/* * (C) Copyright 2008 * Stefano Babic, DENX Software Engineering, sbabic@denx.de. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This driver implements a lcd device for the ILITEK 922x display * controller. The interface to the display is SPI and the display's * memory is cyclically updated over the RGB interface. */ #include #include #include #include #include #include #include #include #include #include #include /* Register offset, see manual section 8.2 */ #define REG_START_OSCILLATION 0x00 #define REG_DRIVER_CODE_READ 0x00 #define REG_DRIVER_OUTPUT_CONTROL 0x01 #define REG_LCD_AC_DRIVEING_CONTROL 0x02 #define REG_ENTRY_MODE 0x03 #define REG_COMPARE_1 0x04 #define REG_COMPARE_2 0x05 #define REG_DISPLAY_CONTROL_1 0x07 #define REG_DISPLAY_CONTROL_2 0x08 #define REG_DISPLAY_CONTROL_3 0x09 #define REG_FRAME_CYCLE_CONTROL 0x0B #define REG_EXT_INTF_CONTROL 0x0C #define REG_POWER_CONTROL_1 0x10 #define REG_POWER_CONTROL_2 0x11 #define REG_POWER_CONTROL_3 0x12 #define REG_POWER_CONTROL_4 0x13 #define REG_RAM_ADDRESS_SET 0x21 #define REG_WRITE_DATA_TO_GRAM 0x22 #define REG_RAM_WRITE_MASK1 0x23 #define REG_RAM_WRITE_MASK2 0x24 #define REG_GAMMA_CONTROL_1 0x30 #define REG_GAMMA_CONTROL_2 0x31 #define REG_GAMMA_CONTROL_3 0x32 #define REG_GAMMA_CONTROL_4 0x33 #define REG_GAMMA_CONTROL_5 0x34 #define REG_GAMMA_CONTROL_6 0x35 #define REG_GAMMA_CONTROL_7 0x36 #define REG_GAMMA_CONTROL_8 0x37 #define REG_GAMMA_CONTROL_9 0x38 #define REG_GAMMA_CONTROL_10 0x39 #define REG_GATE_SCAN_CONTROL 0x40 #define REG_VERT_SCROLL_CONTROL 0x41 #define REG_FIRST_SCREEN_DRIVE_POS 0x42 #define REG_SECOND_SCREEN_DRIVE_POS 0x43 #define REG_RAM_ADDR_POS_H 0x44 #define REG_RAM_ADDR_POS_V 0x45 #define REG_OSCILLATOR_CONTROL 0x4F #define REG_GPIO 0x60 #define REG_OTP_VCM_PROGRAMMING 0x61 #define REG_OTP_VCM_STATUS_ENABLE 0x62 #define REG_OTP_PROGRAMMING_ID_KEY 0x65 /* * maximum frequency for register access * (not for the GRAM access) */ #define ILITEK_MAX_FREQ_REG 4000000 /* * Device ID as found in the datasheet (supports 9221 and 9222) */ #define ILITEK_DEVICE_ID 0x9220 #define ILITEK_DEVICE_ID_MASK 0xFFF0 /* Last two bits in the START BYTE */ #define START_RS_INDEX 0 #define START_RS_REG 1 #define START_RW_WRITE 0 #define START_RW_READ 1 /** * START_BYTE(id, rs, rw) * * Set the start byte according to the required operation. * The start byte is defined as: * ---------------------------------- * | 0 | 1 | 1 | 1 | 0 | ID | RS | RW | * ---------------------------------- * @id: display's id as set by the manufacturer * @rs: operation type bit, one of: * - START_RS_INDEX set the index register * - START_RS_REG write/read registers/GRAM * @rw: read/write operation * - START_RW_WRITE write * - START_RW_READ read */ #define START_BYTE(id, rs, rw) \ (0x70 | (((id) & 0x01) << 2) | (((rs) & 0x01) << 1) | ((rw) & 0x01)) /** * CHECK_FREQ_REG(spi_device s, spi_transfer x) - Check the frequency * for the SPI transfer. According to the datasheet, the controller * accept higher frequency for the GRAM transfer, but it requires * lower frequency when the registers are read/written. * The macro sets the frequency in the spi_transfer structure if * the frequency exceeds the maximum value. */ #define CHECK_FREQ_REG(s, x) \ do { \ if (s->max_speed_hz > ILITEK_MAX_FREQ_REG) \ ((struct spi_transfer *)x)->speed_hz = \ ILITEK_MAX_FREQ_REG; \ } while (0) #define CMD_BUFSIZE 16 #define POWER_IS_ON(pwr) ((pwr) <= FB_BLANK_NORMAL) #define set_tx_byte(b) (tx_invert ? ~(b) : b) /** * ili922x_id - id as set by manufacturer */ static int ili922x_id = 1; module_param(ili922x_id, int, 0); static int tx_invert; module_param(tx_invert, int, 0); /** * driver's private structure */ struct ili922x { struct spi_device *spi; struct lcd_device *ld; int power; }; /** * ili922x_read_status - read status register from display * @spi: spi device * @rs: output value */ static int ili922x_read_status(struct spi_device *spi, u16 *rs) { struct spi_message msg; struct spi_transfer xfer; unsigned char tbuf[CMD_BUFSIZE]; unsigned char rbuf[CMD_BUFSIZE]; int ret, i; memset(&xfer, 0, sizeof(struct spi_transfer)); spi_message_init(&msg); xfer.tx_buf = tbuf; xfer.rx_buf = rbuf; xfer.cs_change = 1; CHECK_FREQ_REG(spi, &xfer); tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, START_RW_READ)); /* * we need 4-byte xfer here due to invalid dummy byte * received after start byte */ for (i = 1; i < 4; i++) tbuf[i] = set_tx_byte(0); /* dummy */ xfer.bits_per_word = 8; xfer.len = 4; spi_message_add_tail(&xfer, &msg); ret = spi_sync(spi, &msg); if (ret < 0) { dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret); return ret; } *rs = (rbuf[2] << 8) + rbuf[3]; return 0; } /** * ili922x_read - read register from display * @spi: spi device * @reg: offset of the register to be read * @rx: output value */ static int ili922x_read(struct spi_device *spi, u8 reg, u16 *rx) { struct spi_message msg; struct spi_transfer xfer_regindex, xfer_regvalue; unsigned char tbuf[CMD_BUFSIZE]; unsigned char rbuf[CMD_BUFSIZE]; int ret, len = 0, send_bytes; memset(&xfer_regindex, 0, sizeof(struct spi_transfer)); memset(&xfer_regvalue, 0, sizeof(struct spi_transfer)); spi_message_init(&msg); xfer_regindex.tx_buf = tbuf; xfer_regindex.rx_buf = rbuf; xfer_regindex.cs_change = 1; CHECK_FREQ_REG(spi, &xfer_regindex); tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, START_RW_WRITE)); tbuf[1] = set_tx_byte(0); tbuf[2] = set_tx_byte(reg); xfer_regindex.bits_per_word = 8; len = xfer_regindex.len = 3; spi_message_add_tail(&xfer_regindex, &msg); send_bytes = len; tbuf[len++] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG, START_RW_READ)); tbuf[len++] = set_tx_byte(0); tbuf[len] = set_tx_byte(0); xfer_regvalue.cs_change = 1; xfer_regvalue.len = 3; xfer_regvalue.tx_buf = &tbuf[send_bytes]; xfer_regvalue.rx_buf = &rbuf[send_bytes]; CHECK_FREQ_REG(spi, &xfer_regvalue); spi_message_add_tail(&xfer_regvalue, &msg); ret = spi_sync(spi, &msg); if (ret < 0) { dev_dbg(&spi->dev, "Error sending SPI message 0x%x", ret); return ret; } *rx = (rbuf[1 + send_bytes] << 8) + rbuf[2 + send_bytes]; return 0; } /** * ili922x_write - write a controller register * @spi: struct spi_device * * @reg: offset of the register to be written * @value: value to be written */ static int ili922x_write(struct spi_device *spi, u8 reg, u16 value) { struct spi_message msg; struct spi_transfer xfer_regindex, xfer_regvalue; unsigned char tbuf[CMD_BUFSIZE]; unsigned char rbuf[CMD_BUFSIZE]; int ret, len = 0; memset(&xfer_regindex, 0, sizeof(struct spi_transfer)); memset(&xfer_regvalue, 0, sizeof(struct spi_transfer)); spi_message_init(&msg); xfer_regindex.tx_buf = tbuf; xfer_regindex.rx_buf = rbuf; xfer_regindex.cs_change = 1; CHECK_FREQ_REG(spi, &xfer_regindex); tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_INDEX, START_RW_WRITE)); tbuf[1] = set_tx_byte(0); tbuf[2] = set_tx_byte(reg); xfer_regindex.bits_per_word = 8; xfer_regindex.len = 