/* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License version 2. */ #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/completion.h> #include <linux/buffer_head.h> #include <linux/fs.h> #include <linux/gfs2_ondisk.h> #include <linux/prefetch.h> #include <linux/blkdev.h> #include "gfs2.h" #include "incore.h" #include "glock.h" #include "glops.h" #include "lops.h" #include "meta_io.h" #include "quota.h" #include "rgrp.h" #include "super.h" #include "trans.h" #include "util.h" #include "log.h" #include "inode.h" #include "trace_gfs2.h" #define BFITNOENT ((u32)~0) #define NO_BLOCK ((u64)~0) #if BITS_PER_LONG == 32 #define LBITMASK (0x55555555UL) #define LBITSKIP55 (0x55555555UL) #define LBITSKIP00 (0x00000000UL) #else #define LBITMASK (0x5555555555555555UL) #define LBITSKIP55 (0x5555555555555555UL) #define LBITSKIP00 (0x0000000000000000UL) #endif /* * These routines are used by the resource group routines (rgrp.c) * to keep track of block allocation. Each block is represented by two * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. * * 0 = Free * 1 = Used (not metadata) * 2 = Unlinked (still in use) inode * 3 = Used (metadata) */ static const char valid_change[16] = { /* current */ /* n */ 0, 1, 1, 1, /* e */ 1, 0, 0, 0, /* w */ 0, 0, 0, 1, 1, 0, 0, 0 }; static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char old_state, unsigned char new_state, unsigned int *n); /** * gfs2_setbit - Set a bit in the bitmaps * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @block: the block to set * @new_state: the new state of the block * */ static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1, unsigned char *buf2, unsigned int offset, unsigned int buflen, u32 block, unsigned char new_state) { unsigned char *byte1, *byte2, *end, cur_state; const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; byte1 = buf1 + offset + (block / GFS2_NBBY); end = buf1 + offset + buflen; BUG_ON(byte1 >= end); cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; if (unlikely(!valid_change[new_state * 4 + cur_state])) { gfs2_consist_rgrpd(rgd); return; } *byte1 ^= (cur_state ^ new_state) << bit; if (buf2) { byte2 = buf2 + offset + (block / GFS2_NBBY); cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; *byte2 ^= (cur_state ^ new_state) << bit; } } /** * gfs2_testbit - test a bit in the bitmaps * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @block: the block to read * */ static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, const unsigned char *buffer, unsigned int buflen, u32 block) { const unsigned char *byte, *end; unsigned char cur_state; unsigned int bit; byte = buffer + (block / GFS2_NBBY); bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; end = buffer + buflen; gfs2_assert(rgd->rd_sbd, byte < end); cur_state = (*byte >> bit) & GFS2_BIT_MASK; return cur_state; } /** * gfs2_bit_search * @ptr: Pointer to bitmap data * @mask: Mask to use (normally 0x55555.... but adjusted for search start) * @state: The state we are searching for * * We xor the bitmap data with a patter which is the bitwise opposite * of what we are looking for, this gives rise to a pattern of ones * wherever there is a match. Since we have two bits per entry, we * take this pattern, shift it down by one place and then and it with * the original. All the even bit positions (0,2,4, etc) then represent * successful matches, so we mask with 0x55555..... to remove the unwanted * odd bit positions. * * This allows searching of a whole u64 at once (32 blocks) with a * single test (on 64 bit arches). */ static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) { u64 tmp; static const u64 search[] = { [0] = 0xffffffffffffffffULL, [1] = 0xaaaaaaaaaaaaaaaaULL, [2] = 0x5555555555555555ULL, [3] = 0x0000000000000000ULL, }; tmp = le64_to_cpu(*ptr) ^ search[state]; tmp &= (tmp >> 1); tmp &= mask; return tmp; } /** * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing * a block in a given allocation state. * @buffer: the buffer that holds the bitmaps * @len: the length (in bytes) of the buffer * @goal: start search at this block's bit-pair (within @buffer) * @state: GFS2_BLKST_XXX the state of the block we're looking for. * * Scope of @goal and returned block number is only within this bitmap buffer, * not entire rgrp or filesystem. @buffer will be offset from the actual * beginning of a bitmap block buffer, skipping any header structures, but * headers are always a multiple of 64 bits long so that the buffer is * always aligned to a 64 bit boundary. * * The size of the buffer is in bytes, but is it assumed that it is * always ok to read a complete multiple of 64 bits at the end * of the block in case the end is no aligned to a natural boundary. * * Return: the block number (bitmap buffer scope) that was found */ static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, u32 goal, u8 state) { u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); u64 tmp; u64 mask = 0x5555555555555555ULL; u32 bit; BUG_ON(state > 3); /* Mask off bits we don't care about at the start of the search */ mask <<= spoint; tmp = gfs2_bit_search(ptr, mask, state); ptr++; while(tmp == 0 && ptr < end) { tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); ptr++; } /* Mask off any bits which are more than