL; break; case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_BULK: /* fifo policy for these lists, except that NAKing * should rotate a qh to the end (for fairness). */ head = qh->ring.prev; list_del(&qh->ring); kfree(qh); qh = first_qh(head); break; } } return qh; } /* * Advance this hardware endpoint's queue, completing the specified urb and * advancing to either the next urb queued to that qh, or else invalidating * that qh and advancing to the next qh scheduled after the current one. * * Context: caller owns controller lock, irqs are blocked */ static void musb_advance_schedule(struct musb *musb, struct urb *urb, struct musb_hw_ep *hw_ep, int is_in) { struct musb_qh *qh; if (is_in || hw_ep->is_shared_fifo) qh = hw_ep->in_qh; else qh = hw_ep->out_qh; if (urb->status == -EINPROGRESS) qh = musb_giveback(qh, urb, 0); else qh = musb_giveback(qh, urb, urb->status); if (qh && qh->is_ready && !list_empty(&qh->hep->urb_list)) { DBG(4, "... next ep%d %cX urb %p\n", hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh)); musb_start_urb(musb, is_in, qh); } } static u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr) { /* we don't want fifo to fill itself again; * ignore dma (various models), * leave toggle alone (may not have been saved yet) */ csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY; csr &= ~(MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_AUTOREQ | MUSB_RXCSR_AUTOCLEAR); /* write 2x to allow double buffering */ musb_writew(hw_ep->regs, MUSB_RXCSR, csr); musb_writew(hw_ep->regs, MUSB_RXCSR, csr); /* flush writebuffer */ return musb_readw(hw_ep->regs, MUSB_RXCSR); } /* * PIO RX for a packet (or part of it). */ static bool musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err) { u16 rx_count; u8 *buf; u16 csr; bool done = false; u32 length; int do_flush = 0; struct musb_hw_ep *hw_ep = musb->endpoints + epnum; void __iomem *epio = hw_ep->regs; struct musb_qh *qh = hw_ep->in_qh; int pipe = urb->pipe; void *buffer = urb->transfer_buffer; /* musb_ep_select(mbase, epnum); */ rx_count = musb_readw(epio, MUSB_RXCOUNT); DBG(3, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count, urb->transfer_buffer, qh->offset, urb->transfer_buffer_length); /* unload FIFO */ if (usb_pipeisoc(pipe)) { int status = 0; struct usb_iso_packet_descriptor *d; if (iso_err) { status = -EILSEQ; urb->error_count++; } d = urb->iso_frame_desc + qh->iso_idx; buf = buffer + d->offset; length = d->length; if (rx_count > length) { if (status == 0) { status = -EOVERFLOW; urb->error_count++; } DBG(2, "** OVERFLOW %d into %d\n", rx_count, length); do_flush = 1; } else length = rx_count; urb->actual_length += length; d->actual_length = length; d->status = status; /* see if we are done */ done = (++qh->iso_idx >= urb->number_of_packets); } else { /* non-isoch */ buf = buffer + qh->offset; length = urb->transfer_buffer_length - qh->offset; if (rx_count > length) { if (urb->status == -EINPROGRESS) urb->status = -EOVERFLOW; DBG(2, "** OVERFLOW %d into %d\n", rx_count, length); do_flush = 1; } else length = rx_count; urb->actual_length += length; qh->offset += length; /* see if we are done */ done = (urb->actual_length == urb->transfer_buffer_length) || (rx_count < qh->maxpacket) || (urb->status != -EINPROGRESS); if (done && (urb->status == -EINPROGRESS) && (urb->transfer_flags & URB_SHORT_NOT_OK) && (urb->actual_length < urb->transfer_buffer_length)) urb->status = -EREMOTEIO; } musb_read_fifo(hw_ep, length, buf); csr = musb_readw(epio, MUSB_RXCSR); csr |= MUSB_RXCSR_H_WZC_BITS; if (unlikely(do_flush)) musb_h_flush_rxfifo(hw_ep, csr); else { /* REVISIT this assumes AUTOCLEAR is never set */ csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT); if (!done) csr |= MUSB_RXCSR_H_REQPKT; musb_writew(epio, MUSB_RXCSR, csr); } return done; } /* we don't always need to reinit a given side of an endpoint... * when we do, use tx/rx reinit routine and then construct a new CSR * to address data toggle, NYET, and DMA or PIO. * * it's possible that driver bugs (especially for DMA) or aborting a * transfer might have left the endpoint busier than it should be. * the busy/not-empty tests are basically paranoia. */ static void musb_rx_reinit(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep) { u16 csr; /* NOTE: we know the "rx" fifo reinit never triggers for ep0. * That always uses tx_reinit since ep0 repurposes TX register * offsets; the initial SETUP packet is also a kind of OUT. */ /* if programmed for Tx, put it in RX mode */ if (ep->is_shared_fifo) { csr = musb_readw(ep->regs, MUSB_TXCSR); if (csr & MUSB_TXCSR_MODE) { musb_h_tx_flush_fifo(ep); musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_FRCDATATOG); } /* clear mode (and everything else) to enable Rx */ musb_writew(ep->regs, MUSB_TXCSR, 0); /* scrub all previous state, clearing toggle */ } else { csr = musb_readw(ep->regs, MUSB_RXCSR); if (csr & MUSB_RXCSR_RXPKTRDY) WARNING("rx%d, packet/%d ready?