3; spi_message_add_tail(&xfer_regindex, &msg); ret = spi_sync(spi, &msg); spi_message_init(&msg); len = 0; tbuf[0] = set_tx_byte(START_BYTE(ili922x_id, START_RS_REG, START_RW_WRITE)); tbuf[1] = set_tx_byte((value & 0xFF00) >> 8); tbuf[2] = set_tx_byte(value & 0x00FF); xfer_regvalue.cs_change = 1; xfer_regvalue.len = 3; xfer_regvalue.tx_buf = tbuf; xfer_regvalue.rx_buf = rbuf; CHECK_FREQ_REG(spi, &xfer_regvalue); spi_message_add_tail(&xfer_regvalue, &msg); ret = spi_sync(spi, &msg); if (ret < 0) { dev_err(&spi->dev, "Error sending SPI message 0x%x", ret); return ret; } return 0; } #ifdef DEBUG /** * ili922x_reg_dump - dump all registers */ static void ili922x_reg_dump(struct spi_device *spi) { u8 reg; u16 rx; dev_dbg(&spi->dev, "ILI922x configuration registers:\n"); for (reg = REG_START_OSCILLATION; reg <= REG_OTP_PROGRAMMING_ID_KEY; reg++) { ili922x_read(spi, reg, &rx); dev_dbg(&spi->dev, "reg @ 0x%02X: 0x%04X\n", reg, rx); } } #else static inline void ili922x_reg_dump(struct spi_device *spi) {} #endif /** * set_write_to_gram_reg - initialize the display to write the GRAM * @spi: spi device */ static void set_write_to_gram_reg(struct spi_device *spi) { struct spi_message msg; struct spi_transfer xfer; unsigned char tbuf[CMD_BUFSIZE]; memset(&xfer, 0, sizeof(struct spi_transfer)); spi_message_init(&msg); xfer.tx_buf = tbuf; xfer.rx_buf = NULL; xfer.cs_change = 1; tbuf[0] = START_BYTE(ili922x_id, START_RS_INDEX, START_RW_WRITE); tbuf[1] = 0; tbuf[2] = REG_WRITE_DATA_TO_GRAM; xfer.bits_per_word = 8; xfer.len = 3; spi_message_add_tail(&xfer, &msg); spi_sync(spi, &msg); } /** * ili922x_poweron - turn the display on * @spi: spi device * * The sequence to turn on the display is taken from * the datasheet and/or the example code provided by the * manufacturer. */ static int ili922x_poweron(struct spi_device *spi) { int ret; /* Power on */ ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000); usleep_range(10000, 10500); ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000); msleep(40); ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000); msleep(40); /* register 0x56 is not documented in the datasheet */ ret += ili922x_write(spi, 0x56, 0x080F); ret += ili922x_write(spi, REG_POWER_CONTROL_1, 0x4240); usleep_range(10000, 10500); ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0014); msleep(40); ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x1319); msleep(40); return ret; } /** * ili922x_poweroff - turn the display off * @spi: spi device */ static int ili922x_poweroff(struct spi_device *spi) { int ret; /* Power off */ ret = ili922x_write(spi, REG_POWER_CONTROL_1, 0x0000); usleep_range(10000, 10500); ret += ili922x_write(spi, REG_POWER_CONTROL_2, 0x0000); ret += ili922x_write(spi, REG_POWER_CONTROL_3, 0x0000); msleep(40); ret += ili922x_write(spi, REG_POWER_CONTROL_4, 0x0000); msleep(40); return ret; } /** * ili922x_display_init - initialize the display by setting * the configuration registers * @spi: spi device */ static void ili922x_display_init(struct spi_device *spi) { ili922x_write(spi, REG_START_OSCILLATION, 1); usleep_range(10000, 10500); ili922x_write(spi, REG_DRIVER_OUTPUT_CONTROL, 0x691B); ili922x_write(spi, REG_LCD_AC_DRIVEING_CONTROL, 0x0700); ili922x_write(spi, REG_ENTRY_MODE, 0x1030); ili922x_write(spi, REG_COMPARE_1, 0x0000); ili922x_write(spi, REG_COMPARE_2, 0x0000); ili922x_write(spi, REG_DISPLAY_CONTROL_1, 0x0037); ili922x_write(spi, REG_DISPLAY_CONTROL_2, 