#include #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins); static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static int find_search_start(struct btrfs_root *root, int data) { struct btrfs_block_group_cache *cache[8]; struct btrfs_fs_info *info = root->fs_info; u64 used; u64 last; int i; int ret; cache[0] = info->block_group_cache; if (!cache[0]) goto find_new; used = btrfs_block_group_used(&cache[0]->item); if (used < (cache[0]->key.offset * 3 / 2)) return 0; find_new: last = 0; while(1) { ret = radix_tree_gang_lookup_tag(&info->block_group_radix, (void **)cache, last, ARRAY_SIZE(cache), BTRFS_BLOCK_GROUP_DIRTY); if (!ret) break; for (i = 0; i < ret; i++) { used = btrfs_block_group_used(&cache[i]->item); if (used < (cache[i]->key.offset * 3 / 2)) { info->block_group_cache = cache[i]; cache[i]->last_alloc = cache[i]->first_free; return 0; } last = cache[i]->key.objectid + cache[i]->key.offset - 1; } } last = 0; while(1) { ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)cache, last, ARRAY_SIZE(cache)); if (!ret) break; for (i = 0; i < ret; i++) { used = btrfs_block_group_used(&cache[i]->item); if (used < (cache[i]->key.offset * 3 / 2)) { info->block_group_cache = cache[i]; cache[i]->last_alloc = cache[i]->first_free; return 0; } last = cache[i]->key.objectid + cache[i]->key.offset - 1; } } info->block_group_cache = NULL; return 0; } int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; struct btrfs_key ins; u32 refs; find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1, &ins); path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 1); if (ret != 0) { printk("can't find block %Lu %Lu\n", blocknr, num_blocks); BUG(); } BUG_ON(ret != 0); l = btrfs_buffer_leaf(path->nodes[0]); item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(item); btrfs_set_extent_refs(item, refs + 1); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_release_path(root->fs_info->extent_root, path); btrfs_free_path(path); finish_current_insert(trans, root->fs_info->extent_root); del_pending_extents(trans, root->fs_info->extent_root); return 0; } static int lookup_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, u32 *refs) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; path = btrfs_alloc_path(); btrfs_init_path(path); key.objectid = blocknr; key.offset = num_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 0); if (ret != 0) BUG(); l = btrfs_buffer_leaf(path->nodes[0]); item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); *refs = btrfs_extent_refs(item); btrfs_release_path(root->fs_info->extent_root, path); btrfs_free_path(path); return 0; } int btrfs_inc_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return btrfs_inc_extent_ref(trans, root, bh_blocknr(root->node), 1); } int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf) { u64 blocknr; struct btrfs_node *buf_node; struct btrfs_leaf *buf_leaf; struct btrfs_disk_key *key; struct btrfs_file_extent_item *fi; int i; int leaf; int ret; if (!root->ref_cows) return 0; buf_node = btrfs_buffer_node(buf); leaf = btrfs_is_leaf(buf_node); buf_leaf = btrfs_buffer_leaf(buf); for (i = 0; i < btrfs_header_nritems(&buf_node->header); i++) { if (leaf) { key = &buf_leaf->items[i].key; if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(buf_leaf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) == BTRFS_FILE_EXTENT_INLINE) continue; ret = btrfs_inc_extent_ref(trans, root, btrfs_file_extent_disk_blocknr(fi), btrfs_file_extent_disk_num_blocks(fi)); BUG_ON(ret); } else { blocknr = btrfs_node_blockptr(buf_node, i); ret = btrfs_inc_extent_ref(trans, root, blocknr, 1); BUG_ON(ret); } } return 0; } static int write_one_cache_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_block_group_cache *cache) { int ret; int pending_ret; struct btrfs_root *extent_root = root->fs_info->extent_root; struct btrfs_block_group_item *bi; struct btrfs_key ins; find_free_extent(trans, extent_root, 0, 0, (u64)-1, &ins); ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); BUG_ON(ret); bi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_block_group_item); memcpy(bi, &cache->item, sizeof(*bi)); mark_buffer_dirty(path->nodes[0]); btrfs_release_path(extent_root, path); finish_current_insert(trans, extent_root); pending_ret = del_pending_extents(trans, extent_root); if (ret) return ret; if (pending_ret) return pending_ret; return 0; } int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_block_group_cache *cache[8]; int ret; int err = 0; int werr = 0; struct radix_tree_root *radix = &root->fs_info->block_group_radix; int i; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { ret = radix_tree_gang_lookup_tag(radix, (void **)cache, 0, ARRAY_SIZE(cache), BTRFS_BLOCK_GROUP_DIRTY); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_tag_clear(radix, cache[i]->key.objectid + cache[i]->key.offset - 1, BTRFS_BLOCK_GROUP_DIRTY); err = write_one_cache_group(trans, root, path, cache[i]); if (err) werr = err; } } btrfs_free_path(path); return werr; } static int update_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num, int alloc) { struct btrfs_block_group_cache *cache; struct btrfs_fs_info *info = root->fs_info; u64 total = num; u64 old_val; u64 block_in_group; int ret; while(total) { ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)&cache, blocknr, 1); if (!ret) { printk(KERN_CRIT "blocknr %Lu lookup failed\n", blocknr); return -1; } block_in_group = blocknr - cache->key.objectid; WARN_ON(block_in_group > cache->key.offset); radix_tree_tag_set(&info->block_group_radix, cache->key.objectid + cache->key.offset - 1, BTRFS_BLOCK_GROUP_DIRTY); old_val = btrfs_block_group_used(&cache->item); num = min(total, cache->key.offset - block_in_group); total -= num; blocknr += num; if (alloc) { old_val += num; if (blocknr > cache->last_alloc) cache->last_alloc = blocknr; } else { old_val -= num; if (blocknr < cache->first_free) cache->first_free = blocknr; } btrfs_set_block_group_used(&cache->item, old_val); } return 0; } int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root) { unsigned long gang[8]; u64 first = 0; int ret; int i; struct radix_tree_root *pinned_radix = &root->fs_info->pinned_radix; while(1) { ret = find_first_radix_bit(pinned_radix, gang, ARRAY_SIZE(gang)); if (!ret) break; if (!first) first = gang[0]; for (i = 0; i < ret; i++) { clear_radix_bit(pinned_radix, gang[i]); } } if (root->fs_info->block_group_cache) { root->fs_info->block_group_cache->last_alloc = root->fs_info->block_group_cache->first_free; } return 0; } static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { struct btrfs_key ins; struct btrfs_extent_item extent_item; int i; int ret; u64 super_blocks_used; struct btrfs_fs_info *info = extent_root->fs_info; btrfs_set_extent_refs(&extent_item, 1); ins.offset = 1; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY); btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid); for (i = 0; i < extent_root->fs_info->extent_tree_insert_nr; i++) { ins.objectid = extent_root->fs_info->extent_tree_insert[i]; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + 1); ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item, sizeof(extent_item)); BUG_ON(ret); } extent_root->fs_info->extent_tree_insert_nr = 0; extent_root->fs_info->extent_tree_prealloc_nr = 0; return 0; } static int pin_down_block(struct btrfs_root *root, u64 blocknr, int pending) { int err; struct btrfs_header *header; struct buffer_head *bh; if (!pending) { bh = btrfs_find_tree_block(root, blocknr); if (bh) { if (buffer_uptodate(bh)) { u64 transid = root->fs_info->running_transaction->transid; header = btrfs_buffer_header(bh); if (btrfs_header_generation(header) == transid) { btrfs_block_release(root, bh); return 0; } } btrfs_block_release(root, bh); } err = set_radix_bit(&root->fs_info->pinned_radix, blocknr); } else { err = set_radix_bit(&root->fs_info->pending_del_radix, blocknr); } BUG_ON(err); return 0; } /* * remove an extent from the root, returns 0 on success */ static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_path *path; struct btrfs_key key; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; int ret; struct btrfs_extent_item *ei; struct btrfs_key ins; u32 refs; key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; find_free_extent(trans, root, 0, 0, (u64)-1, &ins); path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1); if (ret) { printk("failed to find %Lu\n", key.objectid); btrfs_print_tree(extent_root, extent_root->node); printk("failed to find %Lu\n", key.objectid); BUG(); } ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_extent_item); BUG_ON(ei->refs == 0); refs = btrfs_extent_refs(ei) - 1; btrfs_set_extent_refs(ei, refs); btrfs_mark_buffer_dirty(path->nodes[0]); if (refs == 0) { u64 super_blocks_used; if (pin) { ret = pin_down_block(root, blocknr, 0); BUG_ON(ret); } super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used - num_blocks); ret = btrfs_del_item(trans, extent_root, path); if (ret) BUG(); ret = update_block_group(trans, root, blocknr, num_blocks, 0); BUG_ON(ret); } btrfs_release_path(extent_root, path); btrfs_free_path(path); finish_current_insert(trans, extent_root); return ret; } /* * find all the blocks marked as pending in the radix tree and remove * them from the extent map */ static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { int ret; int wret; int err = 0; unsigned long gang[4]; int i; struct radix_tree_root *pending_radix; struct radix_tree_root *pinned_radix; pending_radix = &extent_root->fs_info->pending_del_radix; pinned_radix = &extent_root->fs_info->pinned_radix; while(1) { ret = find_first_radix_bit(pending_radix, gang, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) { wret = set_radix_bit(pinned_radix, gang[i]); BUG_ON(wret); wret = clear_radix_bit(pending_radix, gang[i]); BUG_ON(wret); wret = __free_extent(trans, extent_root, gang[i], 1, 0); if (wret) err = wret; } } return err; } /* * remove an extent from the root, returns 0 on success */ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_root *extent_root = root->fs_info->extent_root; int pending_ret; int ret; if (root == extent_root) { pin_down_block(root, blocknr, 1); return 0; } ret = __free_extent(trans, root, blocknr, num_blocks, pin); pending_ret = del_pending_extents(trans, root->fs_info->extent_root); return ret ? ret : pending_ret; } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == block start * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == number of blocks * Any available blocks before search_start are skipped. */ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { struct btrfs_path *path; struct btrfs_key key; int ret; u64 hole_size = 0; int slot = 0; u64 last_block = 0; u64 test_block; int start_found; struct btrfs_leaf *l; struct btrfs_root * root = orig_root->fs_info->extent_root; struct btrfs_fs_info *info = root->fs_info; int total_needed = num_blocks; int total_found = 0; int fill_prealloc = 0; int level; path = btrfs_alloc_path(); ins->flags = 0; btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); level = btrfs_header_level(btrfs_buffer_header(root->node)); if (num_blocks == 0) { fill_prealloc = 1; num_blocks = 1; total_needed = min(level + 2, BTRFS_MAX_LEVEL) * 3; } find_search_start(root, 0); if (info->block_group_cache && info->block_group_cache->last_alloc > search_start) search_start = info->block_group_cache->last_alloc; check_failed: btrfs_init_path(path); ins->objectid = search_start; ins->offset = 0; start_found = 0; ret = btrfs_search_slot(trans, root, ins, path, 0, 0); if (ret < 0) goto error; if (path->slots[0] > 0) path->slots[0]--; while (1) { l = btrfs_buffer_leaf(path->nodes[0]); slot = path->slots[0]; if (slot >= btrfs_header_nritems(&l->header)) { if (fill_prealloc) { info->extent_tree_prealloc_nr = 0; total_found = 0; } ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; if (!start_found) { ins->objectid = search_start; ins->offset = (u64)-1 - search_start; start_found = 1; goto check_pending; } ins->objectid = last_block > search_start ? last_block : search_start; ins->offset = (u64)-1 - ins->objectid; goto check_pending; } btrfs_disk_key_to_cpu(&key, &l->items[slot].key); if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) goto next; if (key.objectid >= search_start) { if (start_found) { if (last_block < search_start) last_block = search_start; hole_size = key.objectid - last_block; if (hole_size >= num_blocks) { ins->objectid = last_block; ins->offset = hole_size; goto check_pending; } } } start_found = 1; last_block = key.objectid + key.offset; next: path->slots[0]++; } // FIXME -ENOSPC check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ btrfs_release_path(root, path); BUG_ON(ins->objectid < search_start); for (test_block = ins->objectid; test_block < ins->objectid + num_blocks; test_block++) { if (test_radix_bit(&info->pinned_radix, test_block)) { search_start = test_block + 1; goto check_failed; } } if (!fill_prealloc && info->extent_tree_insert_nr) { u64 last = info->extent_tree_insert[info->extent_tree_insert_nr - 1]; if (ins->objectid + num_blocks > info->extent_tree_insert[0] && ins->objectid <= last) { search_start = last + 1; WARN_ON(1); goto check_failed; } } if (!fill_prealloc && info->extent_tree_prealloc_nr) { u64 first = info->extent_tree_prealloc[info->extent_tree_prealloc_nr - 1]; if (ins->objectid + num_blocks > first && ins->objectid <= info->extent_tree_prealloc[0]) { search_start = info->extent_tree_prealloc[0] + 1; WARN_ON(1); goto check_failed; } } if (fill_prealloc) { int nr; test_block = ins->objectid; while(test_block < ins->objectid + ins->offset && total_found < total_needed) { nr = total_needed - total_found - 1; BUG_ON(nr < 0); info->extent_tree_prealloc[nr] = test_block; total_found++; test_block++; } if (total_found < total_needed) { search_start = test_block; goto check_failed; } info->extent_tree_prealloc_nr = total_found; } ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)&info->block_group_cache, ins->objectid, 1); if (ret) { info->block_group_cache->last_alloc = ins->objectid; } ins->offset = num_blocks; btrfs_free_path(path); return 0; error: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } /* * finds a free extent and does all the dirty work required for allocation * returns the key for the extent through ins, and a tree buffer for * the first block of the extent through buf. * * returns 0 if everything worked, non-zero otherwise. */ int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { int ret; int pending_ret; u64 super_blocks_used; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct btrfs_extent_item extent_item; struct btrfs_key prealloc_key; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, owner); if (root == extent_root) { int nr; BUG_ON(info->extent_tree_prealloc_nr == 0); BUG_ON(num_blocks != 1); ins->offset = 1; info->extent_tree_prealloc_nr--; nr = info->extent_tree_prealloc_nr; ins->objectid = info->extent_tree_prealloc[nr]; info->extent_tree_insert[info->extent_tree_insert_nr++] = ins->objectid; ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); BUG_ON(ret); return 0; } /* do the real allocation */ ret = find_free_extent(trans, root, num_blocks, search_start, search_end, ins); if (ret) return ret; /* then do prealloc for the extent tree */ ret = find_free_extent(trans, root, 0, ins->objectid + ins->offset, search_end, &prealloc_key); if (ret) return ret; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + num_blocks); ret = btrfs_insert_item(trans, extent_root, ins, &extent_item, sizeof(extent_item)); finish_current_insert(trans, extent_root); pending_ret = del_pending_extents(trans, extent_root); if (ret) return ret; if (pending_ret) return pending_ret; ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); return 0; } /* * helper function to allocate a block for a given tree * returns the tree buffer or NULL. */ struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_key ins; int ret; struct buffer_head *buf; ret = btrfs_alloc_extent(trans, root, root->root_key.objectid, 1, 0, (unsigned long)-1, &ins); if (ret) { BUG(); return NULL; } BUG_ON(ret); buf = btrfs_find_create_tree_block(root, ins.objectid); set_buffer_uptodate(buf); return buf; } static int drop_leaf_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *cur) { struct btrfs_disk_key *key; struct btrfs_leaf *leaf; struct btrfs_file_extent_item *fi; int i; int nritems; int ret; BUG_ON(!btrfs_is_leaf(btrfs_buffer_node(cur))); leaf = btrfs_buffer_leaf(cur); nritems = btrfs_header_nritems(&leaf->header); for (i = 0; i < nritems; i++) { key = &leaf->items[i].key; if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) == BTRFS_FILE_EXTENT_INLINE) continue; /* * FIXME make sure to insert a trans record that * repeats the snapshot del on crash */ ret = btrfs_free_extent(trans, root, btrfs_file_extent_disk_blocknr(fi), btrfs_file_extent_disk_num_blocks(fi), 0); BUG_ON(ret); } return 0; } /* * helper function for drop_snapshot, this walks down the tree dropping ref * counts as it goes. */ static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { struct buffer_head *next; struct buffer_head *cur; u64 blocknr; int ret; u32 refs; WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); ret = lookup_extent_ref(trans, root, bh_blocknr(path->nodes[*level]), 1, &refs); BUG_ON(ret); if (refs > 1) goto out; /* * walk down to the last node level and free all the leaves */ while(*level >= 0) { WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); cur = path->nodes[*level]; if (btrfs_header_level(btrfs_buffer_header(cur)) != *level) WARN_ON(1); if (path->slots[*level] >= btrfs_header_nritems(btrfs_buffer_header(cur))) break; if (*level == 0) { ret = drop_leaf_ref(trans, root, cur); BUG_ON(ret); break; } blocknr = btrfs_node_blockptr(btrfs_buffer_node(cur), path->slots[*level]); ret = lookup_extent_ref(trans, root, blocknr, 1, &refs); BUG_ON(ret); if (refs != 1) { path->slots[*level]++; ret = btrfs_free_extent(trans, root, blocknr, 1, 1); BUG_ON(ret); continue; } next = read_tree_block(root, blocknr); WARN_ON(*level <= 0); if (path->nodes[*level-1]) btrfs_block_release(root, path->nodes[*level-1]); path->nodes[*level-1] = next; *level = btrfs_header_level(btrfs_buffer_header(next)); path->slots[*level] = 0; } out: WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); ret = btrfs_free_extent(trans, root, bh_blocknr(path->nodes[*level]), 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level += 1; BUG_ON(ret); return 0; } /* * helper for dropping snapshots. This walks back up the tree in the path * to find the first node higher up where we haven't yet gone through * all the slots */ static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { int i; int slot; int ret; for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { slot = path->slots[i]; if (slot < btrfs_header_nritems( btrfs_buffer_header(path->nodes[i])) - 1) { path->slots[i]++; *level = i; return 0; } else { ret = btrfs_free_extent(trans, root, bh_blocknr(path->nodes[*level]), 1, 1); BUG_ON(ret); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level = i + 1; } } return 1; } /* * drop the reference count on the tree rooted at 'snap'. This traverses * the tree freeing any blocks that have a ref count of zero after being * decremented. */ int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *snap) { int ret = 0; int wret; int level; struct btrfs_path *path; int i; int orig_level; path = btrfs_alloc_path(); BUG_ON(!path); btrfs_init_path(path); level = btrfs_header_level(btrfs_buffer_header(snap)); orig_level = level; path->nodes[level] = snap; path->slots[level] = 0; while(1) { wret = walk_down_tree(trans, root, path, &level); if (wret > 0) break; if (wret < 0) ret = wret; wret = walk_up_tree(trans, root, path, &level); if (wret > 0) break; if (wret < 0) ret = wret; } for (i = 0; i <= orig_level; i++) { if (path->nodes[i]) { btrfs_block_release(root, path->nodes[i]); } } btrfs_free_path(path); return ret; } int btrfs_free_block_groups(struct btrfs_fs_info *info) { int ret; struct btrfs_block_group_cache *cache[8]; int i; while(1) { ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)cache, 0, ARRAY_SIZE(cache)); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_delete(&info->block_group_radix, cache[i]->key.objectid + cache[i]->key.offset - 1); kfree(cache[i]); } } return 0; } int btrfs_read_block_groups(struct btrfs_root *root) { struct btrfs_path *path; int ret; int err = 0; struct btrfs_block_group_item *bi; struct btrfs_block_group_cache *cache; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_leaf *leaf; u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize; root = root->fs_info->extent_root; key.objectid = 0; key.offset = group_size_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 0, 0); if (ret != 0) { err = ret; break; } leaf = btrfs_buffer_leaf(path->nodes[0]); btrfs_disk_key_to_cpu(&found_key, &leaf->items[path->slots[0]].key); cache = kmalloc(sizeof(*cache), GFP_NOFS); if (!cache) { err = -1; break; } bi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_block_group_item); memcpy(&cache->item, bi, sizeof(*bi)); memcpy(&cache->key, &found_key, sizeof(found_key)); cache->last_alloc = 0; cache->first_free = 0; key.objectid = found_key.objectid + found_key.offset; btrfs_release_path(root, path); ret = radix_tree_insert(&root->fs_info->block_group_radix, found_key.objectid + found_key.offset - 1, (void *)cache); BUG_ON(ret); if (key.objectid >= btrfs_super_total_blocks(root->fs_info->disk_super)) break; } btrfs_free_path(path); return 0; }