len bytes from the start */ if (ptr == end && (len & (sizeof(u64) - 1))) tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); /* Didn't find anything, so return */ if (tmp == 0) return BFITNOENT; ptr--; bit = __ffs64(tmp); bit /= 2; /* two bits per entry in the bitmap */ return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; } /** * gfs2_bitcount - count the number of bits in a certain state * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @state: the state of the block we're looking for * * Returns: The number of bits */ static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, unsigned int buflen, u8 state) { const u8 *byte = buffer; const u8 *end = buffer + buflen; const u8 state1 = state << 2; const u8 state2 = state << 4; const u8 state3 = state << 6; u32 count = 0; for (; byte < end; byte++) { if (((*byte) & 0x03) == state) count++; if (((*byte) & 0x0C) == state1) count++; if (((*byte) & 0x30) == state2) count++; if (((*byte) & 0xC0) == state3) count++; } return count; } /** * gfs2_rgrp_verify - Verify that a resource group is consistent * @sdp: the filesystem * @rgd: the rgrp * */ void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi = NULL; u32 length = rgd->rd_length; u32 count[4], tmp; int buf, x; memset(count, 0, 4 * sizeof(u32)); /* Count # blocks in each of 4 possible allocation states */ for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; for (x = 0; x < 4; x++) count[x] += gfs2_bitcount(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, x); } if (count[0] != rgd->rd_free) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "free data mismatch: %u != %u\n", count[0], rgd->rd_free); return; } tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; if (count[1] != tmp) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used data mismatch: %u != %u\n", count[1], tmp); return; } if (count[2] + count[3] != rgd->rd_dinodes) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used metadata mismatch: %u != %u\n", count[2] + count[3], rgd->rd_dinodes); return; } } static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) { u64 first = rgd->rd_data0; u64 last = first + rgd->rd_data; return first <= block && block < last; } /** * gfs2_blk2rgrpd - Find resource group for a given data/meta block number * @sdp: The GFS2 superblock * @n: The data block number * * Returns: The resource group, or NULL if not found */ struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk) { struct gfs2_rgrpd *rgd; spin_lock(&sdp->sd_rindex_spin); list_for_each_entry(rgd, &sdp->sd_rindex_mru_list, rd_list_mru) { if (rgrp_contains_block(rgd, blk)) { list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list); spin_unlock(&sdp->sd_rindex_spin); return rgd; } } spin_unlock(&sdp->sd_rindex_spin); return NULL; } /** * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem * @sdp: The GFS2 superblock * * Returns: The first rgrp in the filesystem */ struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) { gfs2_assert(sdp, !list_empty(&sdp->sd_rindex_list)); return list_entry(sdp->sd_rindex_list.next, struct gfs2_rgrpd, rd_list); } /** * gfs2_rgrpd_get_next - get the next RG * @rgd: A RG * * Returns: The next rgrp */ struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) { if (rgd->rd_list.next == &rgd->rd_sbd->sd_rindex_list) return NULL; return list_entry(rgd->rd_list.next, struct gfs2_rgrpd, rd_list); } static void clear_rgrpdi(struct gfs2_sbd *sdp) { struct list_head *head; struct gfs2_rgrpd *rgd; struct gfs2_glock *gl; spin_lock(&sdp->sd_rindex_spin); sdp->sd_rindex_forward = NULL; spin_unlock(&sdp->sd_rindex_spin); head = &sdp->sd_rindex_list; while (!list_empty(head)) { rgd = list_entry(head->next, struct gfs2_rgrpd, rd_list); gl = rgd->rd_gl; list_del(&rgd->rd_list); list_del(&rgd->rd_list_mru); if (gl) { gl->gl_object = NULL; gfs2_glock_put(gl); } kfree(rgd->rd_bits); kmem_cache_free(gfs2_rgrpd_cachep, rgd); } } void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) { mutex_lock(&sdp->sd_rindex_mutex); clear_rgrpdi(sdp); mutex_unlock(&sdp->sd_rindex_mutex); } static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) { printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); } /** * gfs2_compute_bitstructs - Compute the bitmap sizes * @rgd: The resource group descriptor * * Calculates bitmap descriptors, one for each block that contains bitmap data * * Returns: errno */ static int compute_bitstructs(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi; u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ u32 bytes_left, bytes; int x; if (!length) return -EINVAL; rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); if (!rgd->rd_bits) return -ENOMEM; bytes_left = rgd->rd_bitbytes; for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; bi->bi_flags = 0; /* small rgrp; bitmap stored completely in header block */ if (length == 1) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* header block */ } else if (x == 0) { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* last block */ } else if (x + 1 == length) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_bitbytes - bytes_left; bi->bi_len = bytes; /* other blocks */ } else { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header); bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_bitbytes - bytes_left; bi->bi_len = bytes; } bytes_left -= bytes; } if (bytes_left) { gfs2_consist_rgrpd(rgd); return -EIO; } bi = rgd->rd_bits + (length - 1); if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { if (gfs2_consist_rgrpd(rgd)) { gfs2_rindex_print(rgd); fs_err(sdp, "start=%u len=%u offset=%u\n", bi->bi_start, bi->bi_len, bi->bi_offset); } return -EIO; } return 0; } /** * gfs2_ri_total - Total up the file system space, according to the rindex. * */ u64 gfs2_ri_total(struct gfs2_sbd *sdp) { u64 total_data = 0; struct inode *inode = sdp->sd_rindex; struct gfs2_inode *ip = GFS2_I(inode); char buf[sizeof(struct gfs2_rindex)]; struct file_ra_state ra_state; int error, rgrps; mutex_lock(&sdp->sd_rindex_mutex); file_ra_state_init(&ra_state, inode->i_mapping); for (rgrps = 0;; rgrps++) { loff_t pos = rgrps * sizeof(struct gfs2_rindex); if (pos + sizeof(struct gfs2_rindex) >= i_size_read(inode)) break; error = gfs2_internal_read(ip, &ra_state, buf, &pos, sizeof(struct gfs2_rindex)); if (error != sizeof(struct gfs2_rindex)) break; total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); } mutex_unlock(&sdp->sd_rindex_mutex); return total_data; } static void gfs2_rindex_in(struct gfs2_rgrpd *rgd, const void *buf) { const struct gfs2_rindex *str = buf; rgd->rd_addr = be64_to_cpu(str->ri_addr); rgd->rd_length = be32_to_cpu(str->ri_length); rgd->rd_data0 = be64_to_cpu(str->ri_data0); rgd->rd_data = be32_to_cpu(str->ri_data); rgd->rd_bitbytes = be32_to_cpu(str->ri_bitbytes); } /** * read_rindex_entry - Pull in a new resource index entry from the disk * @gl: The glock covering the rindex inode * * Returns: 0 on success, error code otherwise */ static int read_rindex_entry(struct gfs2_inode *ip, struct file_ra_state *ra_state) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); char buf[sizeof(struct gfs2_rindex)]; int error; struct gfs2_rgrpd *rgd; error = gfs2_internal_read(ip, ra_state, buf, &pos, sizeof(struct gfs2_rindex)); if (!error) return 0; if (error != sizeof(struct gfs2_rindex)) { if (error > 0) error = -EIO; return error; } rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); error = -ENOMEM; if (!rgd) return error; mutex_init(&rgd->rd_mutex); lops_init_le(&rgd->rd_le, &gfs2_rg_lops); rgd->rd_sbd = sdp; list_add_tail(&rgd->rd_list, &sdp->sd_rindex_list); list_add_tail(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list); gfs2_rindex_in(rgd, buf); error = compute_bitstructs(rgd); if (error) return error; error = gfs2_glock_get(sdp, rgd->rd_addr, &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); if (error) return error; rgd->rd_gl->gl_object = rgd; rgd->rd_flags &= ~GFS2_RDF_UPTODATE; return error; } /** * gfs2_ri_update - Pull in a new resource index from the disk * @ip: pointer to the rindex inode * * Returns: 0 on successful update, error code otherwise */ static int gfs2_ri_update(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct inode *inode = &ip->i_inode; struct file_ra_state ra_state; u64 rgrp_count = i_size_read(inode); struct gfs2_rgrpd *rgd; unsigned int max_data = 0; int error; do_div(rgrp_count, sizeof(struct gfs2_rindex)); clear_rgrpdi(sdp); file_ra_state_init(&ra_state, inode->i_mapping); for (sdp->sd_rgrps = 0; sdp->sd_rgrps < rgrp_count; sdp->sd_rgrps++) { error = read_rindex_entry(ip, &ra_state); if (error) { clear_rgrpdi(sdp); return error; } } list_for_each_entry(rgd, &sdp->sd_rindex_list, rd_list) if (rgd->rd_data > max_data) max_data = rgd->rd_data; sdp->sd_max_rg_data = max_data; sdp->sd_rindex_uptodate = 1; return 0; } /** * gfs2_ri_update_special - Pull in a new resource index from the disk * * This is a special version that's safe to call from gfs2_inplace_reserve_i. * In this case we know that we don't have any resource groups in memory yet. * * @ip: pointer to the rindex inode * * Returns: 0 on successful update, error code otherwise */ static int gfs2_ri_update_special(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct inode *inode = &ip->i_inode; struct file_ra_state ra_state; struct gfs2_rgrpd *rgd; unsigned int max_data = 0; int error; file_ra_state_init(&ra_state, inode->i_mapping); for (sdp->sd_rgrps = 0;; sdp->sd_rgrps++) { /* Ignore partials */ if ((sdp->sd_rgrps + 1) * sizeof(struct gfs2_rindex) > i_size_read(inode)) break; error = read_rindex_entry(ip, &ra_state); if (error) { clear_rgrpdi(sdp); return error; } } list_for_each_entry(rgd, &sdp->sd_rindex_list, rd_list) if (rgd->rd_data > max_data) max_data = rgd->rd_data; sdp->sd_max_rg_data = max_data; sdp->sd_rindex_uptodate = 1; return 0; } /** * gfs2_rindex_hold - Grab a lock on the rindex * @sdp: The GFS2 superblock * @ri_gh: the glock holder * * We grab a lock on the rindex inode to make sure that it doesn't * change whilst we are performing an operation. We keep this lock * for quite long periods of time compared to other locks. This * doesn't matter, since it is shared and it is very, very rarely * accessed in the exclusive mode (i.e. only when expanding the filesystem). * * This makes sure that we're using the latest copy of the resource index * special file, which might have been updated if someone expanded the * filesystem (via gfs2_grow utility), which adds new resource groups. * * Returns: 0 on