/* * drivers/w1/masters/omap_hdq.c * * Copyright (C) 2007,2012 Texas Instruments, Inc. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * */ #include #include #include #include #include #include #include #include #include #include #include #include "../w1.h" #include "../w1_int.h" #define MOD_NAME "OMAP_HDQ:" #define OMAP_HDQ_REVISION 0x00 #define OMAP_HDQ_TX_DATA 0x04 #define OMAP_HDQ_RX_DATA 0x08 #define OMAP_HDQ_CTRL_STATUS 0x0c #define OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK (1<<6) #define OMAP_HDQ_CTRL_STATUS_CLOCKENABLE (1<<5) #define OMAP_HDQ_CTRL_STATUS_GO (1<<4) #define OMAP_HDQ_CTRL_STATUS_INITIALIZATION (1<<2) #define OMAP_HDQ_CTRL_STATUS_DIR (1<<1) #define OMAP_HDQ_CTRL_STATUS_MODE (1<<0) #define OMAP_HDQ_INT_STATUS 0x10 #define OMAP_HDQ_INT_STATUS_TXCOMPLETE (1<<2) #define OMAP_HDQ_INT_STATUS_RXCOMPLETE (1<<1) #define OMAP_HDQ_INT_STATUS_TIMEOUT (1<<0) #define OMAP_HDQ_SYSCONFIG 0x14 #define OMAP_HDQ_SYSCONFIG_SOFTRESET (1<<1) #define OMAP_HDQ_SYSCONFIG_AUTOIDLE (1<<0) #define OMAP_HDQ_SYSSTATUS 0x18 #define OMAP_HDQ_SYSSTATUS_RESETDONE (1<<0) #define OMAP_HDQ_FLAG_CLEAR 0 #define OMAP_HDQ_FLAG_SET 1 #define OMAP_HDQ_TIMEOUT (HZ/5) #define OMAP_HDQ_MAX_USER 4 static DECLARE_WAIT_QUEUE_HEAD(hdq_wait_queue); static int w1_id; struct hdq_data { struct device *dev; void __iomem *hdq_base; /* lock status update */ struct mutex hdq_mutex; int hdq_usecount; u8 hdq_irqstatus; /* device lock */ spinlock_t hdq_spinlock; /* * Used to control the call to omap_hdq_get and omap_hdq_put. * HDQ Protocol: Write the CMD|REG_address first, followed by * the data wrire or read. */ int init_trans; }; static int __devinit omap_hdq_probe(struct platform_device *pdev); static int __devexit omap_hdq_remove(struct platform_device *pdev); static struct platform_driver omap_hdq_driver = { .probe = omap_hdq_probe, .remove = __devexit_p(omap_hdq_remove), .driver = { .name = "omap_hdq", }, }; static u8 omap_w1_read_byte(void *_hdq); static void omap_w1_write_byte(void *_hdq, u8 byte); static u8 omap_w1_reset_bus(void *_hdq); static void omap_w1_search_bus(void *_hdq, struct w1_master *master_dev, u8 search_type, w1_slave_found_callback slave_found); static struct w1_bus_master omap_w1_master = { .read_byte = omap_w1_read_byte, .write_byte = omap_w1_write_byte, .reset_bus = omap_w1_reset_bus, .search = omap_w1_search_bus, }; /* HDQ register I/O routines */ static inline u8 hdq_reg_in(struct hdq_data *hdq_data, u32 offset) { return __raw_readl(hdq_data->hdq_base + offset); } static inline void hdq_reg_out(struct hdq_data *hdq_data, u32 offset, u8 val) { __raw_writel(val, hdq_data->hdq_base + offset); } static inline u8 hdq_reg_merge(struct hdq_data *hdq_data, u32 offset, u8 val, u8 mask) { u8 new_val = (__raw_readl(hdq_data->hdq_base + offset) & ~mask) | (val & mask); __raw_writel(new_val, hdq_data->hdq_base + offset); return new_val; } /* * Wait for one or more bits in flag change. * HDQ_FLAG_SET: wait until any bit in the flag is set. * HDQ_FLAG_CLEAR: wait until all bits in the flag are cleared. * return 0 on success and -ETIMEDOUT in the case of timeout. */ static int hdq_wait_for_flag(struct hdq_data *hdq_data, u32 offset, u8 flag, u8 flag_set, u8 *status) { int ret = 0; unsigned long timeout = jiffies + OMAP_HDQ_TIMEOUT; if (flag_set == OMAP_HDQ_FLAG_CLEAR) { /* wait for the flag clear */ while (((*status = hdq_reg_in(hdq_data, offset)) & flag) && time_before(jiffies, timeout)) { schedule_timeout_uninterruptible(1); } if (*status & flag) ret = -ETIMEDOUT; } else if (flag_set == OMAP_HDQ_FLAG_SET) { /* wait for the flag set */ while (!((*status = hdq_reg_in(hdq_data, offset)) & flag) && time_before(jiffies, timeout)) { schedule_timeout_uninterruptible(1); } if (!