/* * Copyright (C) 2012 Fusion-io All rights reserved. * Copyright (C) 2012 Intel Corp. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/sched.h> #include <linux/wait.h> #include <linux/bio.h> #include <linux/slab.h> #include <linux/buffer_head.h> #include <linux/blkdev.h> #include <linux/random.h> #include <linux/iocontext.h> #include <linux/capability.h> #include <linux/ratelimit.h> #include <linux/kthread.h> #include <linux/raid/pq.h> #include <linux/hash.h> #include <linux/list_sort.h> #include <linux/raid/xor.h> #include <linux/vmalloc.h> #include <asm/div64.h> #include "compat.h" #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "check-integrity.h" #include "rcu-string.h" /* set when additional merges to this rbio are not allowed */ #define RBIO_RMW_LOCKED_BIT 1 /* * set when this rbio is sitting in the hash, but it is just a cache * of past RMW */ #define RBIO_CACHE_BIT 2 /* * set when it is safe to trust the stripe_pages for caching */ #define RBIO_CACHE_READY_BIT 3 #define RBIO_CACHE_SIZE 1024 struct btrfs_raid_bio { struct btrfs_fs_info *fs_info; struct btrfs_bio *bbio; /* * logical block numbers for the start of each stripe * The last one or two are p/q. These are sorted, * so raid_map[0] is the start of our full stripe */ u64 *raid_map; /* while we're doing rmw on a stripe * we put it into a hash table so we can * lock the stripe and merge more rbios * into it. */ struct list_head hash_list; /* * LRU list for the stripe cache */ struct list_head stripe_cache; /* * for scheduling work in the helper threads */ struct btrfs_work work; /* * bio list and bio_list_lock are used * to add more bios into the stripe * in hopes of avoiding the full rmw */ struct bio_list bio_list; spinlock_t bio_list_lock; /* also protected by the bio_list_lock, the * plug list is used by the plugging code * to collect partial bios while plugged. The * stripe locking code also uses it to hand off * the stripe lock to the next pending IO */ struct list_head plug_list; /* * flags that tell us if it is safe to * merge with this bio */ unsigned long flags; /* size of each individual stripe on disk */ int stripe_len; /* number of data stripes (no p/q) */ int nr_data; /* * set if we're doing a parity rebuild * for a read from higher up, which is handled * differently from a parity rebuild as part of * rmw */ int read_rebuild; /* first bad stripe */ int faila; /* second bad stripe (for raid6 use) */ int failb; /* * number of pages needed to represent the full * stripe */ int nr_pages; /* * size of all the bios in the bio_list. This * helps us decide if the rbio maps to a full * stripe or not */ int bio_list_bytes; atomic_t refs; /* * these are two arrays of pointers. We allocate the * rbio big enough to hold them both and setup their * locations when the rbio is allocated */ /* pointers to pages that we allocated for * reading/writing stripes directly from the disk (including P/Q) */ struct page **stripe_pages; /* * pointers to the pages in the bio_list. Stored * here for faster lookup */ struct page **bio_pages; }; static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); static noinline void finish_rmw(struct btrfs_raid_bio *rbio); static void rmw_work(struct btrfs_work *work); static void read_rebuild_work(struct btrfs_work *work); static void async_rmw_stripe(struct btrfs_raid_bio *rbio); static void async_read_rebuild(struct btrfs_raid_bio *rbio); static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); static void __free_raid_bio(struct btrfs_raid_bio *rbio); static void index_rbio_pages(struct btrfs_raid_bio *rbio); static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); /* * the stripe hash table is used for locking, and to collect * bios in hopes of making a full stripe */ int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash_table *x; struct btrfs_stripe_hash *cur; struct btrfs_stripe_hash *h; int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; int i; int table_size; if (info->stripe_hash_table) return 0; /* * The table is large, starting with order 4 and can go as high as * order 7 in case lock debugging is turned on. * * Try harder to allocate and fallback to vmalloc to lower the chance * of a failing mount. */ table_size = sizeof(*table) + sizeof(*h) * num_entries; table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); if (!table) { table = vzalloc(table_size); if (!table) return -ENOMEM; } spin_lock_init(&table->cache_lock); INIT_LIST_HEAD(&table->stripe_cache); h = table->table; for (i = 0; i < num_entries; i++) { cur = h + i; INIT_LIST_HEAD(&cur->hash_list); spin_lock_init(&cur->lock); init_waitqueue_head(&cur->wait); } x = cmpxchg(&info->stripe_hash_table, NULL, table); if (x) { if (is_vmalloc_addr(x)) vfree(x); else kfree(x); } return 0; } /* * caching an rbio means to copy anything from the * bio_pages array into the stripe_pages array. We * use the page uptodate bit in the stripe cache array * to indicate if it has valid data * * once the caching is done, we set the cache ready * bit. */ static void cache_rbio_pages(struct btrfs_raid_bio *rbio) { int i; char *s; char *d; int ret; ret = alloc_rbio_pages(rbio); if (ret) return; for (i = 0; i < rbio->nr_pages; i++) { if (!rbio->bio_pages[i]) continue; s = kmap(rbio->bio_pages[i]); d = kmap(rbio->stripe_pages[i]); memcpy(d, s, PAGE_CACHE_SIZE); kunmap(rbio->bio_pages[i]); kunmap(rbio->stripe_pages[i]); SetPageUptodate(rbio->stripe_pages[i]); } set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); } /* * we hash on the first logical address of the stripe */ static int rbio_bucket(struct btrfs_raid_bio *rbio) { u64 num = rbio->raid_map[0]; /* * we shift down quite a bit. We're using byte * addressing, and most of the lower bits are zeros. * This tends