/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, u64 hint_block, struct btrfs_key *ins, int data); static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root); static void reada_extent_leaves(struct btrfs_root *root, struct btrfs_path *path, u64 limit) { struct btrfs_node *node; int i; int nritems; u64 item_objectid; u64 blocknr; int slot; int ret; if (!path->nodes[1]) return; node = btrfs_buffer_node(path->nodes[1]); slot = path->slots[1] + 1; nritems = btrfs_header_nritems(&node->header); for (i = slot; i < nritems && i < slot + 8; i++) { item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key); if (item_objectid > limit) break; blocknr = btrfs_node_blockptr(node, i); ret = readahead_tree_block(root, blocknr); if (ret) break; } } static int cache_block_group(struct btrfs_root *root, struct btrfs_block_group_cache *block_group) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *leaf; struct radix_tree_root *extent_radix; int slot; u64 i; u64 last = 0; u64 hole_size; u64 limit; int found = 0; root = root->fs_info->extent_root; extent_radix = &root->fs_info->extent_map_radix; if (block_group->cached) return 0; if (block_group->data) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = block_group->key.objectid; key.flags = 0; key.offset = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return ret; if (ret && path->slots[0] > 0) path->slots[0]--; limit = block_group->key.objectid + block_group->key.offset; reada_extent_leaves(root, path, limit); while(1) { leaf = btrfs_buffer_leaf(path->nodes[0]); slot = path->slots[0]; if (slot >= btrfs_header_nritems(&leaf->header)) { reada_extent_leaves(root, path, limit); ret = btrfs_next_leaf(root, path); if (ret == 0) { continue; } else { if (found) { hole_size = block_group->key.objectid + block_group->key.offset - last; } else { last = block_group->key.objectid; hole_size = block_group->key.offset; } for (i = 0; i < hole_size; i++) { set_radix_bit(extent_radix, last + i); } break; } } btrfs_disk_key_to_cpu(&key, &leaf->items[slot].key); if (key.objectid >= block_group->key.objectid + block_group->key.offset) { if (found) { hole_size = block_group->key.objectid + block_group->key.offset - last; } else { last = block_group->key.objectid; hole_size = block_group->key.offset; } for (i = 0; i < hole_size; i++) { set_radix_bit(extent_radix, last + i); } break; } if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) { if (!found) { last = key.objectid + key.offset; found = 1; } else { hole_size = key.objectid - last; for (i = 0; i < hole_size; i++) { set_radix_bit(extent_radix, last + i); } last = key.objectid + key.offset; } } path->slots[0]++; } block_group->cached = 1; btrfs_free_path(path); return 0; } struct btrfs_block_group_cache *btrfs_lookup_block_group(struct btrfs_fs_info *info, u64 blocknr) { struct btrfs_block_group_cache *block_group; int ret; ret = radix_tree_gang_lookup(&info->block_group_radix, (void **)&block_group, blocknr, 1); if (ret) { if (block_group->key.objectid <= blocknr && blocknr <= block_group->key.objectid + block_group->key.offset) return block_group; } ret = radix_tree_gang_lookup(&info->block_group_data_radix, (void **)&block_group, blocknr, 1); if (ret) { if (block_group->key.objectid <= blocknr && blocknr <= block_group->key.objectid + block_group->key.offset) return block_group; } return NULL; } static u64 leaf_range(struct btrfs_root *root) { u64 size = BTRFS_LEAF_DATA_SIZE(root); do_div(size, sizeof(struct btrfs_extent_item) + sizeof(struct btrfs_item)); return size; } static u64 find_search_start(struct btrfs_root *root, struct btrfs_block_group_cache **cache_ret, u64 search_start, int num) { unsigned long gang[8]; int ret; struct btrfs_block_group_cache *cache = *cache_ret; u64 last = max(search_start, cache->key.objectid); if (cache->data) goto out; if (num > 1) { last = max(last, cache->last_prealloc); } again: cache_block_group(root, cache); while(1) { ret = find_first_radix_bit(&root->fs_info->extent_map_radix, gang, last, ARRAY_SIZE(gang)); if (!ret) goto out; last = gang[ret-1] + 1; if (num > 1) { if (ret != ARRAY_SIZE(gang)) { goto new_group; } if (gang[ret-1] - gang[0] > leaf_range(root)) { continue; } } if (gang[0] >= cache->key.objectid + cache->key.offset) { goto new_group; } return gang[0]; } out: return max(cache->last_alloc, search_start); new_group: cache = btrfs_lookup_block_group(root->fs_info, last + cache->key.offset - 1); if (!cache) { return max((*cache_ret)->last_alloc, search_start); } cache = btrfs_find_block_group(root, cache, last + cache->key.offset - 1, 0, 0); *cache_ret = cache; goto again; } static u64 div_factor(u64 num, int factor) { num *= factor; do_div(num, 10); return num; } struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root, struct btrfs_block_group_cache *hint, u64 search_start, int data, int owner) { struct btrfs_block_group_cache *cache[8]; struct btrfs_block_group_cache *found_group = NULL; struct btrfs_fs_info *info = root->fs_info; struct radix_tree_root *radix; struct radix_tree_root *swap_radix; u64 used; u64 last = 0; u64 hint_last; int i; int ret; int full_search = 0; int factor = 8; int data_swap = 0; if (!owner) factor = 5; if (data) { radix = &info->block_group_data_radix; swap_radix = &info->block_group_radix; } else { radix = &info->block_group_radix; swap_radix = &info->block_group_data_radix; } if (search_start) { struct btrfs_block_group_cache *shint; shint = btrfs_lookup_block_group(info, search_start); if (shint->data == data) { used = btrfs_block_group_used(&shint->item); if (used + shint->pinned < div_factor(shint->key.offset, factor)) { return shint; } } } if (hint && hint->data == data) { used = btrfs_block_group_used(&hint->item); if (used + hint->pinned < div_factor(hint->key.offset, factor)) { return hint; } if (used >= div_factor(hint->key.offset, 8)) { radix_tree_tag_clear(radix, hint->key.objectid + hint->key.offset - 1, BTRFS_BLOCK_GROUP_AVAIL); } last = hint->key.offset * 3; if (hint->key.objectid >= last) last = max(search_start + hint->key.offset - 1, hint->key.objectid - last); else last = hint->key.objectid + hint->key.offset; hint_last = last; } else { if (hint) hint_last = max(hint->key.objectid, search_start); else hint_last = search_start; last = hint_last; } while(1) { ret = radix_tree_gang_lookup_tag(radix, (void **)cache, last, ARRAY_SIZE(cache), BTRFS_BLOCK_GROUP_AVAIL); if (!ret) break; for (i = 0; i < ret; i++) { last = cache[i]->key.objectid + cache[i]->key.offset; used = btrfs_block_group_used(&cache[i]->item); if (used + cache[i]->pinned < div_factor(cache[i]->key.offset, factor)) { found_group = cache[i]; goto found; } if (used >= div_factor(cache[i]->key.offset, 8)) { radix_tree_tag_clear(radix, cache[i]->key.objectid + cache[i]->key.offset - 1, BTRFS_BLOCK_GROUP_AVAIL); } } cond_resched(); } last = hint_last; again: while(1) { ret = radix_tree_gang_lookup(radix, (void **)cache, last, ARRAY_SIZE(cache)); if (!ret) break; for (i = 0; i < ret; i++) { last = cache[i]->key.objectid + cache[i]->key.offset; used = btrfs_block_group_used(&cache[i]->item); if (used + cache[i]->pinned < cache[i]->key.offset) { found_group = cache[i]; goto found; } if (used >= cache[i]->key.offset) { radix_tree_tag_clear(radix, cache[i]->key.objectid + cache[i]->key.offset - 1, BTRFS_BLOCK_GROUP_AVAIL); } } cond_resched(); } if (!full_search) { last = search_start; full_search = 1; goto again; } if (!data_swap) { struct radix_tree_root *tmp = radix; data_swap = 1; radix = swap_radix; swap_radix = tmp; last = search_start; goto again; } if (!found_group) { ret = radix_tree_gang_lookup(radix, (void **)&found_group, 0, 1); if (ret == 0) { ret = radix_tree_gang_lookup(swap_radix, (void **)&found_group, 0, 1); } BUG_ON(ret != 1); } found: return found_group; } int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; struct btrfs_key ins; u32 refs; find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1, 0, &ins, 0); path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 1); if (ret != 0) { BUG(); } BUG_ON(ret != 0); l = btrfs_buffer_leaf(path->nodes[0]); item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); refs = btrfs_extent_refs(item); btrfs_set_extent_refs(item, refs + 1); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_release_path(root->fs_info->extent_root, path); btrfs_free_path(path); finish_current_insert(trans, root->fs_info->extent_root); del_pending_extents(trans, root->fs_info->extent_root); return 0; } static int lookup_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, u32 *refs) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *l; struct btrfs_extent_item *item; path = btrfs_alloc_path(); key.objectid = blocknr; key.offset = num_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 0); if (ret != 0) BUG(); l = btrfs_buffer_leaf(path->nodes[0]); item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); *refs = btrfs_extent_refs(item); btrfs_release_path(root->fs_info->extent_root, path); btrfs_free_path(path); return 0; } int btrfs_inc_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root) { return btrfs_inc_extent_ref(trans, root, bh_blocknr(root->node), 1); } int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf) { u64 blocknr; struct btrfs_node *buf_node; struct btrfs_leaf *buf_leaf; struct btrfs_disk_key *key; struct btrfs_file_extent_item *fi; int i; int leaf; int ret; if (!root->ref_cows) return 0; buf_node = btrfs_buffer_node(buf); leaf = btrfs_is_leaf(buf_node); buf_leaf = btrfs_buffer_leaf(buf); for (i = 0; i < btrfs_header_nritems(&buf_node->header); i++) { if (leaf) { u64 disk_blocknr; key = &buf_leaf->items[i].key; if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(buf_leaf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) == BTRFS_FILE_EXTENT_INLINE) continue; disk_blocknr = btrfs_file_extent_disk_blocknr(fi); if (disk_blocknr == 0) continue; ret = btrfs_inc_extent_ref(trans, root, disk_blocknr, btrfs_file_extent_disk_num_blocks(fi)); BUG_ON(ret); } else { blocknr = btrfs_node_blockptr(buf_node, i); ret = btrfs_inc_extent_ref(trans, root, blocknr, 1); BUG_ON(ret); } } return 0; } static int write_one_cache_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_block_group_cache *cache) { int ret; int pending_ret; struct btrfs_root *extent_root = root->fs_info->extent_root; struct btrfs_block_group_item *bi; struct btrfs_key ins; find_free_extent(trans, extent_root, 0, 0, (u64)-1, 0, &ins, 0); ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); BUG_ON(ret); bi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_block_group_item); memcpy(bi, &cache->item, sizeof(*bi)); mark_buffer_dirty(path->nodes[0]); btrfs_release_path(extent_root, path); finish_current_insert(trans, extent_root); pending_ret = del_pending_extents(trans, extent_root); if (ret) return ret; if (pending_ret) return pending_ret; if (cache->data) cache->last_alloc = cache->first_free; return 0; } static int write_dirty_block_radix(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct radix_tree_root *radix) { struct btrfs_block_group_cache *cache[8]; int ret; int err = 0; int werr = 0; int i; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { ret = radix_tree_gang_lookup_tag(radix, (void **)cache, 0, ARRAY_SIZE(cache), BTRFS_BLOCK_GROUP_DIRTY); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_tag_clear(radix, cache[i]->key.objectid + cache[i]->key.offset - 1, BTRFS_BLOCK_GROUP_DIRTY); err = write_one_cache_group(trans, root, path, cache[i]); if (err) werr = err; } } btrfs_free_path(path); return werr; } int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; int ret2; ret = write_dirty_block_radix(trans, root, &root->fs_info->block_group_radix); ret2 = write_dirty_block_radix(trans, root, &root->fs_info->block_group_data_radix); if (ret) return ret; if (ret2) return ret2; return 0; } static int update_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num, int alloc, int mark_free, int data) { struct btrfs_block_group_cache *cache; struct btrfs_fs_info *info = root->fs_info; u64 total = num; u64 old_val; u64 block_in_group; u64 i; int ret; while(total) { cache = btrfs_lookup_block_group(info, blocknr); if (!cache) { return -1; } block_in_group = blocknr - cache->key.objectid; WARN_ON(block_in_group > cache->key.offset); radix_tree_tag_set(cache->radix, cache->key.objectid + cache->key.offset - 1, BTRFS_BLOCK_GROUP_DIRTY); old_val = btrfs_block_group_used(&cache->item); num = min(total, cache->key.offset - block_in_group); if (alloc) { if (blocknr > cache->last_alloc) cache->last_alloc = blocknr; if (!cache->data) { for (i = 0; i < num; i++) { clear_radix_bit(&info->extent_map_radix, blocknr + i); } } if (cache->data != data && old_val < (cache->key.offset >> 1)) { cache->data = data; radix_tree_delete(cache->radix, cache->key.objectid + cache->key.offset - 1); if (data) { cache->radix = &info->block_group_data_radix; cache->item.flags |= BTRFS_BLOCK_GROUP_DATA; } else { cache->radix = &info->block_group_radix; cache->item.flags &= ~BTRFS_BLOCK_GROUP_DATA; } ret = radix_tree_insert(cache->radix, cache->key.objectid + cache->key.offset - 1, (void *)cache); } old_val += num; } else { old_val -= num; if (blocknr < cache->first_free) cache->first_free = blocknr; if (!cache->data && mark_free) { for (i = 0; i < num; i++) { set_radix_bit(&info->extent_map_radix, blocknr + i); } } if (old_val < (cache->key.offset >> 1) && old_val + num >= (cache->key.offset >> 1)) { radix_tree_tag_set(cache->radix, cache->key.objectid + cache->key.offset - 1, BTRFS_BLOCK_GROUP_AVAIL); } } btrfs_set_block_group_used(&cache->item, old_val); total -= num; blocknr += num; } return 0; } static int try_remove_page(struct address_space *mapping, unsigned long index) { int ret; ret = invalidate_mapping_pages(mapping, index, index); return ret; } int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root) { unsigned long gang[8]; struct inode *btree_inode = root->fs_info->btree_inode; struct btrfs_block_group_cache *block_group; u64 first = 0; int ret; int i; struct radix_tree_root *pinned_radix = &root->fs_info->pinned_radix; struct radix_tree_root *extent_radix = &root->fs_info->extent_map_radix; while(1) { ret = find_first_radix_bit(pinned_radix, gang, 0, ARRAY_SIZE(gang)); if (!ret) break; if (!first) first = gang[0]; for (i = 0; i < ret; i++) { clear_radix_bit(pinned_radix, gang[i]); block_group = btrfs_lookup_block_group(root->fs_info, gang[i]); if (block_group) { WARN_ON(block_group->pinned == 0); block_group->pinned--; if (gang[i] < block_group->last_alloc) block_group->last_alloc = gang[i]; if (gang[i] < block_group->last_prealloc) block_group->last_prealloc = gang[i]; if (!block_group->data) set_radix_bit(extent_radix, gang[i]); } try_remove_page(btree_inode->i_mapping, gang[i] << (PAGE_CACHE_SHIFT - btree_inode->i_blkbits)); } } return 0; } static int finish_current_insert(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { struct btrfs_key ins; struct btrfs_extent_item extent_item; int i; int ret; u64 super_blocks_used; struct btrfs_fs_info *info = extent_root->fs_info; btrfs_set_extent_refs(&extent_item, 1); ins.offset = 1; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY); btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid); for (i = 0; i < extent_root->fs_info->extent_tree_insert_nr; i++) { ins.objectid = extent_root->fs_info->extent_tree_insert[i]; super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + 1); ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item, sizeof(extent_item)); BUG_ON(ret); } extent_root->fs_info->extent_tree_insert_nr = 0; extent_root->fs_info->extent_tree_prealloc_nr = 0; return 0; } static int pin_down_block(struct btrfs_root *root, u64 blocknr, int pending) { int err; struct btrfs_header *header; struct buffer_head *bh; if (!pending) { bh = btrfs_find_tree_block(root, blocknr); if (bh) { if (buffer_uptodate(bh)) { u64 transid = root->fs_info->running_transaction->transid; header = btrfs_buffer_header(bh); if (btrfs_header_generation(header) == transid) { btrfs_block_release(root, bh); return 0; } } btrfs_block_release(root, bh); } err = set_radix_bit(&root->fs_info->pinned_radix, blocknr); if (!err) { struct btrfs_block_group_cache *cache; cache = btrfs_lookup_block_group(root->fs_info, blocknr); if (cache) cache->pinned++; } } else { err = set_radix_bit(&root->fs_info->pending_del_radix, blocknr); } BUG_ON(err < 0); return 0; } /* * remove an extent from the root, returns 0 on success */ static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin, int mark_free) { struct btrfs_path *path; struct btrfs_key key; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; int ret; struct btrfs_extent_item *ei; struct btrfs_key ins; u32 refs; key.objectid = blocknr; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); key.offset = num_blocks; find_free_extent(trans, root, 0, 0, (u64)-1, 0, &ins, 0); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1); if (ret) { BUG(); } ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_extent_item); BUG_ON(ei->refs == 0); refs = btrfs_extent_refs(ei) - 1; btrfs_set_extent_refs(ei, refs); btrfs_mark_buffer_dirty(path->nodes[0]); if (refs == 0) { u64 super_blocks_used; if (pin) { ret = pin_down_block(root, blocknr, 0); BUG_ON(ret); } super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used - num_blocks); ret = btrfs_del_item(trans, extent_root, path); if (ret) BUG(); ret = update_block_group(trans, root, blocknr, num_blocks, 0, mark_free, 0); BUG_ON(ret); } btrfs_free_path(path); finish_current_insert(trans, extent_root); return ret; } /* * find all the blocks marked as pending in the radix tree and