\n", ep->epnum, musb_readw(ep->regs, MUSB_RXCOUNT)); musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG); } /* target addr and (for multipoint) hub addr/port */ if (musb->is_multipoint) { musb_writeb(ep->target_regs, MUSB_RXFUNCADDR, qh->addr_reg); musb_writeb(ep->target_regs, MUSB_RXHUBADDR, qh->h_addr_reg); musb_writeb(ep->target_regs, MUSB_RXHUBPORT, qh->h_port_reg); } else musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg); /* protocol/endpoint, interval/NAKlimit, i/o size */ musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg); musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg); /* NOTE: bulk combining rewrites high bits of maxpacket */ musb_writew(ep->regs, MUSB_RXMAXP, qh->maxpacket); ep->rx_reinit = 0; } /* * Program an HDRC endpoint as per the given URB * Context: irqs blocked, controller lock held */ static void musb_ep_program(struct musb *musb, u8 epnum, struct urb *urb, unsigned int is_out, u8 *buf, u32 len) { struct dma_controller *dma_controller; struct dma_channel *dma_channel; u8 dma_ok; void __iomem *mbase = musb->mregs; struct musb_hw_ep *hw_ep = musb->endpoints + epnum; void __iomem *epio = hw_ep->regs; struct musb_qh *qh; u16 packet_sz; if (!is_out || hw_ep->is_shared_fifo) qh = hw_ep->in_qh; else qh = hw_ep->out_qh; packet_sz = qh->maxpacket; DBG(3, "%s hw%d urb %p spd%d dev%d ep%d%s " "h_addr%02x h_port%02x bytes %d\n", is_out ? "-->" : "<--", epnum, urb, urb->dev->speed, qh->addr_reg, qh->epnum, is_out ? "out" : "in", qh->h_addr_reg, qh->h_port_reg, len); musb_ep_select(mbase, epnum); /* candidate for DMA? */ dma_controller = musb->dma_controller; if (is_dma_capable() && epnum && dma_controller) { dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel; if (!dma_channel) { dma_channel = dma_controller->channel_alloc( dma_controller, hw_ep, is_out); if (is_out) hw_ep->tx_channel = dma_channel; else hw_ep->rx_channel = dma_channel; } } else dma_channel = NULL; /* make sure we clear DMAEnab, autoSet bits from previous run */ /* OUT/transmit/EP0 or IN/receive? */ if (is_out) { u16 csr; u16 int_txe; u16 load_count; csr = musb_readw(epio, MUSB_TXCSR); /* disable interrupt in case we flush */ int_txe = musb_readw(mbase, MUSB_INTRTXE); musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum)); /* general endpoint setup */ if (epnum) { /* ASSERT: TXCSR_DMAENAB was already cleared */ /* flush all old state, set default */ musb_h_tx_flush_fifo(hw_ep); csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_FRCDATATOG | MUSB_TXCSR_H_RXSTALL | MUSB_TXCSR_H_ERROR | MUSB_TXCSR_TXPKTRDY ); csr |= MUSB_TXCSR_MODE; if (usb_gettoggle(urb->dev, qh->epnum, 1)) csr |= MUSB_TXCSR_H_WR_DATATOGGLE | MUSB_TXCSR_H_DATATOGGLE; else csr |= MUSB_TXCSR_CLRDATATOG; /* twice in case of double packet buffering */ musb_writew(epio, MUSB_TXCSR, csr); /* REVISIT may need to clear FLUSHFIFO ... */ musb_writew(epio, MUSB_TXCSR, csr); csr = musb_readw(epio, MUSB_TXCSR); } else { /* endpoint 0: just flush */ musb_writew(epio, MUSB_CSR0, csr | MUSB_CSR0_FLUSHFIFO); musb_writew(epio, MUSB_CSR0, csr | MUSB_CSR0_FLUSHFIFO); } /* target addr and (for multipoint) hub addr/port */ if (musb->is_multipoint) { musb_writeb(mbase, MUSB_BUSCTL_OFFSET(epnum, MUSB_TXFUNCADDR), qh->addr_reg); musb_writeb(mbase, MUSB_BUSCTL_OFFSET(epnum, MUSB_TXHUBADDR), qh->h_addr_reg); musb_writeb(mbase, MUSB_BUSCTL_OFFSET(epnum, MUSB_TXHUBPORT), qh->h_port_reg); /* FIXME if !epnum, do the same for RX ... */ } else musb_writeb(mbase, MUSB_FADDR, qh->addr_reg); /* protocol/endpoint/interval/NAKlimit */ if (epnum) { musb_writeb(epio, MUSB_TXTYPE, qh->type_reg); if (can_bulk_split(musb, qh->type)) musb_writew(epio, MUSB_TXMAXP, packet_sz | ((hw_ep->max_packet_sz_tx / packet_sz) - 1) << 11); else musb_writew(epio, MUSB_TXMAXP, packet_sz); musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg); } else { musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg); if (musb->is_multipoint) musb_writeb(epio, MUSB_TYPE0, qh->type_reg); } if (can_bulk_split(musb, qh->type)) load_count = min((u32) hw_ep->max_packet_sz_tx, len); else load_count = min((u32) packet_sz, len); #ifdef CONFIG_USB_INVENTRA_DMA if (dma_channel) { /* clear previous state */ csr = musb_readw(epio, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB); csr |= MUSB_TXCSR_MODE; musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_MODE); qh->segsize = min(len, dma_channel->max_len); if (qh->segsize <= packet_sz) dma_channel->desired_mode = 0; else dma_channel->desired_mode = 1; if (dma_channel->desired_mode == 0) { csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE); csr |= (MUSB_TXCSR_DMAENAB); /* against programming guide */ } else csr |= (MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE); musb_writew(epio, MUSB_TXCSR, csr); dma_ok = dma_controller->channel_program( dma_channel, packet_sz, dma_channel->desired_mode, urb->transfer_dma, qh->segsize); if (dma_ok) { load_count = 0; } else { dma_controller->channel_release(dma_channel); if (is_out) hw_ep->tx_channel = NULL; else hw_ep->rx_channel = NULL; dma_channel = NULL; } } #endif /* candidate for DMA */ if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) { /* program endpoint CSRs first, then setup DMA. * assume CPPI setup succeeds. * defer enabling dma. */ csr = musb_readw(epio, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB); csr |= MUSB_TXCSR_MODE; musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_MODE); dma_channel->actual_len = 0L; qh->segsize = len; /* TX uses "rndis" mode automatically, but needs help * to identify the zero-length-final-packet case. */ dma_ok = dma_controller->channel_program( dma_channel, packet_sz, (urb->transfer_flags & URB_ZERO_PACKET) == URB_ZERO_PACKET, urb->transfer_dma, qh->segsize); if (dma_ok) { load_count = 0; } else { dma_controller->channel_release(dma_channel); hw_ep->tx_channel = NULL; dma_channel = NULL; /* REVISIT there's an error path here that * needs handling: can't do dma, but * there's no pio buffer address... */ } } if (load_count) { /* ASSERT: TXCSR_DMAENAB was already cleared */ /* PIO to