/* * linux/drivers/video/offb.c -- Open Firmware based frame buffer device * * Copyright (C) 1997 Geert Uytterhoeven * * This driver is partly based on the PowerMac console driver: * * Copyright (C) 1996 Paul Mackerras * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC64 #include #endif #ifdef CONFIG_PPC32 #include #endif #include "macmodes.h" /* Supported palette hacks */ enum { cmap_unknown, cmap_simple, /* ATI Mach64 */ cmap_r128, /* ATI Rage128 */ cmap_M3A, /* ATI Rage Mobility M3 Head A */ cmap_M3B, /* ATI Rage Mobility M3 Head B */ cmap_radeon, /* ATI Radeon */ cmap_gxt2000, /* IBM GXT2000 */ cmap_avivo, /* ATI R5xx */ cmap_qemu, /* qemu vga */ }; struct offb_par { volatile void __iomem *cmap_adr; volatile void __iomem *cmap_data; int cmap_type; int blanked; }; struct offb_par default_par; #ifdef CONFIG_PPC32 extern boot_infos_t *boot_infos; #endif /* Definitions used by the Avivo palette hack */ #define AVIVO_DC_LUT_RW_SELECT 0x6480 #define AVIVO_DC_LUT_RW_MODE 0x6484 #define AVIVO_DC_LUT_RW_INDEX 0x6488 #define AVIVO_DC_LUT_SEQ_COLOR 0x648c #define AVIVO_DC_LUT_PWL_DATA 0x6490 #define AVIVO_DC_LUT_30_COLOR 0x6494 #define AVIVO_DC_LUT_READ_PIPE_SELECT 0x6498 #define AVIVO_DC_LUT_WRITE_EN_MASK 0x649c #define AVIVO_DC_LUT_AUTOFILL 0x64a0 #define AVIVO_DC_LUTA_CONTROL 0x64c0 #define AVIVO_DC_LUTA_BLACK_OFFSET_BLUE 0x64c4 #define AVIVO_DC_LUTA_BLACK_OFFSET_GREEN 0x64c8 #define AVIVO_DC_LUTA_BLACK_OFFSET_RED 0x64cc #define AVIVO_DC_LUTA_WHITE_OFFSET_BLUE 0x64d0 #define AVIVO_DC_LUTA_WHITE_OFFSET_GREEN 0x64d4 #define AVIVO_DC_LUTA_WHITE_OFFSET_RED 0x64d8 #define AVIVO_DC_LUTB_CONTROL 0x6cc0 #define AVIVO_DC_LUTB_BLACK_OFFSET_BLUE 0x6cc4 #define AVIVO_DC_LUTB_BLACK_OFFSET_GREEN 0x6cc8 #define AVIVO_DC_LUTB_BLACK_OFFSET_RED 0x6ccc #define AVIVO_DC_LUTB_WHITE_OFFSET_BLUE 0x6cd0 #define AVIVO_DC_LUTB_WHITE_OFFSET_GREEN 0x6cd4 #define AVIVO_DC_LUTB_WHITE_OFFSET_RED 0x6cd8 /* * Set a single color register. The values supplied are already * rounded down to the hardware's capabilities (according to the * entries in the var structure). Return != 0 for invalid regno. */ static int offb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info) { struct offb_par *par = (struct offb_par *) info->par; int i, depth; u32 *pal = info->pseudo_palette; depth = info->var.bits_per_pixel; if (depth == 16) depth = (info->var.green.length == 5) ? 15 : 16; if (regno > 255 || (depth == 16 && regno > 63) || (depth == 15 && regno > 31)) return 1; if (regno < 16) { switch (depth) { case 15: pal[regno] = (regno << 10) | (regno << 5) | regno; break; case 16: pal[regno] = (regno << 11) | (regno << 5) | regno; break; case 24: pal[regno] = (regno << 16) | (regno << 8) | regno; break; case 32: i = (regno << 8) | regno; pal[regno] = (i << 16) | i; break; } } red >>= 8; green >>= 8; blue >>= 8; if (!par->cmap_adr) return 0; switch (par->cmap_type) { case cmap_simple: writeb(regno, par->cmap_adr); writeb(red, par->cmap_data); writeb(green, par->cmap_data); writeb(blue, par->cmap_data); break; case cmap_M3A: /* Clear PALETTE_ACCESS_CNTL in DAC_CNTL */ out_le32(par->cmap_adr + 0x58, in_le32(par->cmap_adr + 0x58) & ~0x20); case cmap_r128: /* Set palette index & data */ out_8(par->cmap_adr + 0xb0, regno); out_le32(par->cmap_adr + 0xb4, (red << 16 | green << 8 | blue)); break; case cmap_M3B: /* Set PALETTE_ACCESS_CNTL in DAC_CNTL */ out_le32(par->cmap_adr + 0x58, in_le32(par->cmap_adr + 0x58) | 0x20); /* Set palette index & data */ out_8(par->cmap_adr + 0xb0, regno); out_le32(par->cmap_adr + 0xb4, (red << 16 | green << 8 | blue)); break; case cmap_radeon: /* Set palette index & data (could be smarter) */ out_8(par->cmap_adr + 0xb0, regno); out_le32(par->cmap_adr + 0xb4, (red << 16 | green << 8 | blue)); break; case cmap_gxt2000: out_le32(((unsigned __iomem *) par->cmap_adr) + regno, (red << 16 | green << 8 | blue)); break; case cmap_avivo: /* Write to both LUTs for now */ writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writeb(regno, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX); writel(((red) << 22) | ((green) << 12) | ((blue) << 2), par->cmap_adr + AVIVO_DC_LUT_30_COLOR); writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writeb(regno, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX); writel(((red) << 22) | ((green) << 12) | ((blue) << 2), par->cmap_adr + AVIVO_DC_LUT_30_COLOR); break; } return 0; } /* * Blank the display. */ static int offb_blank(int blank, struct fb_info *info) { struct offb_par *par = (struct offb_par *) info->par; int i, j; if (!par->cmap_adr) return 0; if (!par->blanked) if (!blank) return 0; par->blanked = blank; if (blank) for (i = 0; i < 256; i++) { switch (par->cmap_type) { case cmap_simple: writeb(i, par->cmap_adr); for (j = 0; j < 3; j++) writeb(0, par->cmap_data); break; case cmap_M3A: /* Clear PALETTE_ACCESS_CNTL in DAC_CNTL */ out_le32(par->cmap_adr + 0x58, in_le32(par->cmap_adr + 0x58) & ~0x20); case cmap_r128: /* Set palette index & data */ out_8(par->cmap_adr + 0xb0, i); out_le32(par->cmap_adr + 0xb4, 0); break; case cmap_M3B: /* Set PALETTE_ACCESS_CNTL in DAC_CNTL */ out_le32(par->cmap_adr + 0x58, in_le32(par->cmap_adr + 0x58) | 0x20); /* Set palette index & data */ out_8(par->cmap_adr + 0xb0, i); out_le32(par->cmap_adr + 0xb4, 0); break; case cmap_radeon: out_8(par->cmap_adr + 0xb0, i); out_le32(par->cmap_adr + 0xb4, 0); break; case cmap_gxt2000: out_le32(((unsigned __iomem *) par->cmap_adr) + i, 0); break; case cmap_avivo: writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writeb(i, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX); writel(0, par->cmap_adr + AVIVO_DC_LUT_30_COLOR); writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writeb(i, par->cmap_adr + AVIVO_DC_LUT_RW_INDEX); writel(0, par->cmap_adr + AVIVO_DC_LUT_30_COLOR); break; } } else fb_set_cmap(&info->cmap, info); return 0; } static int offb_set_par(struct fb_info *info) { struct offb_par *par = (struct offb_par *) info->par; /* On avivo, initialize palette control */ if (par->cmap_type == cmap_avivo) { writel(0, par->cmap_adr + AVIVO_DC_LUTA_CONTROL); writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_BLUE); writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_GREEN); writel(0, par->cmap_adr + AVIVO_DC_LUTA_BLACK_OFFSET_RED); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_BLUE); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_GREEN); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTA_WHITE_OFFSET_RED); writel(0, par->cmap_adr + AVIVO_DC_LUTB_CONTROL); writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_BLUE); writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_GREEN); writel(0, par->cmap_adr + AVIVO_DC_LUTB_BLACK_OFFSET_RED); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_BLUE); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_GREEN); writel(0x0000ffff, par->cmap_adr + AVIVO_DC_LUTB_WHITE_OFFSET_RED); writel(1, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_MODE); writel(0x0000003f, par->cmap_adr + AVIVO_DC_LUT_WRITE_EN_MASK); writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_SELECT); writel(0, par->cmap_adr + AVIVO_DC_LUT_RW_MODE); writel(0x0000003f, par->cmap_adr + AVIVO_DC_LUT_WRITE_EN_MASK); } return 0; } static void offb_destroy(struct fb_info *info) { if (info->screen_base) iounmap(info->screen_base); release_mem_region(info->apertures->ranges[0].base, info->apertures->ranges[0].size); framebuffer_release(info); } static struct fb_ops offb_ops = { .owner = THIS_MODULE, .fb_destroy = offb_destroy, .fb_setcolreg = offb_setcolreg, .fb_set_par = offb_set_par, .fb_blank = offb_blank, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, }; static void __iomem *offb_map_reg(struct device_node *np, int index, unsigned long offset, unsigned long size) { const u32 *addrp; u64 asize, taddr; unsigned int flags; addrp = of_get_pci_address(np, index, &asize, &flags); if (addrp == NULL) addrp = of_get_address(np, index, &asize, &flags); if (addrp == NULL) return NULL; if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0) return NULL; if ((offset + size) > asize) return NULL; taddr = of_translate_address(np, addrp); if (taddr == OF_BAD_ADDR) return NULL; return ioremap(taddr + offset, size); } static void offb_init_palette_hacks(struct fb_info *info, struct device_node *dp, const char *name, unsigned long address) { struct offb_par *par = (struct offb_par *) info->par; if (dp && !strncmp(name, "ATY,Rage128", 11)) { par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff); if (par->cmap_adr) par->cmap_type = cmap_r128; } else if (dp && (!strncmp(name, "ATY,RageM3pA", 12) || !strncmp(name, "ATY,RageM3p12A", 14))) { par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff); if (par->cmap_adr) par->cmap_type = cmap_M3A; } else if (dp && !strncmp(name, "ATY,RageM3pB", 12)) { par->cmap_adr = offb_map_reg(dp, 2, 0, 0x1fff); if (par->cmap_adr) par->cmap_type = cmap_M3B; } else if (dp && !strncmp(name, "ATY,Rage6", 9)) { par->cmap_adr = offb_map_reg(dp, 1, 0, 0x1fff); if (par->cmap_adr) par->cmap_type = cmap_radeon; } else if (!strncmp(name, "ATY,", 4)) { unsigned long base = address & 0xff000000UL; par->cmap_adr = ioremap(base + 0x7ff000, 0x1000) + 0xcc0; par->cmap_data = par->cmap_adr + 1; par->cmap_type = cmap_simple; } else if (dp && (of_device_is_compatible(dp, "pci1014,b7") || of_device_is_compatible(dp, "pci1014,21c"))) { par->cmap_adr = offb_map_reg(dp, 0, 0x6000, 0x1000); if (par->cmap_adr) par->cmap_type = cmap_gxt2000; } else if (dp && !strncmp(name, "vga,Display-", 12)) { /* Look for AVIVO initialized by SLOF */ struct device_node *pciparent = of_get_parent(dp); const u32 *vid, *did; vid = of_get_property(pciparent, "vendor-id", NULL); did = of_get_property(pciparent, "device-id", NULL); /* This will match most R5xx */ if (vid && did && *vid == 0x1002 && ((*did >= 0x7100 && *did < 0x7800) || (*did >= 0x9400))) { par->cmap_adr = offb_map_reg(pciparent, 2, 0, 0x10000); if (par->cmap_adr) par->cmap_type = cmap_avivo; } of_node_put(pciparent); } else if (dp && of_device_is_compatible(dp, "qemu,std-vga")) { const u32 io_of_addr[3] = { 0x01000000, 0x0, 0x0 }; u64 io_addr = of_translate_address(dp, io_of_addr); if (io_addr != OF_BAD_ADDR) { par->cmap_adr = ioremap(io_addr + 0x3c8, 2); if (par->cmap_adr) { par->cmap_type = cmap_simple; par->cmap_data = par->cmap_adr + 1; } } } info->fix.visual = (par->cmap_type != cmap_unknown) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_STATIC_PSEUDOCOLOR; } static void __init offb_init_fb(const char *name, const