(*status & flag)) ret = -ETIMEDOUT; } else return -EINVAL; return ret; } /* write out a byte and fill *status with HDQ_INT_STATUS */ static int hdq_write_byte(struct hdq_data *hdq_data, u8 val, u8 *status) { int ret; u8 tmp_status; unsigned long irqflags; *status = 0; spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); /* clear interrupt flags via a dummy read */ hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS); /* ISR loads it with new INT_STATUS */ hdq_data->hdq_irqstatus = 0; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); hdq_reg_out(hdq_data, OMAP_HDQ_TX_DATA, val); /* set the GO bit */ hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO); /* wait for the TXCOMPLETE bit */ ret = wait_event_timeout(hdq_wait_queue, hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT); if (ret == 0) { dev_dbg(hdq_data->dev, "TX wait elapsed\n"); ret = -ETIMEDOUT; goto out; } *status = hdq_data->hdq_irqstatus; /* check irqstatus */ if (!(*status & OMAP_HDQ_INT_STATUS_TXCOMPLETE)) { dev_dbg(hdq_data->dev, "timeout waiting for" " TXCOMPLETE/RXCOMPLETE, %x", *status); ret = -ETIMEDOUT; goto out; } /* wait for the GO bit return to zero */ ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_FLAG_CLEAR, &tmp_status); if (ret) { dev_dbg(hdq_data->dev, "timeout waiting GO bit" " return to zero, %x", tmp_status); } out: return ret; } /* HDQ Interrupt service routine */ static irqreturn_t hdq_isr(int irq, void *_hdq) { struct hdq_data *hdq_data = _hdq; unsigned long irqflags; spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); hdq_data->hdq_irqstatus = hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS); spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); dev_dbg(hdq_data->dev, "hdq_isr: %x", hdq_data->hdq_irqstatus); if (hdq_data->hdq_irqstatus & (OMAP_HDQ_INT_STATUS_TXCOMPLETE | OMAP_HDQ_INT_STATUS_RXCOMPLETE | OMAP_HDQ_INT_STATUS_TIMEOUT)) { /* wake up sleeping process */ wake_up(&hdq_wait_queue); } return IRQ_HANDLED; } /* HDQ Mode: always return success */ static u8 omap_w1_reset_bus(void *_hdq) { return 0; } /* W1 search callback function */ static void omap_w1_search_bus(void *_hdq, struct w1_master *master_dev, u8 search_type, w1_slave_found_callback slave_found) { u64 module_id, rn_le, cs, id; if (w1_id) module_id = w1_id; else module_id = 0x1; rn_le = cpu_to_le64(module_id); /* * HDQ might not obey truly the 1-wire spec. * So calculate CRC based on module parameter. */ cs = w1_calc_crc8((u8 *)&rn_le, 7); id = (cs << 56) | module_id; slave_found(master_dev, id); } static int _omap_hdq_reset(struct hdq_data *hdq_data) { int ret; u8 tmp_status; hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_SOFTRESET); /* * Select HDQ mode & enable clocks. * It is observed that INT flags can't be cleared via a read and GO/INIT * won't return to zero if interrupt is disabled. So we always enable * interrupt. */ hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); /* wait for reset to complete */ ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_SYSSTATUS, OMAP_HDQ_SYSSTATUS_RESETDONE, OMAP_HDQ_FLAG_SET, &tmp_status); if (ret) dev_dbg(hdq_data->dev, "timeout waiting HDQ reset, %x", tmp_status); else { hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_AUTOIDLE); } return ret; } /* Issue break pulse to the device */ static int omap_hdq_break(struct hdq_data *hdq_data) { int ret = 0; u8 tmp_status; unsigned long irqflags; ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { dev_dbg(hdq_data->dev, "Could not acquire mutex\n"); ret = -EINTR; goto rtn; } spin_lock_irqsave(&hdq_data->hdq_spinlock, irqflags); /* clear interrupt flags via a dummy read */ hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS); /* ISR loads it with new INT_STATUS */ hdq_data->hdq_irqstatus = 0; spin_unlock_irqrestore(&hdq_data->hdq_spinlock, irqflags); /* set the INIT and GO bit */ hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO); /* wait for the TIMEOUT bit */ ret = wait_event_timeout(hdq_wait_queue, hdq_data->hdq_irqstatus, OMAP_HDQ_TIMEOUT); if (ret == 0) { dev_dbg(hdq_data->dev, "break wait elapsed\n"); ret = -EINTR; goto out; } tmp_status = hdq_data->hdq_irqstatus; /* check irqstatus */ if (!