load FIFO */ qh->segsize = load_count; musb_write_fifo(hw_ep, load_count, buf); csr = musb_readw(epio, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_AUTOSET); /* write CSR */ csr |= MUSB_TXCSR_MODE; if (epnum) musb_writew(epio, MUSB_TXCSR, csr); } /* re-enable interrupt */ musb_writew(mbase, MUSB_INTRTXE, int_txe); /* IN/receive */ } else { u16 csr; if (hw_ep->rx_reinit) { musb_rx_reinit(musb, qh, hw_ep); /* init new state: toggle and NYET, maybe DMA later */ if (usb_gettoggle(urb->dev, qh->epnum, 0)) csr = MUSB_RXCSR_H_WR_DATATOGGLE | MUSB_RXCSR_H_DATATOGGLE; else csr = 0; if (qh->type == USB_ENDPOINT_XFER_INT) csr |= MUSB_RXCSR_DISNYET; } else { csr = musb_readw(hw_ep->regs, MUSB_RXCSR); if (csr & (MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_DMAENAB | MUSB_RXCSR_H_REQPKT)) ERR("broken !rx_reinit, ep%d csr %04x\n", hw_ep->epnum, csr); /* scrub any stale state, leaving toggle alone */ csr &= MUSB_RXCSR_DISNYET; } /* kick things off */ if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) { /* candidate for DMA */ if (dma_channel) { dma_channel->actual_len = 0L; qh->segsize = len; /* AUTOREQ is in a DMA register */ musb_writew(hw_ep->regs, MUSB_RXCSR, csr); csr = musb_readw(hw_ep->regs, MUSB_RXCSR); /* unless caller treats short rx transfers as * errors, we dare not queue multiple transfers. */ dma_ok = dma_controller->channel_program( dma_channel, packet_sz, !(urb->transfer_flags & URB_SHORT_NOT_OK), urb->transfer_dma, qh->segsize); if (!dma_ok) { dma_controller->channel_release( dma_channel); hw_ep->rx_channel = NULL; dma_channel = NULL; } else csr |= MUSB_RXCSR_DMAENAB; } } csr |= MUSB_RXCSR_H_REQPKT; DBG(7, "RXCSR%d := %04x\n", epnum, csr); musb_writew(hw_ep->regs, MUSB_RXCSR, csr); csr = musb_readw(hw_ep->regs, MUSB_RXCSR); } } /* * Service the default endpoint (ep0) as host. * Return true until it's time to start the status stage. */ static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb) { bool more = false; u8 *fifo_dest = NULL; u16 fifo_count = 0; struct musb_hw_ep *hw_ep = musb->control_ep; struct musb_qh *qh = hw_ep->in_qh; struct usb_ctrlrequest *request; switch (musb->ep0_stage) { case MUSB_EP0_IN: fifo_dest = urb->transfer_buffer + urb->actual_length; fifo_count = min(len, ((u16) (urb->transfer_buffer_length - urb->actual_length))); if (fifo_count < len) urb->status = -EOVERFLOW; musb_read_fifo(hw_ep, fifo_count, fifo_dest); urb->actual_length += fifo_count; if (len < qh->maxpacket) { /* always terminate on short read; it's * rarely reported as an error. */ } else if (urb->actual_length < urb->transfer_buffer_length) more = true; break; case MUSB_EP0_START: request = (struct usb_ctrlrequest *) urb->setup_packet; if (!request->wLength) { DBG(4, "start no-DATA\n"); break; } else if (request->bRequestType & USB_DIR_IN) { DBG(4, "start IN-DATA\n"); musb->ep0_stage = MUSB_EP0_IN; more = true; break; } else { DBG(4, "start OUT-DATA\n"); musb->ep0_stage = MUSB_EP0_OUT; more = true; } /* FALLTHROUGH */ case MUSB_EP0_OUT: fifo_count = min(qh->maxpacket, ((u16) (urb->transfer_buffer_length - urb->actual_length))); if (fifo_count) { fifo_dest = (u8 *) (urb->transfer_buffer + urb->actual_length); DBG(3, "Sending %d bytes to %p\n", fifo_count, fifo_dest); musb_write_fifo(hw_ep, fifo_count, fifo_dest); urb->actual_length += fifo_count; more = true; } break; default: ERR("bogus ep0 stage %d\n", musb->ep0_stage); break; } return more; } /* * Handle default endpoint interrupt as host. Only called in IRQ time * from musb_interrupt(). * * called with controller irqlocked */ irqreturn_t musb_h_ep0_irq(struct musb *musb) { struct urb *urb; u16 csr, len; int status = 0; void __iomem *mbase = musb->mregs; struct musb_hw_ep *hw_ep = musb->control_ep; void __iomem *epio = hw_ep->regs; struct musb_qh *qh = hw_ep->in_qh; bool complete = false; irqreturn_t retval = IRQ_NONE; /* ep0 only has one queue, "in" */ urb = next_urb(qh); musb_ep_select(mbase, 0); csr = musb_readw(epio, MUSB_CSR0); len = (csr & MUSB_CSR0_RXPKTRDY) ? musb_readb(epio, MUSB_COUNT0) : 0; DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n", csr, qh, len, urb, musb->ep0_stage); /* if we just did status stage, we are done */ if (MUSB_EP0_STATUS == musb->ep0_stage) { retval = IRQ_HANDLED; complete = true; } /* prepare status */ if (csr & MUSB_CSR0_H_RXSTALL) { DBG(6, "STALLING ENDPOINT\n"); status = -EPIPE; } else if (csr & MUSB_CSR0_H_ERROR) { DBG(2, "no response, csr0 %04x\n", csr); status = -EPROTO; } else if (csr & MUSB_CSR0_H_NAKTIMEOUT) { DBG(2, "control NAK timeout\n"); /* NOTE: this code path would be a good place to PAUSE a * control transfer, if another one is queued, so that * ep0 is more likely to stay busy. * * if (qh->ring.next != &musb->control), then * we have a candidate... NAKing is *NOT* an error */ musb_writew(epio, MUSB_CSR0, 0); retval = IRQ_HANDLED; } if (status) { DBG(6, "aborting\n"); retval = IRQ_HANDLED; if (urb) urb->status = status; complete = true; /* use the proper sequence to abort the transfer */ if (csr & MUSB_CSR0_H_REQPKT) { csr &= ~MUSB_CSR0_H_REQPKT; musb_writew(epio, MUSB_CSR0, csr); csr &= ~MUSB_CSR0_H_NAKTIMEOUT; musb_writew(epio, MUSB_CSR0, csr); } else { csr |= MUSB_CSR0_FLUSHFIFO; musb_writew(epio, MUSB_CSR0, csr); musb_writew(epio, MUSB_CSR0, csr); csr &= ~MUSB_CSR0_H_NAKTIMEOUT; musb_writew(epio, MUSB_CSR0, csr); } musb_writeb(epio, MUSB_NAKLIMIT0, 0); /* clear it */ musb_writew(epio, MUSB_CSR0, 0); } if (unlikely(!urb)) { /* stop endpoint since we have no place for its data, this * SHOULD NEVER HAPPEN! */ ERR("no URB for end 0\n"); musb_writew(epio, MUSB_CSR0, MUSB_CSR0_FLUSHFIFO); musb_writew(epio, MUSB_CSR0, MUSB_CSR0_FLUSHFIFO); musb_writew(epio, MUSB_CSR0, 0); goto done; } if (!complete) { /* call common logic and prepare response */ if (musb_h_ep0_continue(musb, len, urb)) { /* more packets required */ csr = (MUSB_EP0_IN == musb->ep0_stage) ? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY; } else { /* data transfer complete; perform status phase */ if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length) csr = MUSB_CSR0_H_STATUSPKT | MUSB_CSR0_H_REQPKT; else csr = MUSB_CSR0_H_STATUSPKT | MUSB_CSR0_TXPKTRDY; /* flag status stage */ musb->ep0_stage = MUSB_EP0_STATUS; DBG(5, "ep0 STATUS, csr %04x\n", csr); } musb_writew(epio, MUSB_CSR0, csr); retval = IRQ_HANDLED; } else musb->ep0_stage = MUSB_EP0_IDLE; /* call completion handler if done */ if (complete) musb_advance_schedule(musb, urb, hw_ep, 1); done: return retval; } #ifdef CONFIG_USB_INVENTRA_DMA /* Host side TX (OUT) using Mentor DMA works as follows: submit_urb -> - if queue was empty, Program Endpoint - ... which starts DMA to fifo in mode 1 or 0 DMA Isr (transfer complete) -> TxAvail() - Stop DMA (~DmaEnab) (<--- Alert ... currently happens only in musb_cleanup_urb) - TxPktRdy has to be set in mode 0 or for short packets in mode 1. */ #endif /* Service a Tx-Available or dma completion irq for the endpoint */ void musb_host_tx(struct musb *musb, u8 epnum) { int pipe; bool done = false; u16 tx_csr; size_t wLength = 0; u8 *buf = NULL; struct urb *urb; struct musb_hw_ep *hw_ep = musb->endpoints + epnum; void __iomem *epio = hw_ep->regs; struct musb_qh *qh = hw_ep->out_qh; u32 status = 0; void __iomem *mbase = musb->mregs; struct dma_channel *dma; urb = next_urb(qh); musb_ep_select(mbase, epnum); tx_csr = musb_readw(epio, MUSB_TXCSR); /* with CPPI, DMA sometimes triggers "extra" irqs */ if (!urb) { DBG(4, "extra TX%d ready, csr %04x\n", epnum, tx_csr); goto finish; } pipe = urb->pipe; dma = is_dma_capable() ? hw_ep->tx_channel : NULL; DBG(4, "OUT/TX%d end, csr %04x%s\n", epnum, tx_csr, dma ? ", dma" : ""); /* check for errors */ if (tx_csr & MUSB_TXCSR_H_RXSTALL) { /* dma was disabled, fifo flushed */ DBG(3, "TX end %d stall\n", epnum); /* stall; record URB status */ status = -EPIPE; } else if (tx_csr & MUSB_TXCSR_H_ERROR) { /* (NON-ISO) dma was disabled, fifo flushed */ DBG(3, "TX 3strikes on ep=%d\n", epnum); status = -ETIMEDOUT; } else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) { DBG(6, "TX end=%d device not responding\n", epnum); /* NOTE: this code path would be a good place to PAUSE a * transfer, if there's some other (nonperiodic) tx urb * that could use this fifo. (dma complicates it...) * * if (bulk && qh->ring.next != &musb->out_bulk), then * we have a candidate... NAKing is *NOT* an error */ musb_ep_select(mbase, epnum); musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY); goto finish; } if (status) { if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { dma->status = MUSB_DMA_STATUS_CORE_ABORT; (void) musb->dma_controller->channel_abort(dma); } /* do the proper sequence to abort the transfer in the * usb core; the dma engine should already be stopped. */ musb_h_tx_flush_fifo(hw_ep); tx_csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_ERROR | MUSB_TXCSR_H_RXSTALL | MUSB_TXCSR_H_NAKTIMEOUT ); musb_ep_select(mbase, epnum); musb_writew(epio, MUSB_TXCSR, tx_csr); /* REVISIT may need to clear FLUSHFIFO ... */ musb_writew(epio, MUSB_TXCSR, tx_csr); musb_writeb(epio, MUSB_TXINTERVAL, 0); done = true; } /* second cppi case */ if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { DBG(4, "extra TX%d ready, csr %04x\n", epnum, tx_csr); goto finish; } /* REVISIT this looks wrong... */ if (!status || dma || usb_pipeisoc(pipe)) { if (dma) wLength = dma->actual_len; else wLength = qh->segsize; qh->offset += wLength; if (usb_pipeisoc(pipe)) { struct usb_iso_packet_descriptor *d; d = urb->iso_frame_desc + qh->iso_idx; d->actual_length = qh->segsize; if (++qh->iso_idx >= urb->number_of_packets) { done = true; } else { d++; buf = urb->transfer_buffer + d->offset; wLength = d->length; } } else if (dma) { done = true; } else { /* see if we need to send more data, or ZLP */ if (qh->segsize < qh->maxpacket) done = true; else if (qh->offset == urb->transfer_buffer_length && !(urb->transfer_flags & URB_ZERO_PACKET)) done = true; if (!done) { buf = urb->transfer_buffer + qh->offset; wLength = urb->transfer_buffer_length - qh->offset; } } } /* urb->status != -EINPROGRESS means request has been faulted, * so we must abort this transfer after cleanup */ if (urb->status != -EINPROGRESS) { done = true; if (status == 0) status = urb->status; } if (done) { /* set status */ urb->status = status; urb->actual_length = qh->offset; musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT); } else if (!(tx_csr & MUSB_TXCSR_DMAENAB)) { /* WARN_ON(!buf); */ /* REVISIT: some docs say that when hw_ep->tx_double_buffered, * (and presumably, fifo is not half-full) we should write TWO * packets before updating TXCSR ... other docs disagree ... */ /* PIO: start next packet in this URB */ wLength = min(qh->maxpacket, (u16) wLength); musb_write_fifo(hw_ep, wLength, buf); qh->segsize = wLength; musb_ep_select(mbase, epnum); musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY); } else DBG(1, "not complete, but dma enabled?