remove * them from the extent map */ static int del_pending_extents(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root) { int ret; int wret; int err = 0; unsigned long gang[4]; int i; struct radix_tree_root *pending_radix; struct radix_tree_root *pinned_radix; struct btrfs_block_group_cache *cache; pending_radix = &extent_root->fs_info->pending_del_radix; pinned_radix = &extent_root->fs_info->pinned_radix; while(1) { ret = find_first_radix_bit(pending_radix, gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) { wret = set_radix_bit(pinned_radix, gang[i]); if (wret == 0) { cache = btrfs_lookup_block_group(extent_root->fs_info, gang[i]); if (cache) cache->pinned++; } if (wret < 0) { printk(KERN_CRIT "set_radix_bit, err %d\n", wret); BUG_ON(wret < 0); } wret = clear_radix_bit(pending_radix, gang[i]); BUG_ON(wret); wret = __free_extent(trans, extent_root, gang[i], 1, 0, 0); if (wret) err = wret; } } return err; } /* * remove an extent from the root, returns 0 on success */ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 blocknr, u64 num_blocks, int pin) { struct btrfs_root *extent_root = root->fs_info->extent_root; int pending_ret; int ret; if (root == extent_root) { pin_down_block(root, blocknr, 1); return 0; } ret = __free_extent(trans, root, blocknr, num_blocks, pin, pin == 0); pending_ret = del_pending_extents(trans, root->fs_info->extent_root); return ret ? ret : pending_ret; } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == block start * ins->flags = BTRFS_EXTENT_ITEM_KEY * ins->offset == number of blocks * Any available blocks before search_start are skipped. */ static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, u64 hint_block, struct btrfs_key *ins, int data) { struct btrfs_path *path; struct btrfs_key key; int ret; u64 hole_size = 0; int slot = 0; u64 last_block = 0; u64 test_block; u64 orig_search_start = search_start; int start_found; struct btrfs_leaf *l; struct btrfs_root * root = orig_root->fs_info->extent_root; struct btrfs_fs_info *info = root->fs_info; int total_needed = num_blocks; int total_found = 0; int fill_prealloc = 0; int level; struct btrfs_block_group_cache *block_group; int full_scan = 0; int wrapped = 0; u64 limit; path = btrfs_alloc_path(); ins->flags = 0; btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); level = btrfs_header_level(btrfs_buffer_header(root->node)); if (num_blocks == 0) { fill_prealloc = 1; num_blocks = 1; total_needed = (min(level + 1, BTRFS_MAX_LEVEL) + 2) * 3; } if (search_end == (u64)-1) search_end = btrfs_super_total_blocks(info->disk_super); if (hint_block) { block_group = btrfs_lookup_block_group(info, hint_block); block_group = btrfs_find_block_group(root, block_group, hint_block, data, 1); } else { block_group = btrfs_find_block_group(root, trans->block_group, 0, data, 1); } check_failed: if (!block_group->data) search_start = find_search_start(root, &block_group, search_start, total_needed); else if (!full_scan) search_start = max(block_group->last_alloc, search_start); btrfs_init_path(path); ins->objectid = search_start; ins->offset = 0; start_found = 0; ret = btrfs_search_slot(trans, root, ins, path, 0, 0); if (ret < 0) goto error; if (path->slots[0] > 0) { path->slots[0]--; } l = btrfs_buffer_leaf(path->nodes[0]); btrfs_disk_key_to_cpu(&key, &l->items[path->slots[0]].key); /* * a rare case, go back one key if we hit a block group item * instead of an extent item */ if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY && key.objectid + key.offset >= search_start) { ins->objectid = key.objectid; ins->offset = key.offset - 1; btrfs_release_path(root, path); ret = btrfs_search_slot(trans, root, ins, path, 0, 0); if (ret < 0) goto error; if (path->slots[0] > 0) { path->slots[0]--; } } while (1) { l = btrfs_buffer_leaf(path->nodes[0]); slot = path->slots[0]; if (slot >= btrfs_header_nritems(&l->header)) { if (fill_prealloc) { info->extent_tree_prealloc_nr = 0; total_found = 0; } if (start_found) limit = last_block + (block_group->key.offset >> 1); else limit = search_start + (block_group->key.offset >> 1); ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; if (!start_found) { ins->objectid = search_start; ins->offset = search_end - search_start; start_found = 1; goto check_pending; } ins->objectid = last_block > search_start ? last_block : search_start; ins->offset = search_end - ins->objectid; goto