to upset hash_64, and it consistently * returns just one or two different values. * * shifting off the lower bits fixes things. */ return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); } /* * stealing an rbio means taking all the uptodate pages from the stripe * array in the source rbio and putting them into the destination rbio */ static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) { int i; struct page *s; struct page *d; if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) return; for (i = 0; i < dest->nr_pages; i++) { s = src->stripe_pages[i]; if (!s || !PageUptodate(s)) { continue; } d = dest->stripe_pages[i]; if (d) __free_page(d); dest->stripe_pages[i] = s; src->stripe_pages[i] = NULL; } } /* * merging means we take the bio_list from the victim and * splice it into the destination. The victim should * be discarded afterwards. * * must be called with dest->rbio_list_lock held */ static void merge_rbio(struct btrfs_raid_bio *dest, struct btrfs_raid_bio *victim) { bio_list_merge(&dest->bio_list, &victim->bio_list); dest->bio_list_bytes += victim->bio_list_bytes; bio_list_init(&victim->bio_list); } /* * used to prune items that are in the cache. The caller * must hold the hash table lock. */ static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { int bucket = rbio_bucket(rbio); struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash *h; int freeit = 0; /* * check the bit again under the hash table lock. */ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; h = table->table + bucket; /* hold the lock for the bucket because we may be * removing it from the hash table */ spin_lock(&h->lock); /* * hold the lock for the bio list because we need * to make sure the bio list is empty */ spin_lock(&rbio->bio_list_lock); if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { list_del_init(&rbio->stripe_cache); table->cache_size -= 1; freeit = 1; /* if the bio list isn't empty, this rbio is * still involved in an IO. We take it out * of the cache list, and drop the ref that * was held for the list. * * If the bio_list was empty, we also remove * the rbio from the hash_table, and drop * the corresponding ref */ if (bio_list_empty(&rbio->bio_list)) { if (!list_empty(&rbio->hash_list)) { list_del_init(&rbio->hash_list); atomic_dec(&rbio->refs); BUG_ON(!list_empty(&rbio->plug_list)); } } } spin_unlock(&rbio->bio_list_lock); spin_unlock(&h->lock); if (freeit) __free_raid_bio(rbio); } /* * prune a given rbio from the cache */ static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; unsigned long flags; if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); __remove_rbio_from_cache(rbio); spin_unlock_irqrestore(&table->cache_lock, flags); } /* * remove everything in the cache */ void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; unsigned long flags; struct btrfs_raid_bio *rbio; table = info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); while (!list_empty(&table->stripe_cache)) { rbio = list_entry(table->stripe_cache.next, struct btrfs_raid_bio, stripe_cache); __remove_rbio_from_cache(rbio); } spin_unlock_irqrestore(&table->cache_lock, flags); } /* * remove all cached entries and free the hash table * used by unmount */ void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) { if (!info->stripe_hash_table) return; btrfs_clear_rbio_cache(info); if (is_vmalloc_addr(info->stripe_hash_table)) vfree(info->stripe_hash_table); else kfree(info->stripe_hash_table); info->stripe_hash_table = NULL; } /* * insert an rbio into the stripe cache. It * must have already been prepared by calling * cache_rbio_pages * * If this rbio was already cached, it gets * moved to the front of the lru. * * If the size of the rbio cache is too big, we * prune an item. */ static void cache_rbio(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; unsigned long flags; if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); spin_lock(&rbio->bio_list_lock); /* bump our ref if we were not in the list before */ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) atomic_inc(&rbio->refs); if (!list_empty(&rbio->stripe_cache)){ list_move(&rbio->stripe_cache, &table->stripe_cache); } else { list_add(&rbio->stripe_cache, &table->stripe_cache); table->cache_size += 1; } spin_unlock(&rbio->bio_list_lock); if (table->cache_size > RBIO_CACHE_SIZE) { struct btrfs_raid_bio *found; found = list_entry(table->stripe_cache.prev, struct btrfs_raid_bio, stripe_cache); if (found != rbio) __remove_rbio_from_cache(found); } spin_unlock_irqrestore(&table->cache_lock, flags); return; } /* * helper function to run the xor_blocks api. It is only * able to do MAX_XOR_BLOCKS at a time, so we need to * loop through. */ static void run_xor(void **pages, int src_cnt, ssize_t len) { int src_off = 0; int xor_src_cnt = 0; void *dest = pages[src_cnt]; while(src_cnt > 0) { xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); xor_blocks(xor_src_cnt, len, dest, pages + src_off); src_cnt -= xor_src_cnt; src_off += xor_src_cnt; } } /* * returns true if the bio list inside this rbio * covers an entire stripe (no rmw required). * Must be called with the bio list lock held, or * at a time when you know it is impossible to add * new bios into the list */ static int __rbio_is_full(struct btrfs_raid_bio *rbio) { unsigned long size = rbio->bio_list_bytes; int ret = 1; if (size != rbio->nr_data * rbio->stripe_len) ret = 0; BUG_ON(size > rbio->nr_data * rbio->stripe_len); return ret; } static int rbio_is_full(struct btrfs_raid_bio *rbio) { unsigned long flags; int ret; spin_lock_irqsave(&rbio->bio_list_lock, flags); ret = __rbio_is_full(rbio); spin_unlock_irqrestore(&rbio->bio_list_lock, flags); return ret; } /* * returns 1 if it is safe to merge two rbios together. * The