success, error code otherwise */ int gfs2_rindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ri_gh) { struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); struct gfs2_glock *gl = ip->i_gl; int error; error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, ri_gh); if (error) return error; /* Read new copy from disk if we don't have the latest */ if (!sdp->sd_rindex_uptodate) { mutex_lock(&sdp->sd_rindex_mutex); if (!sdp->sd_rindex_uptodate) { error = gfs2_ri_update(ip); if (error) gfs2_glock_dq_uninit(ri_gh); } mutex_unlock(&sdp->sd_rindex_mutex); } return error; } static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) { const struct gfs2_rgrp *str = buf; u32 rg_flags; rg_flags = be32_to_cpu(str->rg_flags); rg_flags &= ~GFS2_RDF_MASK; rgd->rd_flags &= GFS2_RDF_MASK; rgd->rd_flags |= rg_flags; rgd->rd_free = be32_to_cpu(str->rg_free); rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); } static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) { struct gfs2_rgrp *str = buf; str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); str->rg_free = cpu_to_be32(rgd->rd_free); str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); str->__pad = cpu_to_be32(0); str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); } /** * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps * @rgd: the struct gfs2_rgrpd describing the RG to read in * * Read in all of a Resource Group's header and bitmap blocks. * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. * * Returns: errno */ int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_glock *gl = rgd->rd_gl; unsigned int length = rgd->rd_length; struct gfs2_bitmap *bi; unsigned int x, y; int error; mutex_lock(&rgd->rd_mutex); spin_lock(&sdp->sd_rindex_spin); if (rgd->rd_bh_count) { rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); mutex_unlock(&rgd->rd_mutex); return 0; } spin_unlock(&sdp->sd_rindex_spin); for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); if (error) goto fail; } for (y = length; y--;) { bi = rgd->rd_bits + y; error = gfs2_meta_wait(sdp, bi->bi_bh); if (error) goto fail; if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : GFS2_METATYPE_RG)) { error = -EIO; goto fail; } } if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { for (x = 0; x < length; x++) clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); } spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone = rgd->rd_free; rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); mutex_unlock(&rgd->rd_mutex); return 0; fail: while (x--) { bi = rgd->rd_bits + x; brelse(bi->bi_bh); bi->bi_bh = NULL; gfs2_assert_warn(sdp, !bi->bi_clone); } mutex_unlock(&rgd->rd_mutex); return error; } void gfs2_rgrp_bh_hold(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; spin_lock(&sdp->sd_rindex_spin); gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count); rgd->rd_bh_count++; spin_unlock(&sdp->sd_rindex_spin); } /** * gfs2_rgrp_bh_put - Release RG bitmaps read in with gfs2_rgrp_bh_get() * @rgd: the struct gfs2_rgrpd describing the RG to read in * */ void gfs2_rgrp_bh_put(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; int x, length = rgd->rd_length; spin_lock(&sdp->sd_rindex_spin); gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count); if (--rgd->rd_bh_count) { spin_unlock(&sdp->sd_rindex_spin); return; } for (x = 0; x < length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; kfree(bi->bi_clone); bi->bi_clone = NULL; brelse(bi->bi_bh); bi->bi_bh = NULL; } spin_unlock(&sdp->sd_rindex_spin); } static void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, const struct gfs2_bitmap *bi) { struct super_block *sb = sdp->sd_vfs; struct block_device *bdev = sb->s_bdev; const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize / bdev_logical_block_size(sb->s_bdev); u64 blk; sector_t start = 0; sector_t nr_sects = 0; int rv; unsigned int x; for (x = 0; x < bi->bi_len; x++) { const u8 *orig = bi->bi_bh->b_data + bi->bi_offset + x; const u8 *clone = bi->bi_clone + bi->bi_offset + x; u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); diff &= 0x55; if (diff == 0) continue; blk = offset + ((bi->bi_start + x) * GFS2_NBBY); blk *= sects_per_blk; /* convert to sectors */ while(diff) { if (diff & 1) { if (nr_sects == 0) goto start_new_extent; if ((start + nr_sects) != blk) { rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); if (rv) goto fail; nr_sects = 0; start_new_extent: start = blk; } nr_sects += sects_per_blk; } diff >>= 2; blk += sects_per_blk; } } if (nr_sects) { rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); if (rv) goto fail; } return; fail: fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); sdp->sd_args.ar_discard = 0; } void gfs2_rgrp_repolish_clones(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; unsigned int length = rgd->rd_length; unsigned int x; for (x = 0; x < length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; if (!bi->bi_clone) continue; if (sdp->sd_args.ar_discard) gfs2_rgrp_send_discards(sdp, rgd->rd_data0, bi); clear_bit(GBF_FULL, &bi->bi_flags); memcpy(bi->bi_clone + bi->bi_offset, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); } spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone = rgd->rd_free; spin_unlock(&sdp->sd_rindex_spin); } /** * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode * @ip: the incore GFS2 inode structure * * Returns: the struct gfs2_alloc */ struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip) { BUG_ON(ip->i_alloc != NULL); ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_NOFS); return ip->i_alloc; } /** * try_rgrp_fit - See if a given reservation will fit in a given RG * @rgd: the RG data * @al: the struct gfs2_alloc structure describing the reservation * * If there's room for the requested blocks to be allocated from the RG: * Sets the $al_rgd field in @al. * * Returns: 1 on success (it fits), 0 on failure (it doesn't fit) */ static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_alloc *al) { struct gfs2_sbd *sdp = rgd->rd_sbd; int ret = 0; if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) return 0; spin_lock(&sdp->sd_rindex_spin); if (rgd->rd_free_clone >= al->al_requested) { al->al_rgd = rgd; ret = 1; } spin_unlock(&sdp->sd_rindex_spin); return ret; } /** * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes * @rgd: The rgrp * * Returns: 0 if no error * The inode, if one has been found, in inode. */ static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) { u32 goal = 0, block; u64 no_addr; struct gfs2_sbd *sdp = rgd->rd_sbd; unsigned int n; struct gfs2_glock *gl; struct gfs2_inode *ip; int error; int found = 0; while (goal < rgd->rd_data) { down_write(&sdp->sd_log_flush_lock); n = 1; block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, GFS2_BLKST_UNLINKED, &n); up_write(&sdp->sd_log_flush_lock); if (block == BFITNOENT) break; /* rgblk_search can return a block < goal, so we need to keep it marching forward. */ no_addr = block + rgd->rd_data0; goal++; if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked) continue; if (no_addr == skip) continue; *last_unlinked = no_addr; error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl); if (error) continue; /* If the inode is already in cache, we can ignore it here * because the existing inode disposal code will deal with * it when all refs have gone away. Accessing gl_object like * this is not safe in general. Here it is ok because we do * not dereference the pointer, and we only need an approx * answer to whether it is NULL or not. */ ip = gl->gl_object; if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) gfs2_glock_put(gl); else found++; /* Limit reclaim to sensible number of tasks */ if (found > 2*NR_CPUS) return; } rgd->rd_flags &= ~GFS2_RDF_CHECK; return; } /** * recent_rgrp_next - get next RG from "recent" list * @cur_rgd: current rgrp * * Returns: The next rgrp in the recent list */ static struct gfs2_rgrpd *recent_rgrp_next(struct gfs2_rgrpd *cur_rgd) { struct gfs2_sbd *sdp = cur_rgd->rd_sbd; struct list_head *head; struct gfs2_rgrpd *rgd; spin_lock(&sdp->sd_rindex_spin); head = &sdp->sd_rindex_mru_list; if (unlikely(cur_rgd->rd_list_mru.next == head)) { spin_unlock(&sdp->sd_rindex_spin); return NULL; } rgd = list_entry(cur_rgd->rd_list_mru.next, struct gfs2_rgrpd, rd_list_mru); spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * forward_rgrp_get - get an rgrp to try next from full list * @sdp: The GFS2 superblock * * Returns: The rgrp to try next */ static struct gfs2_rgrpd *forward_rgrp_get(struct gfs2_sbd *sdp) { struct gfs2_rgrpd *rgd; unsigned int journals = gfs2_jindex_size(sdp); unsigned int rg = 0, x; spin_lock(&sdp->sd_rindex_spin); rgd = sdp->sd_rindex_forward; if (!rgd) { if (sdp->sd_rgrps >= journals) rg = sdp->sd_rgrps * sdp->sd_jdesc->jd_jid / journals; for (x = 0, rgd = gfs2_rgrpd_get_first(sdp); x < rg; x++, rgd = gfs2_rgrpd_get_next(rgd)) /* Do Nothing */; sdp->sd_rindex_forward = rgd; } spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * forward_rgrp_set - set the forward rgrp pointer * @sdp: the filesystem * @rgd: The new forward rgrp * */ static void forward_rgrp_set(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd) { spin_lock(&sdp->sd_rindex_spin); sdp->sd_rindex_forward = rgd; spin_unlock(&sdp->sd_rindex_spin); } /** * get_local_rgrp - Choose and lock a rgrp for allocation * @ip: the inode to reserve space for * @rgp: the chosen and locked rgrp * * Try to acquire rgrp in way which avoids contending with others. * * Returns: errno */ static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd, *begin = NULL; struct gfs2_alloc *al = ip->i_alloc; int flags = LM_FLAG_TRY; int skipped = 0; int loops = 0; int error, rg_locked; rgd = gfs2_blk2rgrpd(sdp, ip->i_goal); while (rgd) { rg_locked = 0; if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) { rg_locked = 1; error = 0; } else { error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, LM_FLAG_TRY, &al->al_rgd_gh); } switch (error) { case 0: if (try_rgrp_fit(rgd, al)) goto out; if (rgd->rd_flags & GFS2_RDF_CHECK) try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr); if (!rg_locked) gfs2_glock_dq_uninit(&al->al_rgd_gh); /* fall through */ case GLR_TRYFAILED: rgd = recent_rgrp_next(rgd); break; default: return error; } } /* Go through full list of rgrps */ begin = rgd = forward_rgrp_get(sdp); for (;;) { rg_locked = 0; if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) { rg_locked = 1; error = 0; } else { error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, flags, &al->al_rgd_gh); } switch (error) { case 0: if (try_rgrp_fit(rgd, al)) goto out; if (rgd->rd_flags & GFS2_RDF_CHECK) try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr); if (!rg_locked) gfs2_glock_dq_uninit(&al->al_rgd_gh); break; case GLR_TRYFAILED: skipped++; break; default: return error; } rgd = gfs2_rgrpd_get_next(rgd); if (!rgd) rgd = gfs2_rgrpd_get_first(sdp); if (rgd == begin) { if (++loops >= 3) return -ENOSPC; if (!skipped) loops++; flags = 0; if (loops == 2) gfs2_log_flush(sdp, NULL); } } out: if (begin) { spin_lock(&sdp->sd_rindex_spin); list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list); spin_unlock(&sdp->sd_rindex_spin); rgd = gfs2_rgrpd_get_next(rgd); if (!rgd) rgd = gfs2_rgrpd_get_first(sdp); forward_rgrp_set(sdp, rgd); } return 0; } /** * gfs2_inplace_reserve_i - Reserve space in the filesystem * @ip: the inode to reserve space for * * Returns: errno */ int gfs2_inplace_reserve_i(struct gfs2_inode *ip, int hold_rindex, char *file, unsigned int line) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = ip->i_alloc; int error = 0; u64 last_unlinked = NO_BLOCK; int tries = 0; if (gfs2_assert_warn(sdp, al->al_requested)) return -EINVAL; if (hold_rindex) { /* We need to hold the rindex unless the inode we're using is the rindex itself, in which case it's already held. */ if (ip != GFS2_I(sdp->sd_rindex)) error = gfs2_rindex_hold(sdp, &al->al_ri_gh); else if (!sdp->sd_rgrps) /* We may not have the rindex read in, so: */ error = gfs2_ri_update_special(ip); if (error) return error; } do { error = get_local_rgrp(ip, &last_unlinked); /* If there is no space, flushing the log may release some */ if (error) gfs2_log_flush(sdp, NULL); } while (error && tries++ < 3); if (error) { if (hold_rindex && ip != GFS2_I(sdp->sd_rindex)) gfs2_glock_dq_uninit(&al->al_ri_gh); return error; } /* no error, so we have the rgrp set in the inode's allocation. */ al->al_file = file; al->al_line = line; return 0; } /** * gfs2_inplace_release - release an inplace reservation * @ip: the inode the reservation was taken out on * * Release a reservation made by gfs2_inplace_reserve(). */ void gfs2_inplace_release(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_alloc *al = ip->i_alloc; if (gfs2_assert_warn(sdp, al->al_alloced <= al->al_requested) == -1) fs_warn(sdp, "al_alloced = %u, al_requested = %u " "al_file = %s, al_line = %u\n", al->al_alloced, al->al_requested, al->al_file, al->al_line); al->al_rgd = NULL; if (al->al_rgd_gh.gh_gl) gfs2_glock_dq_uninit(&al->al_rgd_gh); if (ip != GFS2_I(sdp->sd_rindex) && al->al_ri_gh.gh_gl) gfs2_glock_dq_uninit(&al->al_ri_gh); } /** * gfs2_get_block_type - Check a block in a RG is of given type * @rgd: the resource group holding the block * @block: the block number * * Returns: The block type (GFS2_BLKST_*) */ static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) { struct gfs2_bitmap *bi = NULL; u32 length, rgrp_block, buf_block; unsigned int buf; unsigned char type; length = rgd->rd_length; rgrp_block = block - rgd->rd_data0; for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY) break; } gfs2_assert(rgd->rd_sbd, buf < length); buf_block = rgrp_block - bi->bi_start * GFS2_NBBY; type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, buf_block); return type; } /** * rgblk_search - find a block in @old_state, change allocation * state to @new_state * @rgd: the resource group descriptor * @goal: the goal block within the RG (start here to search for avail block) * @old_state: GFS2_BLKST_XXX the before-allocation state to find * @new_state: GFS2_BLKST_XXX the after-allocation block state * @n: The extent length * * Walk rgrp's bitmap to find bits that represent a block in @old_state. * Add the found bitmap buffer to the transaction. * Set the found bits to @new_state to change block's allocation state. * * This function never fails, because we wouldn't call it unless we * know (from reservation results, etc.) that a block is available. * * Scope of @goal and returned block is just within rgrp, not the whole * filesystem. * * Returns: the block number allocated */ static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, unsigned char old_state, unsigned char new_state, unsigned int *n) { struct gfs2_bitmap *bi = NULL; const u32 length = rgd->rd_length; u32 blk = BFITNOENT; unsigned int buf, x; const unsigned int elen = *n; const u8 *buffer = NULL; *n = 0; /* Find bitmap block that contains bits for goal block */ for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; /* Convert scope of "goal" from rgrp-wide to within found bit block */ if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) { goal -= bi->bi_start * GFS2_NBBY; goto do_search; } } buf = 0; goal = 0; do_search: /* Search (up to entire) bitmap in this rgrp for allocatable block. "x <= length", instead of "x < length", because we typically start the search in the middle of a bit block, but if we can't find an allocatable block anywhere else, we want to be able wrap around and search in the first part of our first-searched bit block. */ for (x = 0; x <= length; x++) { bi = rgd->rd_bits + buf; if (test_bit(GBF_FULL, &bi->bi_flags) && (old_state == GFS2_BLKST_FREE)) goto skip; /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone bitmaps, so we must search the originals for that. */ buffer = bi->bi_bh->b_data + bi->bi_offset; if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone) buffer = bi->bi_clone + bi->bi_offset; blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state); if (blk != BFITNOENT) break; if ((goal == 0) && (old_state == GFS2_BLKST_FREE)) set_bit(GBF_FULL, &bi->bi_flags); /* Try next bitmap block (wrap back to rgrp header if at end) */ skip: buf++; buf %= length; goal = 0; } if (blk == BFITNOENT) return blk; *n = 1; if (old_state == new_state) goto out; gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, bi->bi_len, blk, new_state); goal = blk; while (*n < elen) { goal++; if (goal >= (bi->bi_len * GFS2_NBBY)) break; if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) != GFS2_BLKST_FREE) break; gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, bi->bi_len, goal, new_state); (*n)++; } out: return (bi->bi_start * GFS2_NBBY) + blk; } /** * rgblk_free - Change alloc state of given block(s) * @sdp: the filesystem * @bstart: the start of a run of blocks to free * @blen: the length of the block run (all must lie within ONE RG!) * @new_state: GFS2_BLKST_XXX the after-allocation block state * * Returns: Resource group containing the block(s) */ static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, u32 blen, unsigned char new_state) { struct gfs2_rgrpd *rgd; struct gfs2_bitmap *bi = NULL; u32 length, rgrp_blk, buf_blk; unsigned int buf; rgd = gfs2_blk2rgrpd(sdp, bstart); if (!rgd) { if (gfs2_consist(sdp)) fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); return NULL; } length = rgd->rd_length; rgrp_blk = bstart - rgd->rd_data0; while (blen--) { for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY) break; } gfs2_assert(rgd->rd_sbd, buf < length); buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY; rgrp_blk++; if (!bi->bi_clone) { bi->bi_clone = kmalloc(bi->bi_bh->b_size, GFP_NOFS | __GFP_NOFAIL); memcpy(bi->bi_clone + bi->bi_offset, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); } gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset, bi->bi_len, buf_blk, new_state); } return rgd; } /** * gfs2_rgrp_dump - print out an rgrp * @seq: The iterator * @gl: The glock in question * */ int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) { const struct gfs2_rgrpd *rgd = gl->gl_object; if (rgd == NULL) return 0; gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n", (unsigned long long)rgd->rd_addr, rgd->rd_flags, rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes); return 0; } static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", (unsigned long long)rgd->rd_addr); fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); gfs2_rgrp_dump(NULL, rgd->rd_gl); rgd->rd_flags |= GFS2_RDF_ERROR; } /** * gfs2_alloc_block - Allocate one or more blocks * @ip: the inode to allocate the block for * @bn: Used to return the starting block number * @n: requested number of blocks/extent length (value/result) * * Returns: 0 or error */ int gfs2_alloc_block(struct gfs2_inode *ip, u64 *bn, unsigned int *n) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct buffer_head *dibh; struct gfs2_alloc *al = ip->i_alloc; struct gfs2_rgrpd *rgd; u32 goal, blk; u64 block; int error; /* Only happens if there is a bug in gfs2, return something distinctive * to ensure that it is noticed. */ if (al == NULL) return -ECANCELED; rgd = al->al_rgd; if (rgrp_contains_block(rgd, ip->i_goal)) goal = ip->i_goal - rgd->rd_data0; else goal = rgd->rd_last_alloc; blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n); /* Since all blocks are reserved in advance, this shouldn't happen */ if (blk == BFITNOENT) goto rgrp_error; rgd->rd_last_alloc = blk; block = rgd->rd_data0 + blk; ip->i_goal = block; error = gfs2_meta_inode_buffer(ip, &dibh); if (error == 0) { struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data; gfs2_trans_add_bh(ip->i_gl, dibh, 1); di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal); brelse(dibh); } if (rgd->rd_free < *n) goto rgrp_error; rgd->rd_free -= *n; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); al->al_alloced += *n; gfs2_statfs_change(sdp, 0, -(s64)*n, 0); gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid); spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone -= *n; spin_unlock(&sdp->sd_rindex_spin); trace_gfs2_block_alloc(ip, block, *n, GFS2_BLKST_USED); *bn = block; return 0; rgrp_error: gfs2_rgrp_error(rgd); return -EIO; } /** * gfs2_alloc_di - Allocate a dinode * @dip: the directory that the inode is going in * @bn: the block number which is allocated * @generation: the generation number of the inode * * Returns: 0 on success or error */ int gfs2_alloc_di(struct gfs2_inode *dip, u64 *bn, u64 *generation) { struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode); struct gfs2_alloc *al = dip->i_alloc; struct gfs2_rgrpd *rgd = al->al_rgd; u32 blk; u64 block; unsigned int n = 1; blk = rgblk_search(rgd, rgd->rd_last_alloc, GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n); /* Since all blocks are reserved in advance, this shouldn't happen */ if (blk == BFITNOENT) goto rgrp_error; rgd->rd_last_alloc = blk; block = rgd->rd_data0 + blk; if (rgd->rd_free == 0) goto