\n"); finish: return; } #ifdef CONFIG_USB_INVENTRA_DMA /* Host side RX (IN) using Mentor DMA works as follows: submit_urb -> - if queue was empty, ProgramEndpoint - first IN token is sent out (by setting ReqPkt) LinuxIsr -> RxReady() /\ => first packet is received | - Set in mode 0 (DmaEnab, ~ReqPkt) | -> DMA Isr (transfer complete) -> RxReady() | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab) | - if urb not complete, send next IN token (ReqPkt) | | else complete urb. | | --------------------------- * * Nuances of mode 1: * For short packets, no ack (+RxPktRdy) is sent automatically * (even if AutoClear is ON) * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent * automatically => major problem, as collecting the next packet becomes * difficult. Hence mode 1 is not used. * * REVISIT * All we care about at this driver level is that * (a) all URBs terminate with REQPKT cleared and fifo(s) empty; * (b) termination conditions are: short RX, or buffer full; * (c) fault modes include * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO. * (and that endpoint's dma queue stops immediately) * - overflow (full, PLUS more bytes in the terminal packet) * * So for example, usb-storage sets URB_SHORT_NOT_OK, and would * thus be a great candidate for using mode 1 ... for all but the * last packet of one URB's transfer. */ #endif /* * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso, * and high-bandwidth IN transfer cases. */ void musb_host_rx(struct musb *musb, u8 epnum) { struct urb *urb; struct musb_hw_ep *hw_ep = musb->endpoints + epnum; void __iomem *epio = hw_ep->regs; struct musb_qh *qh = hw_ep->in_qh; size_t xfer_len; void __iomem *mbase = musb->mregs; int pipe; u16 rx_csr, val; bool iso_err = false; bool done = false; u32 status; struct dma_channel *dma; musb_ep_select(mbase, epnum); urb = next_urb(qh); dma = is_dma_capable() ? hw_ep->rx_channel : NULL; status = 0; xfer_len = 0; rx_csr = musb_readw(epio, MUSB_RXCSR); val = rx_csr; if (unlikely(!urb)) { /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least * usbtest #11 (unlinks) triggers it regularly, sometimes * with fifo full. (Only with DMA??) */ DBG(3, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val, musb_readw(epio, MUSB_RXCOUNT)); musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); return; } pipe = urb->pipe; DBG(5, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n", epnum, rx_csr, urb->actual_length, dma ? dma->actual_len : 0); /* check for errors, concurrent stall & unlink is not really * handled yet! */ if (rx_csr & MUSB_RXCSR_H_RXSTALL) { DBG(3, "RX end %d STALL\n", epnum); /* stall; record URB status */ status = -EPIPE; } else if (rx_csr & MUSB_RXCSR_H_ERROR) { DBG(3, "end %d RX proto error\n", epnum); status = -EPROTO; musb_writeb(epio, MUSB_RXINTERVAL, 0); } else if (rx_csr & MUSB_RXCSR_DATAERROR) { if (USB_ENDPOINT_XFER_ISOC != qh->type) { /* NOTE this code path would be a good place to PAUSE a * transfer, if there's some other (nonperiodic) rx urb * that could use this fifo. (dma complicates it...) * * if (bulk && qh->ring.next != &musb->in_bulk), then * we have a candidate... NAKing is *NOT* an error */ DBG(6, "RX end %d NAK timeout\n", epnum); musb_ep_select(mbase, epnum); musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | MUSB_RXCSR_H_REQPKT); goto finish; } else { DBG(4, "RX end %d ISO data error\n", epnum); /* packet error reported later */ iso_err = true; } } /* faults abort the transfer */ if (status) { /* clean up dma and collect transfer count */ if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { dma->status = MUSB_DMA_STATUS_CORE_ABORT; (void) musb->dma_controller->channel_abort(dma); xfer_len = dma->actual_len; } musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); musb_writeb(epio, MUSB_RXINTERVAL, 0); done = true; goto finish; } if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) { /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */ ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr); goto finish; } /* thorough shutdown for now ... given more precise fault handling * and better queueing support, we might keep a DMA pipeline going * while processing this irq for earlier completions. */ /* FIXME this is _way_ too much in-line logic for Mentor DMA */ #ifndef CONFIG_USB_INVENTRA_DMA if (rx_csr & MUSB_RXCSR_H_REQPKT) { /* REVISIT this happened for a while on some short reads... * the cleanup still needs investigation... looks bad... * and also duplicates dma cleanup code above ... plus, * shouldn't this be the "half full" double buffer case? */ if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { dma->status = MUSB_DMA_STATUS_CORE_ABORT; (void) musb->dma_controller->channel_abort(dma); xfer_len = dma->actual_len; done = true; } DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr, xfer_len, dma ? ", dma" : ""); rx_csr &= ~MUSB_RXCSR_H_REQPKT; musb_ep_select(mbase, epnum); musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | rx_csr); } #endif if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) { xfer_len = dma->actual_len; val &= ~(MUSB_RXCSR_DMAENAB | MUSB_RXCSR_H_AUTOREQ | MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_RXPKTRDY); musb_writew(hw_ep->regs, MUSB_RXCSR, val); #ifdef CONFIG_USB_INVENTRA_DMA if (usb_pipeisoc(pipe)) { struct usb_iso_packet_descriptor *d; d = urb->iso_frame_desc + qh->iso_idx; d->actual_length = xfer_len; /* even if there was an error, we did the dma * for iso_frame_desc->length */ if (d->status != EILSEQ && d->status != -EOVERFLOW) d->status = 0; if (++qh->iso_idx >= urb->number_of_packets) done = true; else done = false; } else { /* done if urb buffer is full or short packet is recd */ done = (urb->actual_length + xfer_len >= urb->transfer_buffer_length || dma->actual_len < qh->maxpacket); } /* send IN token for next packet, without AUTOREQ */ if (!done) { val |= MUSB_RXCSR_H_REQPKT; musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | val); } DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum, done ? "off" : "reset", musb_readw(epio, MUSB_RXCSR), musb_readw(epio, MUSB_RXCOUNT)); #else done = true; #endif } else if (urb->status == -EINPROGRESS) { /* if no errors, be sure a packet is ready for unloading */ if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) { status = -EPROTO; ERR("Rx interrupt with no errors or packet!