check_pending; } btrfs_disk_key_to_cpu(&key, &l->items[slot].key); if (key.objectid >= search_start && key.objectid > last_block && start_found) { if (last_block < search_start) last_block = search_start; hole_size = key.objectid - last_block; if (hole_size >= num_blocks) { ins->objectid = last_block; ins->offset = hole_size; goto check_pending; } } if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) goto next; start_found = 1; last_block = key.objectid + key.offset; if (!full_scan && last_block >= block_group->key.objectid + block_group->key.offset) { btrfs_release_path(root, path); search_start = block_group->key.objectid + block_group->key.offset * 2; goto new_group; } next: path->slots[0]++; cond_resched(); } // FIXME -ENOSPC check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ btrfs_release_path(root, path); BUG_ON(ins->objectid < search_start); if (ins->objectid + num_blocks >= search_end) { if (full_scan) { ret = -ENOSPC; goto error; } search_start = orig_search_start; if (wrapped) full_scan = 1; else wrapped = 1; goto new_group; } for (test_block = ins->objectid; test_block < ins->objectid + num_blocks; test_block++) { if (test_radix_bit(&info->pinned_radix, test_block)) { search_start = test_block + 1; goto new_group; } } if (!fill_prealloc && info->extent_tree_insert_nr) { u64 last = info->extent_tree_insert[info->extent_tree_insert_nr - 1]; if (ins->objectid + num_blocks > info->extent_tree_insert[0] && ins->objectid <= last) { search_start = last + 1; WARN_ON(!full_scan); goto new_group; } } if (!fill_prealloc && info->extent_tree_prealloc_nr) { u64 first = info->extent_tree_prealloc[info->extent_tree_prealloc_nr - 1]; if (ins->objectid + num_blocks > first && ins->objectid <= info->extent_tree_prealloc[0]) { search_start = info->extent_tree_prealloc[0] + 1; WARN_ON(!full_scan); goto new_group; } } if (fill_prealloc) { int nr; test_block = ins->objectid; if (test_block - info->extent_tree_prealloc[total_needed - 1] >= leaf_range(root)) { total_found = 0; info->extent_tree_prealloc_nr = total_found; } while(test_block < ins->objectid + ins->offset && total_found < total_needed) { nr = total_needed - total_found - 1; BUG_ON(nr < 0); info->extent_tree_prealloc[nr] = test_block; total_found++; test_block++; } if (total_found < total_needed) { search_start = test_block; goto new_group; } info->extent_tree_prealloc_nr = total_found; } if (!data) { block_group = btrfs_lookup_block_group(info, ins->objectid); if (block_group) { if (fill_prealloc) block_group->last_prealloc = info->extent_tree_prealloc[total_needed-1]; else trans->block_group = block_group; } } ins->offset = num_blocks; btrfs_free_path(path); return 0; new_group: if (search_start + num_blocks >= search_end) { search_start = orig_search_start; if (full_scan) { ret = -ENOSPC; goto error; } if (wrapped) full_scan = 1; else wrapped = 1; } block_group = btrfs_lookup_block_group(info, search_start); cond_resched(); if (!full_scan) block_group = btrfs_find_block_group(root, block_group, search_start, data, 0); goto check_failed; error: btrfs_release_path(root, path); btrfs_free_path(path); return ret; } /* * finds a free extent and does all the dirty work required for allocation * returns the key for the extent through ins, and a tree buffer for * the first block of the extent through buf. * * returns 0 if everything worked, non-zero otherwise. */ int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner, u64 num_blocks, u64 hint_block, u64 search_end, struct btrfs_key *ins, int data) { int ret; int pending_ret; u64 super_blocks_used; u64 search_start = 0; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct btrfs_extent_item extent_item; struct btrfs_key prealloc_key; btrfs_set_extent_refs(&extent_item, 1); btrfs_set_extent_owner(&extent_item, owner); if (root == extent_root) { int nr; BUG_ON(info->extent_tree_prealloc_nr == 0); BUG_ON(num_blocks != 1); ins->offset = 1; info->extent_tree_prealloc_nr--; nr = info->extent_tree_prealloc_nr; ins->objectid = info->extent_tree_prealloc[nr]; info->extent_tree_insert[info->extent_tree_insert_nr++] = ins->objectid; ret = update_block_group(trans, root, ins->objectid, ins->offset, 1, 0, 0); BUG_ON(ret); return 0; } /* * if we're doing a data allocation, preallocate room in the * extent tree first. This way the extent tree blocks end up * in the correct block group. */ if (data) { ret = find_free_extent(trans, root, 0, 0, search_end, 