merging is safe if the two rbios correspond to * the same stripe and if they are both going in the same * direction (read vs write), and if neither one is * locked for final IO * * The caller is responsible for locking such that * rmw_locked is safe to test */ static int rbio_can_merge(struct btrfs_raid_bio *last, struct btrfs_raid_bio *cur) { if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) return 0; /* * we can't merge with cached rbios, since the * idea is that when we merge the destination * rbio is going to run our IO for us. We can * steal from cached rbio's though, other functions * handle that. */ if (test_bit(RBIO_CACHE_BIT, &last->flags) || test_bit(RBIO_CACHE_BIT, &cur->flags)) return 0; if (last->raid_map[0] != cur->raid_map[0]) return 0; /* reads can't merge with writes */ if (last->read_rebuild != cur->read_rebuild) { return 0; } return 1; } /* * helper to index into the pstripe */ static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) { index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; return rbio->stripe_pages[index]; } /* * helper to index into the qstripe, returns null * if there is no qstripe */ static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) { if (rbio->nr_data + 1 == rbio->bbio->num_stripes) return NULL; index += ((rbio->nr_data + 1) * rbio->stripe_len) >> PAGE_CACHE_SHIFT; return rbio->stripe_pages[index]; } /* * The first stripe in the table for a logical address * has the lock. rbios are added in one of three ways: * * 1) Nobody has the stripe locked yet. The rbio is given * the lock and 0 is returned. The caller must start the IO * themselves. * * 2) Someone has the stripe locked, but we're able to merge * with the lock owner. The rbio is freed and the IO will * start automatically along with the existing rbio. 1 is returned. * * 3) Someone has the stripe locked, but we're not able to merge. * The rbio is added to the lock owner's plug list, or merged into * an rbio already on the plug list. When the lock owner unlocks, * the next rbio on the list is run and the IO is started automatically. * 1 is returned * * If we return 0, the caller still owns the rbio and must continue with * IO submission. If we return 1, the caller must assume the rbio has * already been freed. */ static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) { int bucket = rbio_bucket(rbio); struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; struct btrfs_raid_bio *cur; struct btrfs_raid_bio *pending; unsigned long flags; DEFINE_WAIT(wait); struct btrfs_raid_bio *freeit = NULL; struct btrfs_raid_bio *cache_drop = NULL; int ret = 0; int walk = 0; spin_lock_irqsave(&h->lock, flags); list_for_each_entry(cur, &h->hash_list, hash_list) { walk++; if (cur->raid_map[0] == rbio->raid_map[0]) { spin_lock(&cur->bio_list_lock); /* can we steal this cached rbio's pages? */ if (bio_list_empty(&cur->bio_list) && list_empty(&cur->plug_list) && test_bit(RBIO_CACHE_BIT, &cur->flags) && !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { list_del_init(&cur->hash_list); atomic_dec(&cur->refs); steal_rbio(cur, rbio); cache_drop = cur; spin_unlock(&cur->bio_list_lock); goto lockit; } /* can we merge into the lock owner? */ if (rbio_can_merge(cur, rbio)) { merge_rbio(cur, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } /* * we couldn't merge with the running * rbio, see if we can merge with the * pending ones. We don't have to * check for rmw_locked because there * is no way they are inside finish_rmw * right now */ list_for_each_entry(pending, &cur->plug_list, plug_list) { if (rbio_can_merge(pending, rbio)) { merge_rbio(pending, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } } /* no merging, put us on the tail of the plug list, * our rbio will be started with the currently * running rbio unlocks */ list_add_tail(&rbio->plug_list, &cur->plug_list); spin_unlock(&cur->bio_list_lock); ret = 1; goto out; } } lockit: atomic_inc(&rbio->refs); list_add(&rbio->hash_list, &h->hash_list); out: spin_unlock_irqrestore(&h->lock, flags); if (cache_drop) remove_rbio_from_cache(cache_drop); if (freeit) __free_raid_bio(freeit); return ret; } /* * called as rmw or parity rebuild is completed. If the plug list has more * rbios waiting for this stripe, the next one on the list will be started */ static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) { int bucket; struct btrfs_stripe_hash *h; unsigned long flags; int keep_cache = 0; bucket = rbio_bucket(rbio); h = rbio->fs_info->stripe_hash_table->table + bucket; if (list_empty(&rbio->plug_list)) cache_rbio(rbio); spin_lock_irqsave(&h->lock, flags); spin_lock(&rbio->bio_list_lock); if (!list_empty(&rbio->hash_list)) { /* * if we're still cached and there is no other IO * to perform, just leave this rbio here for others * to steal from later */ if (list_empty(&rbio->plug_list) && test_bit(RBIO_CACHE_BIT, &rbio->flags)) { keep_cache = 1; clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); BUG_ON(!bio_list_empty(&rbio->bio_list)); goto done; } list_del_init(&rbio->hash_list); atomic_dec(&rbio->refs); /* * we use the plug list to hold all the rbios * waiting for the chance to lock this stripe. * hand the lock over to one of them. */ if (!list_empty(&rbio->plug_list)) { struct btrfs_raid_bio *next; struct list_head *head = rbio->plug_list.next; next = list_entry(head, struct btrfs_raid_bio, plug_list); list_del_init(&rbio->plug_list); list_add(&next->hash_list, &h->hash_list); atomic_inc(&next->refs); spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); if (next->read_rebuild) async_read_rebuild(next); else { steal_rbio(rbio, next); async_rmw_stripe(next); } goto done_nolock; } else if (waitqueue_active(&h->wait)) { spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); wake_up(&h->wait); goto