\n"); /* FIXME this is another "SHOULD NEVER HAPPEN" */ /* SCRUB (RX) */ /* do the proper sequence to abort the transfer */ musb_ep_select(mbase, epnum); val &= ~MUSB_RXCSR_H_REQPKT; musb_writew(epio, MUSB_RXCSR, val); goto finish; } /* we are expecting IN packets */ #ifdef CONFIG_USB_INVENTRA_DMA if (dma) { struct dma_controller *c; u16 rx_count; int ret, length; dma_addr_t buf; rx_count = musb_readw(epio, MUSB_RXCOUNT); DBG(2, "RX%d count %d, buffer 0x%x len %d/%d\n", epnum, rx_count, urb->transfer_dma + urb->actual_length, qh->offset, urb->transfer_buffer_length); c = musb->dma_controller; if (usb_pipeisoc(pipe)) { int status = 0; struct usb_iso_packet_descriptor *d; d = urb->iso_frame_desc + qh->iso_idx; if (iso_err) { status = -EILSEQ; urb->error_count++; } if (rx_count > d->length) { if (status == 0) { status = -EOVERFLOW; urb->error_count++; } DBG(2, "** OVERFLOW %d into %d\n",\ rx_count, d->length); length = d->length; } else length = rx_count; d->status = status; buf = urb->transfer_dma + d->offset; } else { length = rx_count; buf = urb->transfer_dma + urb->actual_length; } dma->desired_mode = 0; #ifdef USE_MODE1 /* because of the issue below, mode 1 will * only rarely behave with correct semantics. */ if ((urb->transfer_flags & URB_SHORT_NOT_OK) && (urb->transfer_buffer_length - urb->actual_length) > qh->maxpacket) dma->desired_mode = 1; if (rx_count < hw_ep->max_packet_sz_rx) { length = rx_count; dma->bDesiredMode = 0; } else { length = urb->transfer_buffer_length; } #endif /* Disadvantage of using mode 1: * It's basically usable only for mass storage class; essentially all * other protocols also terminate transfers on short packets. * * Details: * An extra IN token is sent at the end of the transfer (due to AUTOREQ) * If you try to use mode 1 for (transfer_buffer_length - 512), and try * to use the extra IN token to grab the last packet using mode 0, then * the problem is that you cannot be sure when the device will send the * last packet and RxPktRdy set. Sometimes the packet is recd too soon * such that it gets lost when RxCSR is re-set at the end of the mode 1 * transfer, while sometimes it is recd just a little late so that if you * try to configure for mode 0 soon after the mode 1 transfer is * completed, you will find rxcount 0. Okay, so you might think why not * wait for an interrupt when the pkt is recd. Well, you won't get any! */ val = musb_readw(epio, MUSB_RXCSR); val &= ~MUSB_RXCSR_H_REQPKT; if (dma->desired_mode == 0) val &= ~MUSB_RXCSR_H_AUTOREQ; else val |= MUSB_RXCSR_H_AUTOREQ; val |= MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAENAB; musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | val); /* REVISIT if when actual_length != 0, * transfer_buffer_length needs to be * adjusted first... */ ret = c->channel_program( dma, qh->maxpacket, dma->desired_mode, buf, length); if (!ret) { c->channel_release(dma); hw_ep->rx_channel = NULL; dma = NULL; /* REVISIT reset CSR */ } } #endif /* Mentor DMA */ if (!dma) { done = musb_host_packet_rx(musb, urb, epnum, iso_err); DBG(6, "read %spacket\n", done ? "last " : ""); } } finish: urb->actual_length += xfer_len; qh->offset += xfer_len; if (done) { if (urb->status == -EINPROGRESS) urb->status = status; musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN); } } /* schedule nodes correspond to peripheral endpoints, like an OHCI QH. * the software schedule associates multiple such nodes with a given * host side hardware endpoint + direction; scheduling may activate * that hardware endpoint. */ static int musb_schedule( struct musb *musb, struct musb_qh *qh, int is_in) { int idle; int best_diff; int best_end, epnum; struct musb_hw_ep *hw_ep = NULL; struct list_head *head = NULL; /* use fixed hardware for control and bulk */ switch (qh->type) { case USB_ENDPOINT_XFER_CONTROL: head = &musb->control; hw_ep = musb->control_ep; break; case USB_ENDPOINT_XFER_BULK: hw_ep = musb->bulk_ep; if (is_in) head = &musb->in_bulk; else head = &musb->out_bulk; break; } if (head) { idle = list_empty(head); list_add_tail(&qh->ring, head); goto success; } /* else, periodic transfers get muxed to other endpoints */ /* FIXME this doesn't consider direction, so it can only * work for one half of the endpoint hardware, and assumes * the previous cases handled all non-shared endpoints... */ /* we know this qh hasn't been scheduled, so all we need to do * is choose which hardware endpoint to put it on ... * * REVISIT what we really want here is a regular schedule tree * like e.g. OHCI uses, but for now musb->periodic is just an * array of the _single_ logical endpoint associated with a * given physical one (identity mapping logical->physical). * * that simplistic approach makes TT scheduling a lot simpler; * there is none, and thus none of