char *full_name, int width, int height, int depth, int pitch, unsigned long address, int foreign_endian, struct device_node *dp) { unsigned long res_size = pitch * height; struct offb_par *par = &default_par; unsigned long res_start = address; struct fb_fix_screeninfo *fix; struct fb_var_screeninfo *var; struct fb_info *info; if (!request_mem_region(res_start, res_size, "offb")) return; printk(KERN_INFO "Using unsupported %dx%d %s at %lx, depth=%d, pitch=%d\n", width, height, name, address, depth, pitch); if (depth != 8 && depth != 15 && depth != 16 && depth != 32) { printk(KERN_ERR "%s: can't use depth = %d\n", full_name, depth); release_mem_region(res_start, res_size); return; } info = framebuffer_alloc(sizeof(u32) * 16, NULL); if (info == 0) { release_mem_region(res_start, res_size); return; } fix = &info->fix; var = &info->var; info->par = par; strcpy(fix->id, "OFfb "); strncat(fix->id, name, sizeof(fix->id) - sizeof("OFfb ")); fix->id[sizeof(fix->id) - 1] = '\0'; var->xres = var->xres_virtual = width; var->yres = var->yres_virtual = height; fix->line_length = pitch; fix->smem_start = address; fix->smem_len = pitch * height; fix->type = FB_TYPE_PACKED_PIXELS; fix->type_aux = 0; par->cmap_type = cmap_unknown; if (depth == 8) offb_init_palette_hacks(info, dp, name, address); else fix->visual = FB_VISUAL_TRUECOLOR; var->xoffset = var->yoffset = 0; switch (depth) { case 8: var->bits_per_pixel = 8; var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; break; case 15: /* RGB 555 */ var->bits_per_pixel = 16; var->red.offset = 10; var->red.length = 5; var->green.offset = 5; var->green.length = 5; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; break; case 16: /* RGB 565 */ var->bits_per_pixel = 16; var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; break; case 32: /* RGB 888 */ var->bits_per_pixel = 32; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 24; var->transp.length = 8; break; } var->red.msb_right = var->green.msb_right = var->blue.msb_right = var->transp.msb_right = 0; var->grayscale = 0; var->nonstd = 0; var->activate = 0; var->height = var->width = -1; var->pixclock = 10000; var->left_margin = var->right_margin = 16; var->upper_margin = var->lower_margin = 16; var->hsync_len = var->vsync_len = 8; var->sync = 0; var->vmode = FB_VMODE_NONINTERLACED; /* set offb aperture size for generic probing */ info->apertures = alloc_apertures(1); if (!info->apertures) goto out_aper; info->apertures->ranges[0].base = address; info->apertures->ranges[0].size = fix->smem_len; info->fbops = &offb_ops; info->screen_base = ioremap(address, fix->smem_len); info->pseudo_palette = (void *) (info + 1); info->flags = FBINFO_DEFAULT | FBINFO_MISC_FIRMWARE | foreign_endian; fb_alloc_cmap(&info->cmap, 256, 0); if (register_framebuffer(info) < 0) goto out_err; printk(KERN_INFO "fb%d: Open Firmware frame buffer device on %s\n", info->node, full_name); return; out_err: iounmap(info->screen_base); out_aper: iounmap(par->cmap_adr); par->cmap_adr = NULL; framebuffer_release(info); release_mem_region(res_start, res_size); } static void __init offb_init_nodriver(struct device_node *dp, int no_real_node) { unsigned int len; int i, width = 640, height = 480, depth = 8, pitch = 640; unsigned int flags, rsize, addr_prop = 0; unsigned long max_size = 0; u64 rstart, address = OF_BAD_ADDR; const u32 *pp, *addrp, *up; u64 asize; int foreign_endian = 0; #ifdef __BIG_ENDIAN if (of_get_property(dp, "little-endian", NULL)) foreign_endian = FBINFO_FOREIGN_ENDIAN; #else