(tmp_status & OMAP_HDQ_INT_STATUS_TIMEOUT)) { dev_dbg(hdq_data->dev, "timeout waiting for TIMEOUT, %x", tmp_status); ret = -ETIMEDOUT; goto out; } /* * wait for both INIT and GO bits rerurn to zero. * zero wait time expected for interrupt mode. */ ret = hdq_wait_for_flag(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_INITIALIZATION | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_FLAG_CLEAR, &tmp_status); if (ret) dev_dbg(hdq_data->dev, "timeout waiting INIT&GO bits" " return to zero, %x", tmp_status); out: mutex_unlock(&hdq_data->hdq_mutex); rtn: return ret; } static int hdq_read_byte(struct hdq_data *hdq_data, u8 *val) { int ret = 0; u8 status; ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { ret = -EINTR; goto rtn; } if (!hdq_data->hdq_usecount) { ret = -EINVAL; goto out; } if (!(hdq_data->hdq_irqstatus & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) { hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO, OMAP_HDQ_CTRL_STATUS_DIR | OMAP_HDQ_CTRL_STATUS_GO); /* * The RX comes immediately after TX. */ wait_event_timeout(hdq_wait_queue, (hdq_data->hdq_irqstatus & OMAP_HDQ_INT_STATUS_RXCOMPLETE), OMAP_HDQ_TIMEOUT); hdq_reg_merge(hdq_data, OMAP_HDQ_CTRL_STATUS, 0, OMAP_HDQ_CTRL_STATUS_DIR); status = hdq_data->hdq_irqstatus; /* check irqstatus */ if (!(status & OMAP_HDQ_INT_STATUS_RXCOMPLETE)) { dev_dbg(hdq_data->dev, "timeout waiting for" " RXCOMPLETE, %x", status); ret = -ETIMEDOUT; goto out; } } /* the data is ready. Read it in! */ *val = hdq_reg_in(hdq_data, OMAP_HDQ_RX_DATA); out: mutex_unlock(&hdq_data->hdq_mutex); rtn: return ret; } /* Enable clocks and set the controller to HDQ mode */ static int omap_hdq_get(struct hdq_data *hdq_data) { int ret = 0; ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { ret = -EINTR; goto rtn; } if (OMAP_HDQ_MAX_USER == hdq_data->hdq_usecount) { dev_dbg(hdq_data->dev, "attempt to exceed the max use count"); ret = -EINVAL; goto out; } else { hdq_data->hdq_usecount++; try_module_get(THIS_MODULE); if (1 == hdq_data->hdq_usecount) { pm_runtime_get_sync(hdq_data->dev); /* make sure HDQ is out of reset */ if (!(hdq_reg_in(hdq_data, OMAP_HDQ_SYSSTATUS) & OMAP_HDQ_SYSSTATUS_RESETDONE)) { ret = _omap_hdq_reset(hdq_data); if (ret) /* back up the count */ hdq_data->hdq_usecount--; } else { /* select HDQ mode & enable clocks */ hdq_reg_out(hdq_data, OMAP_HDQ_CTRL_STATUS, OMAP_HDQ_CTRL_STATUS_CLOCKENABLE | OMAP_HDQ_CTRL_STATUS_INTERRUPTMASK); hdq_reg_out(hdq_data, OMAP_HDQ_SYSCONFIG, OMAP_HDQ_SYSCONFIG_AUTOIDLE); hdq_reg_in(hdq_data, OMAP_HDQ_INT_STATUS); } } } out: mutex_unlock(&hdq_data->hdq_mutex); rtn: return ret; } /* Disable clocks to the module */ static int omap_hdq_put(struct hdq_data *hdq_data) { int ret = 0; ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) return -EINTR; if (0 == hdq_data->hdq_usecount) { dev_dbg(hdq_data->dev, "attempt to decrement use count" " when it is zero"); ret = -EINVAL; } else { hdq_data->hdq_usecount--; module_put(THIS_MODULE); if (0 == hdq_data->hdq_usecount) pm_runtime_put_sync(hdq_data->dev); } mutex_unlock(&hdq_data->hdq_mutex); return ret; } /* Read a byte of data from the device */ static u8 omap_w1_read_byte(void *_hdq) { struct hdq_data *hdq_data = _hdq; u8 val = 0; int ret; ret = hdq_read_byte(hdq_data, &val); if (ret) { ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { dev_dbg(hdq_data->dev, "Could