done_nolock; } } done: spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); done_nolock: if (!keep_cache) remove_rbio_from_cache(rbio); } static void __free_raid_bio(struct btrfs_raid_bio *rbio) { int i; WARN_ON(atomic_read(&rbio->refs) < 0); if (!atomic_dec_and_test(&rbio->refs)) return; WARN_ON(!list_empty(&rbio->stripe_cache)); WARN_ON(!list_empty(&rbio->hash_list)); WARN_ON(!bio_list_empty(&rbio->bio_list)); for (i = 0; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) { __free_page(rbio->stripe_pages[i]); rbio->stripe_pages[i] = NULL; } } kfree(rbio->raid_map); kfree(rbio->bbio); kfree(rbio); } static void free_raid_bio(struct btrfs_raid_bio *rbio) { unlock_stripe(rbio); __free_raid_bio(rbio); } /* * this frees the rbio and runs through all the bios in the * bio_list and calls end_io on them */ static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) { struct bio *cur = bio_list_get(&rbio->bio_list); struct bio *next; free_raid_bio(rbio); while (cur) { next = cur->bi_next; cur->bi_next = NULL; if (uptodate) set_bit(BIO_UPTODATE, &cur->bi_flags); bio_endio(cur, err); cur = next; } } /* * end io function used by finish_rmw. When we finally * get here, we've written a full stripe */ static void raid_write_end_io(struct bio *bio, int err) { struct btrfs_raid_bio *rbio = bio->bi_private; if (err) fail_bio_stripe(rbio, bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) return; err = 0; /* OK, we have read all the stripes we need to. */ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) err = -EIO; rbio_orig_end_io(rbio, err, 0); return; } /* * the read/modify/write code wants to use the original bio for * any pages it included, and then use the rbio for everything * else. This function decides if a given index (stripe number) * and page number in that stripe fall inside the original bio * or the rbio. * * if you set bio_list_only, you'll get a NULL back for any ranges * that are outside the bio_list * * This doesn't take any refs on anything, you get a bare page pointer * and the caller must bump refs as required. * * You must call index_rbio_pages once before you can trust * the answers from this function. */ static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, int index, int pagenr, int bio_list_only) { int chunk_page; struct page *p = NULL; chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; spin_lock_irq(&rbio->bio_list_lock); p = rbio->bio_pages[chunk_page]; spin_unlock_irq(&rbio->bio_list_lock); if (p || bio_list_only) return p; return rbio->stripe_pages[chunk_page]; } /* * number of pages we need for the entire stripe across all the * drives */ static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) { unsigned long nr = stripe_len * nr_stripes; return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; } /* * allocation and initial setup for the btrfs_raid_bio. Not * this does not allocate any pages for rbio->pages. */ static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, struct btrfs_bio *bbio, u64 *raid_map, u64 stripe_len) { struct btrfs_raid_bio *rbio; int nr_data = 0; int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes); void *p; rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2, GFP_NOFS); if (!rbio) { kfree(raid_map); kfree(bbio); return ERR_PTR(-ENOMEM); } bio_list_init(&rbio->bio_list); INIT_LIST_HEAD(&rbio->plug_list); spin_lock_init(&rbio->bio_list_lock); INIT_LIST_HEAD(&rbio->stripe_cache); INIT_LIST_HEAD(&rbio->hash_list); rbio->bbio = bbio; rbio->raid_map = raid_map; rbio->fs_info = root->fs_info; rbio->stripe_len = stripe_len; rbio->nr_pages = num_pages; rbio->faila = -1; rbio->failb = -1; atomic_set(&rbio->refs, 1); /* * the stripe_pages and bio_pages array point to the extra * memory we allocated past the end of the rbio */ p = rbio + 1; rbio->stripe_pages = p; rbio->bio_pages = p + sizeof(struct page *) * num_pages; if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE) nr_data = bbio->num_stripes - 2; else nr_data = bbio->num_stripes - 1; rbio->nr_data = nr_data; return rbio; } /* allocate pages for all the stripes in the bio, including parity */ static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) { int i; struct page *page; for (i = 0; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) continue; page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!page) return -ENOMEM; rbio->stripe_pages[i] = page; ClearPageUptodate(page); } return 0; } /* allocate pages for just the p/q stripes */ static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) { int i; struct page *page; i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; for (; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) continue; page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!page) return -ENOMEM; rbio->stripe_pages[i] = page; } return 0; } /* * add a single page from a specific stripe into our list of bios for IO * this will try to merge into existing bios if possible, and returns * zero if all went well. */ int rbio_add_io_page(struct btrfs_raid_bio *rbio, struct bio_list *bio_list, struct page *page, int stripe_nr, unsigned long page_index, unsigned long bio_max_len) { struct bio *last = bio_list->tail; u64 last_end = 0; int ret; struct bio *bio; struct btrfs_bio_stripe *stripe; u64 disk_start; stripe = &rbio->bbio->stripes[stripe_nr]; disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); /* if the device is missing, just fail this stripe */ if (!stripe->dev->bdev) return fail_rbio_index(rbio, stripe_nr); /* see if we can add this page onto our existing bio */ if (last) { last_end = (u64)last->bi_sector << 9; last_end += last->bi_size; /* * we can't merge these if they are from different * devices or if they are