its complexity... */ best_diff = 4096; best_end = -1; for (epnum = 1; epnum < musb->nr_endpoints; epnum++) { int diff; if (musb->periodic[epnum]) continue; hw_ep = &musb->endpoints[epnum]; if (hw_ep == musb->bulk_ep) continue; if (is_in) diff = hw_ep->max_packet_sz_rx - qh->maxpacket; else diff = hw_ep->max_packet_sz_tx - qh->maxpacket; if (diff > 0 && best_diff > diff) { best_diff = diff; best_end = epnum; } } if (best_end < 0) return -ENOSPC; idle = 1; hw_ep = musb->endpoints + best_end; musb->periodic[best_end] = qh; DBG(4, "qh %p periodic slot %d\n", qh, best_end); success: qh->hw_ep = hw_ep; qh->hep->hcpriv = qh; if (idle) musb_start_urb(musb, is_in, qh); return 0; } static int musb_urb_enqueue( struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { unsigned long flags; struct musb *musb = hcd_to_musb(hcd); struct usb_host_endpoint *hep = urb->ep; struct musb_qh *qh = hep->hcpriv; struct usb_endpoint_descriptor *epd = &hep->desc; int ret; unsigned type_reg; unsigned interval; /* host role must be active */ if (!is_host_active(musb) || !musb->is_active) return -ENODEV; spin_lock_irqsave(&musb->lock, flags); ret = usb_hcd_link_urb_to_ep(hcd, urb); spin_unlock_irqrestore(&musb->lock, flags); if (ret) return ret; /* DMA mapping was already done, if needed, and this urb is on * hep->urb_list ... so there's little to do unless hep wasn't * yet scheduled onto a live qh. * * REVISIT best to keep hep->hcpriv valid until the endpoint gets * disabled, testing for empty qh->ring and avoiding qh setup costs * except for the first urb queued after a config change. */ if (qh) { urb->hcpriv = qh; return 0; } /* Allocate and initialize qh, minimizing the work done each time * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it. * * REVISIT consider a dedicated qh kmem_cache, so it's harder * for bugs in other kernel code to break this driver... */ qh = kzalloc(sizeof *qh, mem_flags); if (!qh) { spin_lock_irqsave(&musb->lock, flags); usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&musb->lock, flags); return -ENOMEM; } qh->hep = hep; qh->dev = urb->dev; INIT_LIST_HEAD(&qh->ring); qh->is_ready = 1; qh->maxpacket = le16_to_cpu(epd->wMaxPacketSize); /* no high bandwidth support yet */ if (qh->maxpacket & ~0x7ff) { ret = -EMSGSIZE; goto done; } qh->epnum = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; qh->type = epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */ qh->addr_reg = (u8) usb_pipedevice(urb->pipe); /* precompute rxtype/txtype/type0 register */ type_reg = (qh->type << 4) | qh->epnum; switch (urb->dev->speed) { case USB_SPEED_LOW: type_reg |= 0xc0; break; case USB_SPEED_FULL: type_reg |= 0x80; break; default: type_reg |= 0x40; } qh->type_reg = type_reg; /* precompute rxinterval/txinterval register */ interval = min((u8)16, epd->bInterval); /* log encoding */ switch (qh->type) { case USB_ENDPOINT_XFER_INT: /* fullspeed uses linear encoding */ if (USB_SPEED_FULL == urb->dev->speed) { interval = epd->bInterval; if (!interval) interval = 1; } /* FALLTHROUGH */ case USB_ENDPOINT_XFER_ISOC: /* iso always uses log encoding */ break; default: /* REVISIT we actually want to use NAK limits, hinting to the * transfer scheduling logic to try some other qh, e.g. try * for 2 msec first: * * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2; * * The downside of disabling this is that transfer scheduling * gets VERY unfair for nonperiodic transfers; a misbehaving * peripheral could make that hurt. Or for reads, one that's * perfectly normal: network and other drivers keep reads * posted at all times, having one pending for a week should * be perfectly safe. * * The upside of disabling it is avoidng transfer scheduling * code to put this aside for while. */ interval = 0; } qh->intv_reg = interval; /* precompute addressing for external hub/tt ports */ if (musb->is_multipoint) { struct usb_device *parent = urb->dev->parent; if (parent != hcd->self.root_hub) { qh->h_addr_reg = (u8) parent->devnum; /* set up tt info if needed */ if (urb->dev->tt) { qh->h_port_reg = (u8) urb->dev->ttport; if (urb->dev->tt->hub) qh->h_addr_reg = (u8) urb->dev->tt->hub->devnum; if (urb->dev->tt->multi) qh->h_addr_reg |= 0x80; } } } /* invariant: hep->hcpriv is null OR the qh that's already scheduled. * until we get real dma queues (with an entry for each urb/buffer), * we only have work to do in the former case. */ spin_lock_irqsave(&musb->lock, flags); if (hep->hcpriv) { /* some concurrent activity submitted another urb to hep... * odd, rare, error prone, but legal. */ kfree(qh); ret = 0; } else ret = musb_schedule(musb, qh, epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK); if (ret == 0) { urb->hcpriv = qh; /* FIXME set urb->start_frame for iso/intr, it's tested in * musb_start_urb(), but otherwise only konicawc cares ... */ } spin_unlock_irqrestore(&musb->lock, flags); done: if (ret != 0) { spin_lock_irqsave(&musb->lock, flags); usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&musb->lock, flags); kfree(qh); } return ret; } /* * abort a transfer that's at the head of a hardware queue. * called with controller locked, irqs blocked * that hardware queue advances to the next transfer, unless prevented */ static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh, int is_in) { struct musb_hw_ep *ep = qh->hw_ep; void __iomem *epio = ep->regs; unsigned hw_end = ep->epnum; void __iomem *regs = ep->musb->mregs; u16 csr; int status = 0; musb_ep_select(regs, hw_end); if (is_dma_capable()) { struct dma_channel *dma; dma = is_in ? ep->rx_channel : ep->tx_channel; if (dma) { status = ep->musb->dma_controller->channel_abort(dma); DBG(status ? 