not acquire mutex\n"); return -EINTR; } hdq_data->init_trans = 0; mutex_unlock(&hdq_data->hdq_mutex); omap_hdq_put(hdq_data); return -1; } /* Write followed by a read, release the module */ if (hdq_data->init_trans) { ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { dev_dbg(hdq_data->dev, "Could not acquire mutex\n"); return -EINTR; } hdq_data->init_trans = 0; mutex_unlock(&hdq_data->hdq_mutex); omap_hdq_put(hdq_data); } return val; } /* Write a byte of data to the device */ static void omap_w1_write_byte(void *_hdq, u8 byte) { struct hdq_data *hdq_data = _hdq; int ret; u8 status; /* First write to initialize the transfer */ if (hdq_data->init_trans == 0) omap_hdq_get(hdq_data); ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { dev_dbg(hdq_data->dev, "Could not acquire mutex\n"); return; } hdq_data->init_trans++; mutex_unlock(&hdq_data->hdq_mutex); ret = hdq_write_byte(hdq_data, byte, &status); if (ret < 0) { dev_dbg(hdq_data->dev, "TX failure:Ctrl status %x\n", status); return; } /* Second write, data transferred. Release the module */ if (hdq_data->init_trans > 1) { omap_hdq_put(hdq_data); ret = mutex_lock_interruptible(&hdq_data->hdq_mutex); if (ret < 0) { dev_dbg(hdq_data->dev, "Could not acquire mutex\n"); return; } hdq_data->init_trans = 0; mutex_unlock(&hdq_data->hdq_mutex); } return; } static int __devinit omap_hdq_probe(struct platform_device *pdev) { struct hdq_data *hdq_data; struct resource *res; int ret, irq; u8 rev; hdq_data = kmalloc(sizeof(*hdq_data), GFP_KERNEL); if (!hdq_data) { dev_dbg(&pdev->dev, "unable to allocate memory\n"); ret = -ENOMEM; goto err_kmalloc; } hdq_data->dev = &pdev->dev; platform_set_drvdata(pdev, hdq_data); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_dbg(&pdev->dev, "unable to get resource\n"); ret = -ENXIO; goto err_resource; } hdq_data->hdq_base = ioremap(res->start, resource_size(res)); if (!hdq_data->hdq_base) { dev_dbg(&pdev->dev, "ioremap failed\n"); ret = -EINVAL; goto err_ioremap; } hdq_data->hdq_usecount = 0; mutex_init(&hdq_data->hdq_mutex); pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); rev = hdq_reg_in(hdq_data, OMAP_HDQ_REVISION); dev_info(&pdev->dev, "OMAP HDQ Hardware Rev %c.%c. Driver in %s mode\n", (rev >> 4) + '0', (rev & 0x0f) + '0', "Interrupt"); spin_lock_init(&hdq_data->hdq_spinlock); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -ENXIO; goto err_irq; } ret = request_irq(irq, hdq_isr, IRQF_DISABLED, "omap_hdq", hdq_data); if (ret < 0) { dev_dbg(&pdev->dev, "could not request irq\n"); goto err_irq; } omap_hdq_break(hdq_data); pm_runtime_put_sync(&pdev->dev); omap_w1_master.data = hdq_data; ret = w1_add_master_device(&omap_w1_master); if (ret) { dev_dbg(&pdev->dev, "Failure in registering w1 master\n"); goto err_w1; } return 0; err_irq: pm_runtime_put_sync(&pdev->dev); err_w1: pm_runtime_disable(&pdev->dev); iounmap(hdq_data->hdq_base); err_ioremap: err_resource: platform_set_drvdata(pdev, NULL); kfree(hdq_data); err_kmalloc: return ret; } static int __devexit omap_hdq_remove(struct platform_device *pdev) { struct hdq_data *hdq_data = platform_get_drvdata(pdev); mutex_lock(&hdq_data->hdq_mutex); if (hdq_data->hdq_usecount) { dev_dbg(&pdev->dev, "removed when use count is not zero\n"); mutex_unlock(&hdq_data->hdq_mutex); return -EBUSY; } mutex_unlock(&hdq_data->hdq_mutex); /* remove module dependency */ pm_runtime_disable(&pdev->dev); free_irq(INT_24XX_HDQ_IRQ, hdq_data); platform_set_drvdata(pdev, NULL); iounmap(hdq_data->hdq_base); kfree(hdq_data); return 0; } module_platform_driver(omap_hdq_driver); module_param(w1_id, int, S_IRUSR); MODULE_PARM_DESC(w1_id, "1-wire id for the slave detection"); MODULE_AUTHOR("Texas Instruments"); MODULE_DESCRIPTION("HDQ driver Library"); MODULE_LICENSE("GPL");