not contiguous */ if (last_end == disk_start && stripe->dev->bdev && test_bit(BIO_UPTODATE, &last->bi_flags) && last->bi_bdev == stripe->dev->bdev) { ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); if (ret == PAGE_CACHE_SIZE) return 0; } } /* put a new bio on the list */ bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); if (!bio) return -ENOMEM; bio->bi_size = 0; bio->bi_bdev = stripe->dev->bdev; bio->bi_sector = disk_start >> 9; set_bit(BIO_UPTODATE, &bio->bi_flags); bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); bio_list_add(bio_list, bio); return 0; } /* * while we're doing the read/modify/write cycle, we could * have errors in reading pages off the disk. This checks * for errors and if we're not able to read the page it'll * trigger parity reconstruction. The rmw will be finished * after we've reconstructed the failed stripes */ static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) { if (rbio->faila >= 0 || rbio->failb >= 0) { BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1); __raid56_parity_recover(rbio); } else { finish_rmw(rbio); } } /* * these are just the pages from the rbio array, not from anything * the FS sent down to us */ static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) { int index; index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); index += page; return rbio->stripe_pages[index]; } /* * helper function to walk our bio list and populate the bio_pages array with * the result. This seems expensive, but it is faster than constantly * searching through the bio list as we setup the IO in finish_rmw or stripe * reconstruction. * * This must be called before you trust the answers from page_in_rbio */ static void index_rbio_pages(struct btrfs_raid_bio *rbio) { struct bio *bio; u64 start; unsigned long stripe_offset; unsigned long page_index; struct page *p; int i; spin_lock_irq(&rbio->bio_list_lock); bio_list_for_each(bio, &rbio->bio_list) { start = (u64)bio->bi_sector << 9; stripe_offset = start - rbio->raid_map[0]; page_index = stripe_offset >> PAGE_CACHE_SHIFT; for (i = 0; i < bio->bi_vcnt; i++) { p = bio->bi_io_vec[i].bv_page; rbio->bio_pages[page_index + i] = p; } } spin_unlock_irq(&rbio->bio_list_lock); } /* * this is called from one of two situations. We either * have a full stripe from the higher layers, or we've read all * the missing bits off disk. * * This will calculate the parity and then send down any * changed blocks. */ static noinline void finish_rmw(struct btrfs_raid_bio *rbio) { struct btrfs_bio *bbio = rbio->bbio; void *pointers[bbio->num_stripes]; int stripe_len = rbio->stripe_len; int nr_data = rbio->nr_data; int stripe; int pagenr; int p_stripe = -1; int q_stripe = -1; struct bio_list bio_list; struct bio *bio; int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; int ret; bio_list_init(&bio_list); if (bbio->num_stripes - rbio->nr_data == 1) { p_stripe = bbio->num_stripes - 1; } else if (bbio->num_stripes - rbio->nr_data == 2) { p_stripe = bbio->num_stripes - 2; q_stripe = bbio->num_stripes - 1; } else { BUG(); } /* at this point we either have a full stripe, * or we've read the full stripe from the drive. * recalculate the parity and write the new results. * * We're not allowed to add any new bios to the * bio list here, anyone else that wants to * change this stripe needs to do their own rmw. */ spin_lock_irq(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock_irq(&rbio->bio_list_lock); atomic_set(&rbio->bbio->error, 0); /* * now that we've set rmw_locked, run through the * bio list one last time and map the page pointers * * We don't cache full rbios because we're assuming * the higher layers are unlikely to use this area of * the disk again soon. If they do use it again, * hopefully they will send another full bio. */ index_rbio_pages(rbio); if (!rbio_is_full(rbio)) cache_rbio_pages(rbio); else clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { struct page *p; /* first collect one page from each data stripe */ for (stripe = 0; stripe < nr_data; stripe++) { p = page_in_rbio(rbio, stripe, pagenr, 0); pointers[stripe] = kmap(p); } /* then add the parity stripe */ p = rbio_pstripe_page(rbio, pagenr); SetPageUptodate(p); pointers[stripe++] = kmap(p); if (q_stripe != -1) { /* * raid6, add the qstripe and call the * library function to fill in our p/q */ p = rbio_qstripe_page(rbio, pagenr); SetPageUptodate(p); pointers[stripe++] = kmap(p); raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE, pointers); } else { /* raid5 */ memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); } for (stripe = 0; stripe < bbio->num_stripes; stripe++) kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); } /* * time to start writing. Make bios for everything from the * higher layers (the bio_list in our rbio) and our p/q. Ignore * everything else. */ for (stripe = 0; stripe < bbio->num_stripes; stripe++) { for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { struct page *page; if (stripe < rbio->nr_data) { page = page_in_rbio(rbio, stripe, pagenr, 1); if (!page) continue; } else { page = rbio_stripe_page(rbio, stripe, pagenr); } ret = rbio_add_io_page(rbio, &bio_list, page, stripe, pagenr, rbio->stripe_len); if (ret) goto cleanup; } } atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list)); BUG_ON(atomic_read(&bbio->stripes_pending) == 0); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_write_end_io; BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); submit_bio(WRITE, bio); } return; cleanup: rbio_orig_end_io(rbio, -EIO, 0); } /* * helper to find the stripe number for a given bio. Used to figure out which * stripe has failed. This expects the bio to correspond to a physical disk, * so it looks up based on physical sector