0x0202); ili922x_write(spi, REG_DISPLAY_CONTROL_3, 0x0000); ili922x_write(spi, REG_FRAME_CYCLE_CONTROL, 0x0000); /* Set RGB interface */ ili922x_write(spi, REG_EXT_INTF_CONTROL, 0x0110); ili922x_poweron(spi); ili922x_write(spi, REG_GAMMA_CONTROL_1, 0x0302); ili922x_write(spi, REG_GAMMA_CONTROL_2, 0x0407); ili922x_write(spi, REG_GAMMA_CONTROL_3, 0x0304); ili922x_write(spi, REG_GAMMA_CONTROL_4, 0x0203); ili922x_write(spi, REG_GAMMA_CONTROL_5, 0x0706); ili922x_write(spi, REG_GAMMA_CONTROL_6, 0x0407); ili922x_write(spi, REG_GAMMA_CONTROL_7, 0x0706); ili922x_write(spi, REG_GAMMA_CONTROL_8, 0x0000); ili922x_write(spi, REG_GAMMA_CONTROL_9, 0x0C06); ili922x_write(spi, REG_GAMMA_CONTROL_10, 0x0F00); ili922x_write(spi, REG_RAM_ADDRESS_SET, 0x0000); ili922x_write(spi, REG_GATE_SCAN_CONTROL, 0x0000); ili922x_write(spi, REG_VERT_SCROLL_CONTROL, 0x0000); ili922x_write(spi, REG_FIRST_SCREEN_DRIVE_POS, 0xDB00); ili922x_write(spi, REG_SECOND_SCREEN_DRIVE_POS, 0xDB00); ili922x_write(spi, REG_RAM_ADDR_POS_H, 0xAF00); ili922x_write(spi, REG_RAM_ADDR_POS_V, 0xDB00); ili922x_reg_dump(spi); set_write_to_gram_reg(spi); } static int ili922x_lcd_power(struct ili922x *lcd, int power) { int ret = 0; if (POWER_IS_ON(power) && !POWER_IS_ON(lcd->power)) ret = ili922x_poweron(lcd->spi); else if (!POWER_IS_ON(power) && POWER_IS_ON(lcd->power)) ret = ili922x_poweroff(lcd->spi); if (!ret) lcd->power = power; return ret; } static int ili922x_set_power(struct lcd_device *ld, int power) { struct ili922x *ili = lcd_get_data(ld); return ili922x_lcd_power(ili, power); } static int ili922x_get_power(struct lcd_device *ld) { struct ili922x *ili = lcd_get_data(ld); return ili->power; } static struct lcd_ops ili922x_ops = { .get_power = ili922x_get_power, .set_power = ili922x_set_power, }; static int ili922x_probe(struct spi_device *spi) { struct ili922x *ili; struct lcd_device *lcd; int ret; u16 reg = 0; ili = devm_kzalloc(&spi->dev, sizeof(*ili), GFP_KERNEL); if (!ili) { dev_err(&spi->dev, "cannot alloc priv data\n"); return -ENOMEM; } ili->spi = spi; dev_set_drvdata(&spi->dev, ili); /* check if the device is connected */ ret = ili922x_read(spi, REG_DRIVER_CODE_READ, ®); if (ret || ((reg & ILITEK_DEVICE_ID_MASK) != ILITEK_DEVICE_ID)) { dev_err(&spi->dev, "no LCD found: Chip ID 0x%x, ret %d\n", reg, ret); return -ENODEV; } else { dev_info(&spi->dev, "ILI%x found, SPI freq %d, mode %d\n", reg, spi->max_speed_hz, spi->mode); } ret = ili922x_read_status(spi, ®); if (ret) { dev_err(&spi->dev, "reading RS failed...\n"); return ret; } else dev_dbg(&spi->dev, "status: 0x%x\n", reg); ili922x_display_init(spi); ili->power = FB_BLANK_POWERDOWN; lcd = lcd_device_register("ili922xlcd", &spi->dev, ili, &ili922x_ops); if (IS_ERR(lcd)) { dev_err(&spi->dev, "cannot register LCD\n"); return PTR_ERR(lcd); } ili->ld = lcd; spi_set_drvdata(spi, ili); ili922x_lcd_power(ili, FB_BLANK_UNBLANK); return 0; } static int ili922x_remove(struct spi_device *spi) { struct ili922x *ili = spi_get_drvdata(spi); ili922x_poweroff(spi); lcd_device_unregister(ili->ld); return 0; } static struct spi_driver ili922x_driver = { .driver = { .name = "ili922x", .owner = THIS_MODULE, }, .probe = ili922x_probe, .remove = ili922x_remove, }; module_spi_driver(ili922x_driver); MODULE_AUTHOR("Stefano Babic "); MODULE_DESCRIPTION("ILI9221/9222 LCD driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(ili922x_id, "set controller identifier (default=1)"); MODULE_PARM_DESC(tx_invert, "invert bytes before sending");