1 : 3, "abort %cX%d DMA for urb %p --> %d\n", is_in ? 'R' : 'T', ep->epnum, urb, status); urb->actual_length += dma->actual_len; } } /* turn off DMA requests, discard state, stop polling ... */ if (is_in) { /* giveback saves bulk toggle */ csr = musb_h_flush_rxfifo(ep, 0); /* REVISIT we still get an irq; should likely clear the * endpoint's irq status here to avoid bogus irqs. * clearing that status is platform-specific... */ } else { musb_h_tx_flush_fifo(ep); csr = musb_readw(epio, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_RXSTALL | MUSB_TXCSR_H_NAKTIMEOUT | MUSB_TXCSR_H_ERROR | MUSB_TXCSR_TXPKTRDY); musb_writew(epio, MUSB_TXCSR, csr); /* REVISIT may need to clear FLUSHFIFO ... */ musb_writew(epio, MUSB_TXCSR, csr); /* flush cpu writebuffer */ csr = musb_readw(epio, MUSB_TXCSR); } if (status == 0) musb_advance_schedule(ep->musb, urb, ep, is_in); return status; } static int musb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct musb *musb = hcd_to_musb(hcd); struct musb_qh *qh; struct list_head *sched; unsigned long flags; int ret; DBG(4, "urb=%p, dev%d ep%d%s\n", urb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out"); spin_lock_irqsave(&musb->lock, flags); ret = usb_hcd_check_unlink_urb(hcd, urb, status); if (ret) goto done; qh = urb->hcpriv; if (!qh) goto done; /* Any URB not actively programmed into endpoint hardware can be * immediately given back. Such an URB must be at the head of its * endpoint queue, unless someday we get real DMA queues. And even * then, it might not be known to the hardware... * * Otherwise abort current transfer, pending dma, etc.; urb->status * has already been updated. This is a synchronous abort; it'd be * OK to hold off until after some IRQ, though. */ if (!qh->is_ready || urb->urb_list.prev != &qh->hep->urb_list) ret = -EINPROGRESS; else { switch (qh->type) { case USB_ENDPOINT_XFER_CONTROL: sched = &musb->control; break; case USB_ENDPOINT_XFER_BULK: if (usb_pipein(urb->pipe)) sched = &musb->in_bulk; else sched = &musb->out_bulk; break; default: /* REVISIT when we get a schedule tree, periodic * transfers won't always be at the head of a * singleton queue... */ sched = NULL; break; } } /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */ if (ret < 0 || (sched && qh != first_qh(sched))) { int ready = qh->is_ready; ret = 0; qh->is_ready = 0; __musb_giveback(musb, urb, 0); qh->is_ready = ready; } else ret = musb_cleanup_urb(urb, qh, urb->pipe & USB_DIR_IN); done: spin_unlock_irqrestore(&musb->lock, flags); return ret; } /* disable an endpoint */ static void musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep) { u8 epnum = hep->desc.bEndpointAddress; unsigned long flags; struct musb *musb = hcd_to_musb(hcd); u8 is_in = epnum & USB_DIR_IN; struct musb_qh *qh = hep->hcpriv; struct urb *urb, *tmp; struct list_head *sched; if (!qh) return; spin_lock_irqsave(&musb->lock, flags); switch (qh->type) { case USB_ENDPOINT_XFER_CONTROL: sched = &musb->control; break; case USB_ENDPOINT_XFER_BULK: if (is_in) sched = &musb->in_bulk; else sched = &musb->out_bulk; break; default: /* REVISIT when we get a schedule tree, periodic transfers * won't always be at the head of a singleton queue... */ sched = NULL; break; } /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */ /* kick first urb off the hardware, if needed */ qh->is_ready = 0; if (!sched || qh == first_qh(sched)) { urb = next_urb(qh); /* make software (then hardware) stop ASAP */ if (!urb->unlinked) urb->status = -ESHUTDOWN; /* cleanup */ musb_cleanup_urb(urb, qh, urb->pipe & USB_DIR_IN); } else urb = NULL; /* then just nuke all the others */ list_for_each_entry_safe_from(urb, tmp, &hep->urb_list, urb_list) musb_giveback(qh, urb, -ESHUTDOWN); spin_unlock_irqrestore(&musb->lock, flags); } static int musb_h_get_frame_number(struct usb_hcd *hcd) { struct musb *musb = hcd_to_musb(hcd); return musb_readw(musb->mregs, MUSB_FRAME); } static int musb_h_start(struct usb_hcd *hcd) { struct musb *musb = hcd_to_musb(hcd); /* NOTE: musb_start() is called when the hub driver turns * on port power, or when (OTG) peripheral starts. */ hcd->state = HC_STATE_RUNNING; musb->port1_status = 0; return 0; } static void musb_h_stop(struct usb_hcd *hcd) { musb_stop(hcd_to_musb(hcd)); hcd->state = HC_STATE_HALT; } static int musb_bus_suspend(struct usb_hcd *hcd) { struct musb *musb = hcd_to_musb(hcd); if (musb->xceiv.state == OTG_STATE_A_SUSPEND) return 0; if (is_host_active(musb) && musb->is_active) { WARNING("trying to suspend as %s is_active=%i\n", otg_state_string(musb), musb->is_active); return -EBUSY; } else return 0; } static int musb_bus_resume(struct usb_hcd *hcd) { /* resuming child port does the work */ return 0; } const struct hc_driver musb_hc_driver = { .description = "musb-hcd", .product_desc = "MUSB HDRC host driver", .hcd_priv_size = sizeof(struct musb), .flags = HCD_USB2 | HCD_MEMORY, /* not using irq handler or reset hooks from usbcore, since * those must be shared with peripheral code for OTG configs */ .start = musb_h_start, .stop = musb_h_stop, .get_frame_number = musb_h_get_frame_number, .urb_enqueue = musb_urb_enqueue, .urb_dequeue = musb_urb_dequeue, .endpoint_disable = musb_h_disable, .hub_status_data = musb_hub_status_data, .hub_control = musb_hub_control, .bus_suspend = musb_bus_suspend, .bus_resume = musb_bus_resume, /* .start_port_reset = NULL, */ /* .hub_irq_enable = NULL, */ };