numbers. */ static int find_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { u64 physical = bio->bi_sector; u64 stripe_start; int i; struct btrfs_bio_stripe *stripe; physical <<= 9; for (i = 0; i < rbio->bbio->num_stripes; i++) { stripe = &rbio->bbio->stripes[i]; stripe_start = stripe->physical; if (physical >= stripe_start && physical < stripe_start + rbio->stripe_len) { return i; } } return -1; } /* * helper to find the stripe number for a given * bio (before mapping). Used to figure out which stripe has * failed. This looks up based on logical block numbers. */ static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { u64 logical = bio->bi_sector; u64 stripe_start; int i; logical <<= 9; for (i = 0; i < rbio->nr_data; i++) { stripe_start = rbio->raid_map[i]; if (logical >= stripe_start && logical < stripe_start + rbio->stripe_len) { return i; } } return -1; } /* * returns -EIO if we had too many failures */ static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) { unsigned long flags; int ret = 0; spin_lock_irqsave(&rbio->bio_list_lock, flags); /* we already know this stripe is bad, move on */ if (rbio->faila == failed || rbio->failb == failed) goto out; if (rbio->faila == -1) { /* first failure on this rbio */ rbio->faila = failed; atomic_inc(&rbio->bbio->error); } else if (rbio->failb == -1) { /* second failure on this rbio */ rbio->failb = failed; atomic_inc(&rbio->bbio->error); } else { ret = -EIO; } out: spin_unlock_irqrestore(&rbio->bio_list_lock, flags); return ret; } /* * helper to fail a stripe based on a physical disk * bio. */ static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { int failed = find_bio_stripe(rbio, bio); if (failed < 0) return -EIO; return fail_rbio_index(rbio, failed); } /* * this sets each page in the bio uptodate. It should only be used on private * rbio pages, nothing that comes in from the higher layers */ static void set_bio_pages_uptodate(struct bio *bio) { int i; struct page *p; for (i = 0; i < bio->bi_vcnt; i++) { p = bio->bi_io_vec[i].bv_page; SetPageUptodate(p); } } /* * end io for the read phase of the rmw cycle. All the bios here are physical * stripe bios we've read from the disk so we can recalculate the parity of the * stripe. * * This will usually kick off finish_rmw once all the bios are read in, but it * may trigger parity reconstruction if we had any errors along the way */ static void raid_rmw_end_io(struct bio *bio, int err) { struct btrfs_raid_bio *rbio = bio->bi_private; if (err) fail_bio_stripe(rbio, bio); else set_bio_pages_uptodate(bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) return; err = 0; if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) goto cleanup; /* * this will normally call finish_rmw to start our write * but if there are any failed stripes we'll reconstruct * from parity first */ validate_rbio_for_rmw(rbio); return; cleanup: rbio_orig_end_io(rbio, -EIO, 0); } static void async_rmw_stripe(struct btrfs_raid_bio *rbio) { rbio->work.flags = 0; rbio->work.func = rmw_work; btrfs_queue_worker(&rbio->fs_info->rmw_workers, &rbio->work); } static void async_read_rebuild(struct btrfs_raid_bio *rbio) { rbio->work.flags = 0; rbio->work.func = read_rebuild_work; btrfs_queue_worker(&rbio->fs_info->rmw_workers, &rbio->work); } /* * the stripe must be locked by the caller. It will * unlock after all the writes are done */ static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) { int bios_to_read = 0; struct btrfs_bio *bbio = rbio->bbio; struct bio_list bio_list; int ret; int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; int pagenr; int stripe; struct bio *bio; bio_list_init(&bio_list); ret = alloc_rbio_pages(rbio); if (ret) goto cleanup; index_rbio_pages(rbio); atomic_set(&rbio->bbio->error, 0); /* * build a list of bios to read all the missing parts of this * stripe */ for (stripe = 0; stripe < rbio->nr_data; stripe++) { for (pagenr = 0; pagenr < nr_pages; pagenr++) { struct page *page; /* * we want to find all the pages missing from * the rbio and read them from the disk. If * page_in_rbio finds a page in the bio list * we don't need to read it off the stripe. */ page = page_in_rbio(rbio, stripe, pagenr, 1); if (page) continue; page = rbio_stripe_page(rbio, stripe, pagenr); /* * the bio cache may have handed us an uptodate * page. If so, be happy and use it */ if (PageUptodate(page)) continue; ret = rbio_add_io_page(rbio, &bio_list, page, stripe, pagenr, rbio->stripe_len); if (ret) goto cleanup; } } bios_to_read = bio_list_size(&bio_list); if (!bios_to_read) { /* * this can happen if others have merged with * us, it means there is nothing left to read. * But if there are missing devices it may not be * safe to do the full stripe write yet. */ goto finish; } /* * the bbio may be freed once we submit the last bio. Make sure * not to touch it after that */ atomic_set(&bbio->stripes_pending, bios_to_read); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_rmw_end_io; btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); submit_bio(READ, bio); } /* the actual write will happen once the reads are done */ return 0; cleanup: rbio_orig_end_io(rbio, -EIO, 0); return -EIO; finish: validate_rbio_for_rmw(rbio); return 0; } /* * if the upper layers pass in a full stripe, we thank them by only allocating * enough pages to hold the parity, and sending it all down quickly. */ static int full_stripe_write(struct btrfs_raid_bio *rbio) { int ret; ret = alloc_rbio_parity_pages(rbio); if (ret) return ret; ret = lock_stripe_add(rbio); if (ret == 0) finish_rmw(rbio); return 0; } /* * partial stripe writes get handed over to async helpers. * We're really hoping to merge a few more writes into this * rbio before calculating new parity */ static int