rgrp_error; rgd->rd_free--; rgd->rd_dinodes++; *generation = rgd->rd_igeneration++; if (*generation == 0) *generation = rgd->rd_igeneration++; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); al->al_alloced++; gfs2_statfs_change(sdp, 0, -1, +1); gfs2_trans_add_unrevoke(sdp, block, 1); spin_lock(&sdp->sd_rindex_spin); rgd->rd_free_clone--; spin_unlock(&sdp->sd_rindex_spin); trace_gfs2_block_alloc(dip, block, 1, GFS2_BLKST_DINODE); *bn = block; return 0; rgrp_error: gfs2_rgrp_error(rgd); return -EIO; } /** * gfs2_free_data - free a contiguous run of data block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * */ void gfs2_free_data(struct gfs2_inode *ip, u64 bstart, u32 blen) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); if (!rgd) return; trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE); rgd->rd_free += blen; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); gfs2_statfs_change(sdp, 0, +blen, 0); gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); } /** * gfs2_free_meta - free a contiguous run of data block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * */ void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); if (!rgd) return; trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE); rgd->rd_free += blen; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); gfs2_statfs_change(sdp, 0, +blen, 0); gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_meta_wipe(ip, bstart, blen); } void gfs2_unlink_di(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_rgrpd *rgd; u64 blkno = ip->i_no_addr; rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); if (!rgd) return; trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED); gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_trans_add_rg(rgd); } static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_rgrpd *tmp_rgd; tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); if (!tmp_rgd) return; gfs2_assert_withdraw(sdp, rgd == tmp_rgd); if (!rgd->rd_dinodes) gfs2_consist_rgrpd(rgd); rgd->rd_dinodes--; rgd->rd_free++; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_statfs_change(sdp, 0, +1, -1); gfs2_trans_add_rg(rgd); } void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) { gfs2_free_uninit_di(rgd, ip->i_no_addr); trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE); gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_meta_wipe(ip, ip->i_no_addr, 1); } /** * gfs2_check_blk_type - Check the type of a block * @sdp: The superblock * @no_addr: The block number to check * @type: The block type we are looking for * * Returns: 0 if the block type matches the expected type * -ESTALE if it doesn't match * or -ve errno if something went wrong while checking */ int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) { struct gfs2_rgrpd *rgd; struct gfs2_holder ri_gh, rgd_gh; struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); int ri_locked = 0; int error; if (!gfs2_glock_is_locked_by_me(ip->i_gl)) { error = gfs2_rindex_hold(sdp, &ri_gh); if (error) goto fail; ri_locked = 1; } error = -EINVAL; rgd = gfs2_blk2rgrpd(sdp, no_addr); if (!rgd) goto fail_rindex; error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); if (error) goto fail_rindex; if (gfs2_get_block_type(rgd, no_addr) != type) error = -ESTALE; gfs2_glock_dq_uninit(&rgd_gh); fail_rindex: if (ri_locked) gfs2_glock_dq_uninit(&ri_gh); fail: return error; } /** * gfs2_rlist_add - add a RG to a list of RGs * @sdp: the filesystem * @rlist: the list of resource groups * @block: the block * * Figure out what RG a block belongs to and add that RG to the list * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_add(struct gfs2_sbd *sdp, struct gfs2_rgrp_list *rlist, u64 block) { struct gfs2_rgrpd *rgd; struct gfs2_rgrpd **tmp; unsigned int new_space; unsigned int x; if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) return; rgd = gfs2_blk2rgrpd(sdp, block); if (!rgd) { if (gfs2_consist(sdp)) fs_err(sdp, "block = %llu\n", (unsigned long long)block); return; } for (x = 0; x < rlist->rl_rgrps; x++) if (rlist->rl_rgd[x] == rgd) return; if (rlist->rl_rgrps == rlist->rl_space) { new_space = rlist->rl_space + 10; tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), GFP_NOFS | __GFP_NOFAIL); if (rlist->rl_rgd) { memcpy(tmp, rlist->rl_rgd, rlist->rl_space * sizeof(struct gfs2_rgrpd *)); kfree(rlist->rl_rgd); } rlist->rl_space = new_space; rlist->rl_rgd = tmp; } rlist->rl_rgd[rlist->rl_rgrps++] = rgd; } /** * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate * and initialize an array of glock holders for them * @rlist: the list of resource groups * @state: the lock state to acquire the RG lock in * @flags: the modifier flags for the holder structures * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) { unsigned int x; rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), GFP_NOFS | __GFP_NOFAIL); for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, 0, &rlist->rl_ghs[x]); } /** * gfs2_rlist_free - free a resource group list * @list: the list of resource groups * */ void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) { unsigned int x; kfree(rlist->rl_rgd); if (rlist->rl_ghs) { for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_uninit(&rlist->rl_ghs[x]); kfree(rlist->rl_ghs); } }