0, &prealloc_key, 0); if (ret) { return ret; } if (prealloc_key.objectid + prealloc_key.offset >= search_end) { int nr = info->extent_tree_prealloc_nr; search_end = info->extent_tree_prealloc[nr - 1] - 1; } else { search_start = info->extent_tree_prealloc[0] + 1; } } if (hint_block < search_start) hint_block = search_start; /* do the real allocation */ ret = find_free_extent(trans, root, num_blocks, search_start, search_end, hint_block, ins, data); if (ret) { return ret; } /* * if we're doing a metadata allocation, preallocate space in the * extent tree second. This way, we don't create a tiny hole * in the allocation map between any unused preallocation blocks * and the metadata block we're actually allocating. On disk, * it'll go: * [block we've allocated], [used prealloc 1], [ unused prealloc ] * The unused prealloc will get reused the next time around. */ if (!data) { if (ins->objectid + ins->offset >= search_end) search_end = ins->objectid - 1; else search_start = ins->objectid + ins->offset; if (hint_block < search_start) hint_block = search_start; ret = find_free_extent(trans, root, 0, search_start, search_end, hint_block, &prealloc_key, 0); if (ret) { return ret; } } super_blocks_used = btrfs_super_blocks_used(info->disk_super); btrfs_set_super_blocks_used(info->disk_super, super_blocks_used + num_blocks); ret = btrfs_insert_item(trans, extent_root, ins, &extent_item, sizeof(extent_item)); finish_current_insert(trans, extent_root); pending_ret = del_pending_extents(trans, extent_root); if (ret) { return ret; } if (pending_ret) { return pending_ret; } ret = update_block_group(trans, root, ins->objectid, ins->offset, 1, 0, data); BUG_ON(ret); return 0; } /* * helper function to allocate a block for a given tree * returns the tree buffer or NULL. */ struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 hint) { struct btrfs_key ins; int ret; struct buffer_head *buf; ret = btrfs_alloc_extent(trans, root, root->root_key.objectid, 1, hint, (unsigned long)-1, &ins, 0); if (ret) { BUG(); return NULL; } BUG_ON(ret); buf = btrfs_find_create_tree_block(root, ins.objectid); set_buffer_uptodate(buf); set_buffer_checked(buf); set_radix_bit(&trans->transaction->dirty_pages, buf->b_page->index); return buf; } static int drop_leaf_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *cur) { struct btrfs_disk_key *key; struct btrfs_leaf *leaf; struct btrfs_file_extent_item *fi; int i; int nritems; int ret; BUG_ON(!btrfs_is_leaf(btrfs_buffer_node(cur))); leaf = btrfs_buffer_leaf(cur); nritems = btrfs_header_nritems(&leaf->header); for (i = 0; i < nritems; i++) { u64 disk_blocknr; key = &leaf->items[i].key; if (btrfs_disk_key_type(key) != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(fi) == BTRFS_FILE_EXTENT_INLINE) continue; /* * FIXME make sure to insert a trans record that * repeats the snapshot del on crash */ disk_blocknr = btrfs_file_extent_disk_blocknr(fi); if (disk_blocknr == 0) continue; ret = btrfs_free_extent(trans, root, disk_blocknr, btrfs_file_extent_disk_num_blocks(fi), 0); BUG_ON(ret); } return 0; } /* * helper function for drop_snapshot, this walks down the tree dropping ref * counts as it goes. */ static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { struct buffer_head *next; struct buffer_head *cur; u64 blocknr; int ret; u32 refs; WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); ret = lookup_extent_ref(trans, root, bh_blocknr(path->nodes[*level]), 1, &refs); BUG_ON(ret); if (refs > 1) goto out; /* * walk down to the last node level and free all the leaves */ while(*level >= 0) { WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); cur = path->nodes[*level]; if (btrfs_header_level(btrfs_buffer_header(cur)) != *level) WARN_ON(1); if (path->slots[*level] >= btrfs_header_nritems(btrfs_buffer_header(cur))) break; if (*level == 0) { ret = drop_leaf_ref(trans, root, cur); BUG_ON(ret); break; } blocknr = btrfs_node_blockptr(btrfs_buffer_node(cur), path->slots[*level]); ret = lookup_extent_ref(trans, root, blocknr, 1, &refs); BUG_ON(ret); if (refs != 1) { path->slots[*level]++; ret = btrfs_free_extent(trans, root, blocknr, 1, 1); BUG_ON(ret); continue; } next = read_tree_block(root, blocknr); WARN_ON(*level <= 0); if (path->nodes[*level-1]) btrfs_block_release(root, path->nodes[*level-1]); path->nodes[*level-1] = next; *level = btrfs_header_level(btrfs_buffer_header(next)); path->slots[*level] = 0; } out: WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); ret = btrfs_free_extent(trans, root, bh_blocknr(path->nodes[*level]), 1, 1); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level += 1; BUG_ON(ret); return 0; } /* * helper for dropping snapshots. This walks back up the tree in the path * to find the first node higher up where we haven't yet gone through * all the slots */ static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int *level) { int i; int slot; int ret; for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { slot = path->slots[i]; if (slot < btrfs_header_nritems( btrfs_buffer_header(path->nodes[i])) - 1) { path->slots[i]++; *level = i; return 0; } else { ret = btrfs_free_extent(trans, root, bh_blocknr(path->nodes[*level]), 1, 1); BUG_ON(ret); btrfs_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level = i + 1; } } return 1; } /* * drop the reference count on the tree rooted at 'snap'. This traverses * the tree freeing any blocks that have a ref count of zero after being * decremented. */ int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *snap) { int ret = 0; int wret; int level; struct btrfs_path *path; int i; int orig_level; path = btrfs_alloc_path(); BUG_ON(!path); level = btrfs_header_level(btrfs_buffer_header(snap)); orig_level = level; path->nodes[level] = snap; path->slots[level] = 0; while(1) { wret = walk_down_tree(trans, root, path, &level); if (wret > 0) break; if (wret < 0) ret = wret; wret = walk_up_tree(trans, root, path, &level); if (wret > 0) break; if (wret < 0) ret = wret; btrfs_btree_balance_dirty(root); } for (i = 0; i <= orig_level; i++) { if (path->nodes[i]) { btrfs_block_release(root, path->nodes[i]); } } btrfs_free_path(path); return ret; } static int free_block_group_radix(struct radix_tree_root *radix) { int ret; struct btrfs_block_group_cache *cache[8]; int i; while(1) { ret = radix_tree_gang_lookup(radix, (void **)cache, 0, ARRAY_SIZE(cache)); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_delete(radix, cache[i]->key.objectid + cache[i]->key.offset - 1); kfree(cache[i]); } } return 0; } int btrfs_free_block_groups(struct btrfs_fs_info *info) { int ret; int ret2; unsigned long gang[16]; int i; ret = free_block_group_radix(&info->block_group_radix); ret2 = free_block_group_radix(&info->block_group_data_radix); if (ret) return ret; if (ret2) return ret2; while(1) { ret = find_first_radix_bit(&info->extent_map_radix, gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) { clear_radix_bit(&info->extent_map_radix, gang[i]); } } return 0; } int btrfs_read_block_groups(struct btrfs_root *root) { struct btrfs_path *path; int ret; int err = 0; struct btrfs_block_group_item *bi; struct btrfs_block_group_cache *cache; struct btrfs_fs_info *info = root->fs_info; struct radix_tree_root *radix; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_leaf *leaf; u64 group_size_blocks; u64 used; group_size_blocks = BTRFS_BLOCK_GROUP_SIZE >> root->fs_info->sb->s_blocksize_bits; root = info->extent_root; key.objectid = 0; key.offset = group_size_blocks; key.flags = 0; btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { ret = btrfs_search_slot(NULL, info->extent_root, &key, path, 0, 0); if (ret != 0) { err = ret; break; } leaf = btrfs_buffer_leaf(path->nodes[0]); btrfs_disk_key_to_cpu(&found_key, &leaf->items[path->slots[0]].key); cache = kmalloc(sizeof(*cache), GFP_NOFS); if (!cache) { err = -1; break; } bi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_block_group_item); if (bi->flags & BTRFS_BLOCK_GROUP_DATA) { radix = &info->block_group_data_radix; cache->data = 1; } else { radix = &info->block_group_radix; cache->data = 0; } memcpy(&cache->item, bi, sizeof(*bi)); memcpy(&cache->key, &found_key, sizeof(found_key)); cache->last_alloc = cache->key.objectid; cache->first_free = cache->key.objectid; cache->last_prealloc = cache->key.objectid; cache->pinned = 0; cache->cached = 0; cache->radix = radix; key.objectid = found_key.objectid + found_key.offset; btrfs_release_path(root, path); ret = radix_tree_insert(radix, found_key.objectid + found_key.offset - 1, (void *)cache); BUG_ON(ret); used = btrfs_block_group_used(bi); if (used < div_factor(key.offset, 8)) { radix_tree_tag_set(radix, found_key.objectid + found_key.offset - 1, BTRFS_BLOCK_GROUP_AVAIL); } if (key.objectid >= btrfs_super_total_blocks(info->disk_super)) break; } btrfs_free_path(path); return 0; }