partial_stripe_write(struct btrfs_raid_bio *rbio) { int ret; ret = lock_stripe_add(rbio); if (ret == 0) async_rmw_stripe(rbio); return 0; } /* * sometimes while we were reading from the drive to * recalculate parity, enough new bios come into create * a full stripe. So we do a check here to see if we can * go directly to finish_rmw */ static int __raid56_parity_write(struct btrfs_raid_bio *rbio) { /* head off into rmw land if we don't have a full stripe */ if (!rbio_is_full(rbio)) return partial_stripe_write(rbio); return full_stripe_write(rbio); } /* * We use plugging call backs to collect full stripes. * Any time we get a partial stripe write while plugged * we collect it into a list. When the unplug comes down, * we sort the list by logical block number and merge * everything we can into the same rbios */ struct btrfs_plug_cb { struct blk_plug_cb cb; struct btrfs_fs_info *info; struct list_head rbio_list; struct btrfs_work work; }; /* * rbios on the plug list are sorted for easier merging. */ static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) { struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, plug_list); struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, plug_list); u64 a_sector = ra->bio_list.head->bi_sector; u64 b_sector = rb->bio_list.head->bi_sector; if (a_sector < b_sector) return -1; if (a_sector > b_sector) return 1; return 0; } static void run_plug(struct btrfs_plug_cb *plug) { struct btrfs_raid_bio *cur; struct btrfs_raid_bio *last = NULL; /* * sort our plug list then try to merge * everything we can in hopes of creating full * stripes. */ list_sort(NULL, &plug->rbio_list, plug_cmp); while (!list_empty(&plug->rbio_list)) { cur = list_entry(plug->rbio_list.next, struct btrfs_raid_bio, plug_list); list_del_init(&cur->plug_list); if (rbio_is_full(cur)) { /* we have a full stripe, send it down */ full_stripe_write(cur); continue; } if (last) { if (rbio_can_merge(last, cur)) { merge_rbio(last, cur); __free_raid_bio(cur); continue; } __raid56_parity_write(last); } last = cur; } if (last) { __raid56_parity_write(last); } kfree(plug); } /* * if the unplug comes from schedule, we have to push the * work off to a helper thread */ static void unplug_work(struct btrfs_work *work) { struct btrfs_plug_cb *plug; plug = container_of(work, struct btrfs_plug_cb, work); run_plug(plug); } static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct btrfs_plug_cb *plug; plug = container_of(cb, struct btrfs_plug_cb, cb); if (from_schedule) { plug->work.flags = 0; plug->work.func = unplug_work; btrfs_queue_worker(&plug->info->rmw_workers, &plug->work); return; } run_plug(plug); } /* * our main entry point for writes from the rest of the FS. */ int raid56_parity_write(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 *raid_map, u64 stripe_len) { struct btrfs_raid_bio *rbio; struct btrfs_plug_cb *plug = NULL; struct blk_plug_cb *cb; rbio = alloc_rbio(root, bbio, raid_map, stripe_len); if (IS_ERR(rbio)) { kfree(raid_map); kfree(bbio); return PTR_ERR(rbio); } bio_list_add(&rbio->bio_list, bio); rbio->bio_list_bytes = bio->bi_size; /* * don't plug on full rbios, just get them out the door * as quickly as we can */ if (rbio_is_full(rbio)) return full_stripe_write(rbio); cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, sizeof(*plug)); if (cb) { plug = container_of(cb, struct btrfs_plug_cb, cb); if (!plug->info) { plug->info = root->fs_info; INIT_LIST_HEAD(&plug->rbio_list); } list_add_tail(&rbio->plug_list, &plug->rbio_list); } else { return __raid56_parity_write(rbio); } return 0; } /* * all parity reconstruction happens here. We've read in everything * we can find from the drives and this does the heavy lifting of * sorting the good from the bad. */ static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) { int pagenr, stripe; void **pointers; int faila = -1, failb = -1; int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; struct page *page; int err; int i; pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *), GFP_NOFS); if (!pointers) { err = -ENOMEM; goto cleanup_io; } faila = rbio->faila; failb = rbio->failb; if (rbio->read_rebuild) { spin_lock_irq(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock_irq(&rbio->bio_list_lock); } index_rbio_pages(rbio); for (pagenr = 0; pagenr < nr_pages; pagenr++) { /* setup our array of pointers with pages * from each stripe */ for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { /* * if we're rebuilding a read, we have to use * pages from the bio list */ if (rbio->read_rebuild && (stripe == faila || stripe == failb)) { page = page_in_rbio(rbio, stripe, pagenr, 0); } else { page = rbio_stripe_page(rbio, stripe, pagenr); } pointers[stripe] = kmap(page); } /* all raid6 handling here */ if (rbio->raid_map[rbio->bbio->num_stripes - 1] == RAID6_Q_STRIPE) { /* * single failure, rebuild from parity raid5 * style */ if (failb < 0) { if (faila == rbio->nr_data) { /* * Just the P stripe has failed, without * a bad data or Q stripe. * TODO, we should redo the xor here. */ err = -EIO; goto cleanup; } /* * a single failure in raid6 is rebuilt * in the pstripe code below */ goto pstripe; } /* make sure our ps and qs are in order */ if (faila > failb) { int tmp = failb; failb = faila; faila = tmp; } /* if the q stripe is failed, do a pstripe reconstruction * from the xors. * If both the q stripe and the P stripe are failed, we're * here due to a crc mismatch and we can't give them the * data they want */ if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { if (rbio->raid_map[faila] == RAID5_P_STRIPE) { err = -EIO; goto cleanup; } /* * otherwise we have one bad data stripe and * a good P stripe. raid5! */ goto pstripe; } if (rbio->raid_map[failb] == RAID5_P_STRIPE) { raid6_datap_recov(rbio->bbio->num_stripes, PAGE_SIZE, faila, pointers); } else { raid6_2data_recov(rbio->bbio->num_stripes, PAGE_SIZE, faila, failb, pointers); } } else { void *p; /* rebuild from P stripe here (raid5 or raid6) */ BUG_ON(failb != -1); pstripe: /* Copy parity block into failed block to start with */ memcpy(pointers[faila], pointers[rbio->nr_data], PAGE_CACHE_SIZE); /* rearrange the pointer array */ p = pointers[faila]; for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) pointers[stripe] = pointers[stripe + 1]; pointers[rbio->nr_data - 1] = p; /* xor in the rest */ run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); } /* if we're doing this rebuild as part of an rmw, go through * and set all of our private rbio pages in the * failed stripes as uptodate. This way finish_rmw will * know they can be trusted. If this was a read reconstruction, * other endio functions will fiddle the uptodate bits */ if (!rbio->read_rebuild) { for (i = 0; i < nr_pages; i++) { if (faila != -1) { page = rbio_stripe_page(rbio, faila, i); SetPageUptodate(page); } if (failb != -1) { page = rbio_stripe_page(rbio, failb, i); SetPageUptodate(page); } } } for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { /* * if we're rebuilding a read, we have to use * pages from the bio list */ if (rbio->read_rebuild && (stripe == faila || stripe == failb)) { page = page_in_rbio(rbio, stripe, pagenr, 0); } else { page = rbio_stripe_page(rbio, stripe, pagenr); } kunmap(page); } } err = 0; cleanup: kfree(pointers); cleanup_io: if (rbio->read_rebuild) { if (err == 0) cache_rbio_pages(rbio); else clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); rbio_orig_end_io(rbio, err, err == 0); } else if (err == 0) { rbio->faila = -1; rbio->failb = -1; finish_rmw(rbio); } else { rbio_orig_end_io(rbio, err, 0); } } /* * This is called only for stripes we've read from disk to * reconstruct the parity. */ static void raid_recover_end_io(struct bio *bio, int err) { struct btrfs_raid_bio *rbio = bio->bi_private; /* * we only read stripe pages off the disk, set them * up to date if there were no errors */ if (err) fail_bio_stripe(rbio, bio); else set_bio_pages_uptodate(bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) return; if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) rbio_orig_end_io(rbio, -EIO, 0); else __raid_recover_end_io(rbio); } /* * reads everything we need off the disk to reconstruct * the parity. endio handlers trigger final reconstruction * when the IO is done. * * This is used both for reads from the higher layers and for * parity construction required to finish a rmw cycle. */ static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) { int bios_to_read = 0; struct btrfs_bio *bbio = rbio->bbio; struct bio_list bio_list; int ret; int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; int pagenr; int stripe; struct bio *bio; bio_list_init(&bio_list); ret = alloc_rbio_pages(rbio); if (ret) goto cleanup; atomic_set(&rbio->bbio->error, 0); /* * read everything that hasn't failed. Thanks to the * stripe cache, it is possible that some or all of these * pages are going to be uptodate. */ for (stripe = 0; stripe < bbio->num_stripes; stripe++) { if (rbio->faila == stripe || rbio->failb == stripe) continue; for (pagenr = 0; pagenr < nr_pages; pagenr++) { struct page *p; /* * the rmw code may have already read this * page in */ p = rbio_stripe_page(rbio, stripe, pagenr); if (PageUptodate(p)) continue; ret = rbio_add_io_page(rbio, &bio_list, rbio_stripe_page(rbio, stripe, pagenr), stripe, pagenr, rbio->stripe_len); if (ret < 0) goto cleanup; } } bios_to_read = bio_list_size(&bio_list); if (!bios_to_read) { /* * we might have no bios to read just because the pages * were up to date, or we might have no bios to read because * the devices were gone. */ if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) { __raid_recover_end_io(rbio); goto out; } else { goto cleanup; } } /* * the bbio may be freed once we submit the last bio. Make sure * not to touch it after that */ atomic_set(&bbio->stripes_pending, bios_to_read); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_recover_end_io; btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); submit_bio(READ, bio); } out: return 0; cleanup: if (rbio->read_rebuild) rbio_orig_end_io(rbio, -EIO, 0); return -EIO; } /* * the main entry point for reads from the higher layers. This * is really only called when the normal read path had a failure, * so we assume the bio they send down corresponds to a failed part * of the drive. */ int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 *raid_map, u64 stripe_len, int mirror_num) { struct btrfs_raid_bio *rbio; int ret; rbio = alloc_rbio(root, bbio, raid_map, stripe_len); if (IS_ERR(rbio)) { return PTR_ERR(rbio); } rbio->read_rebuild = 1; bio_list_add(&rbio->bio_list, bio); rbio->bio_list_bytes = bio->bi_size; rbio->faila = find_logical_bio_stripe(rbio, bio); if (rbio->faila == -1) { BUG(); kfree(rbio); return -EIO; } /* * reconstruct from the q stripe if they are * asking for mirror 3 */ if (mirror_num == 3) rbio->failb = bbio->num_stripes - 2; ret = lock_stripe_add(rbio); /* * __raid56_parity_recover will end the bio with * any errors it hits. We don't want to return * its error value up the stack because our caller * will end up calling bio_endio with any nonzero * return */ if (ret == 0) __raid56_parity_recover(rbio); /* * our rbio has been added to the list of * rbios that will be handled after the * currently lock owner is done */ return 0; } static void rmw_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); raid56_rmw_stripe(rbio); } static void read_rebuild_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); __raid56_parity_recover(rbio); }