if (of_get_property(dp, "big-endian", NULL)) foreign_endian = FBINFO_FOREIGN_ENDIAN; #endif pp = of_get_property(dp, "linux,bootx-depth", &len); if (pp == NULL) pp = of_get_property(dp, "depth", &len); if (pp && len == sizeof(u32)) depth = *pp; pp = of_get_property(dp, "linux,bootx-width", &len); if (pp == NULL) pp = of_get_property(dp, "width", &len); if (pp && len == sizeof(u32)) width = *pp; pp = of_get_property(dp, "linux,bootx-height", &len); if (pp == NULL) pp = of_get_property(dp, "height", &len); if (pp && len == sizeof(u32)) height = *pp; pp = of_get_property(dp, "linux,bootx-linebytes", &len); if (pp == NULL) pp = of_get_property(dp, "linebytes", &len); if (pp && len == sizeof(u32) && (*pp != 0xffffffffu)) pitch = *pp; else pitch = width * ((depth + 7) / 8); rsize = (unsigned long)pitch * (unsigned long)height; /* Ok, now we try to figure out the address of the framebuffer. * * Unfortunately, Open Firmware doesn't provide a standard way to do * so. All we can do is a dodgy heuristic that happens to work in * practice. On most machines, the "address" property contains what * we need, though not on Matrox cards found in IBM machines. What I've * found that appears to give good results is to go through the PCI * ranges and pick one that is both big enough and if possible encloses * the "address" property. If none match, we pick the biggest */ up = of_get_property(dp, "linux,bootx-addr", &len); if (up == NULL) up = of_get_property(dp, "address", &len); if (up && len == sizeof(u32)) addr_prop = *up; /* Hack for when BootX is passing us */ if (no_real_node) goto skip_addr; for (i = 0; (addrp = of_get_address(dp, i, &asize, &flags)) != NULL; i++) { int match_addrp = 0; if (!(flags & IORESOURCE_MEM)) continue; if (asize < rsize) continue; rstart = of_translate_address(dp, addrp); if (rstart == OF_BAD_ADDR) continue; if (addr_prop && (rstart <= addr_prop) && ((rstart + asize) >= (addr_prop + rsize))) match_addrp = 1; if (match_addrp) { address = addr_prop; break; } if (rsize > max_size) { max_size = rsize; address = OF_BAD_ADDR; } if (address == OF_BAD_ADDR) address = rstart; } skip_addr: if (address == OF_BAD_ADDR && addr_prop) address = (u64)addr_prop; if (address != OF_BAD_ADDR) { /* kludge for valkyrie */ if (strcmp(dp->name, "valkyrie") == 0) address += 0x1000; offb_init_fb(no_real_node ? "bootx" : dp->name, no_real_node ? "display" : dp->full_name, width, height, depth, pitch, address, foreign_endian, no_real_node ? NULL : dp); } } static int __init offb_init(void) { struct device_node *dp = NULL, *boot_disp = NULL; if (fb_get_options("offb", NULL)) return -ENODEV; /* Check if we have a MacOS display without a node spec */ if (of_get_property(of_chosen, "linux,bootx-noscreen", NULL) != NULL) { /* The old code tried to work out which node was the MacOS * display based on the address. I'm dropping that since the * lack of a node spec only happens with old BootX versions * (users can update) and with this code, they'll still get * a display (just not the palette hacks). */ offb_init_nodriver(of_chosen, 1); } for (dp = NULL; (dp = of_find_node_by_type(dp, "display"));) { if (of_get_property(dp, "linux,opened", NULL) && of_get_property(dp, "linux,boot-display", NULL)) { boot_disp = dp; offb_init_nodriver(dp, 0); } } for (dp = NULL; (dp = of_find_node_by_type(dp, "display"));) { if (of_get_property(dp, "linux,opened", NULL) && dp != boot_disp) offb_init_nodriver(dp, 0); } return 0; } module_init(offb_init); MODULE_LICENSE("GPL");