/* * linux/fs/nfs/inode.c * * Copyright (C) 1992 Rick Sladkey * * nfs inode and superblock handling functions * * Modularised by Alan Cox <Alan.Cox@linux.org>, while hacking some * experimental NFS changes. Modularisation taken straight from SYS5 fs. * * Change to nfs_read_super() to permit NFS mounts to multi-homed hosts. * J.S.Peatfield@damtp.cam.ac.uk * */ #include <linux/module.h> #include <linux/init.h> #include <linux/time.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/metrics.h> #include <linux/nfs_fs.h> #include <linux/nfs_mount.h> #include <linux/nfs4_mount.h> #include <linux/lockd/bind.h> #include <linux/smp_lock.h> #include <linux/seq_file.h> #include <linux/mount.h> #include <linux/nfs_idmap.h> #include <linux/vfs.h> #include <linux/inet.h> #include <linux/nfs_xdr.h> #include <asm/system.h> #include <asm/uaccess.h> #include "nfs4_fs.h" #include "callback.h" #include "delegation.h" #include "iostat.h" #include "internal.h" #define NFSDBG_FACILITY NFSDBG_VFS static void nfs_invalidate_inode(struct inode *); static int nfs_update_inode(struct inode *, struct nfs_fattr *); static void nfs_zap_acl_cache(struct inode *); static struct kmem_cache * nfs_inode_cachep; static inline unsigned long nfs_fattr_to_ino_t(struct nfs_fattr *fattr) { return nfs_fileid_to_ino_t(fattr->fileid); } int nfs_write_inode(struct inode *inode, int sync) { int ret; if (sync) { ret = filemap_fdatawait(inode->i_mapping); if (ret == 0) ret = nfs_commit_inode(inode, FLUSH_SYNC); } else ret = nfs_commit_inode(inode, 0); if (ret >= 0) return 0; __mark_inode_dirty(inode, I_DIRTY_DATASYNC); return ret; } void nfs_clear_inode(struct inode *inode) { /* * The following should never happen... */ BUG_ON(nfs_have_writebacks(inode)); BUG_ON(!list_empty(&NFS_I(inode)->open_files)); BUG_ON(atomic_read(&NFS_I(inode)->data_updates) != 0); nfs_zap_acl_cache(inode); nfs_access_zap_cache(inode); } /** * nfs_sync_mapping - helper to flush all mmapped dirty data to disk */ int nfs_sync_mapping(struct address_space *mapping) { int ret; if (mapping->nrpages == 0) return 0; unmap_mapping_range(mapping, 0, 0, 0); ret = filemap_write_and_wait(mapping); if (ret != 0) goto out; ret = nfs_wb_all(mapping->host); out: return ret; } /* * Invalidate the local caches */ static void nfs_zap_caches_locked(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); int mode = inode->i_mode; nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); NFS_ATTRTIMEO(inode) = NFS_MINATTRTIMEO(inode); NFS_ATTRTIMEO_UPDATE(inode) = jiffies; memset(NFS_COOKIEVERF(inode), 0, sizeof(NFS_COOKIEVERF(inode))); if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE; else nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE; } void nfs_zap_caches(struct inode *inode) { spin_lock(&inode->i_lock); nfs_zap_caches_locked(inode); spin_unlock(&inode->i_lock); } void nfs_zap_mapping(struct inode *inode, struct address_space *mapping) { if (mapping->nrpages != 0) { spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; spin_unlock(&inode->i_lock); } } static void nfs_zap_acl_cache(struct inode *inode) { void (*clear_acl_cache)(struct inode *); clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache; if (clear_acl_cache != NULL) clear_acl_cache(inode); spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL; spin_unlock(&inode->i_lock); } /* * Invalidate, but do not unhash, the inode. * NB: must be called with inode->i_lock held! */ static void nfs_invalidate_inode(struct inode *inode) { set_bit(NFS_INO_STALE, &NFS_FLAGS(inode)); nfs_zap_caches_locked(inode); } struct nfs_find_desc { struct nfs_fh *fh; struct nfs_fattr *fattr; }; /* * In NFSv3 we can have 64bit inode numbers. In order to support * this, and re-exported directories (also seen in NFSv2) * we are forced to allow 2 different inodes to have the same * i_ino. */ static int nfs_find_actor(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; struct nfs_fh *fh = desc->fh; struct nfs_fattr *fattr = desc->fattr; if (NFS_FILEID(inode) != fattr->fileid) return 0; if (nfs_compare_fh(NFS_FH(inode), fh)) return 0; if (is_bad_inode(inode) || NFS_STALE(inode)) return 0; return 1; } static int nfs_init_locked(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; struct nfs_fattr *fattr = desc->fattr; NFS_FILEID(inode) = fattr->fileid; nfs_copy_fh(NFS_FH(inode), desc->fh); return 0; } /* Don't use READDIRPLUS on directories that we believe are too large */ #define NFS_LIMIT_READDIRPLUS (8*PAGE_SIZE) /* * This is our front-end to iget that looks up inodes by file handle * instead of inode number. */ struct inode * nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr) { struct nfs_find_desc desc = { .fh = fh, .fattr = fattr }; struct inode *inode = ERR_PTR(-ENOENT); unsigned long hash; if ((fattr->valid & NFS_ATTR_FATTR) == 0) goto out_no_inode; if (!fattr->nlink) { printk("NFS: Buggy server - nlink == 0!\n"); goto out_no_inode; } hash = nfs_fattr_to_ino_t(fattr); inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc); if (inode == NULL) { inode = ERR_PTR(-ENOMEM); goto out_no_inode; } if (inode->i_state & I_NEW) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long now = jiffies; /* We set i_ino for the few things that still rely on it, * such as stat(2) */ inode->i_ino = hash; /* We can't support update_atime(), since the server will reset it */ inode->i_flags |= S_NOATIME|S_NOCMTIME; inode->i_mode = fattr->mode; /* Why so? Because we want revalidate for devices/FIFOs, and * that's precisely what we have in nfs_file_inode_operations. */ inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops; if (S_ISREG(inode->i_mode)) { inode->i_fop = &nfs_file_operations; inode->i_data.a_ops = &nfs_file_aops; inode->i_data.backing_dev_info = &NFS_SB(sb)->backing_dev_info; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops; inode->i_fop = &nfs_dir_operations; if (nfs_server_capable(inode, NFS_CAP_READDIRPLUS) && fattr->size <= NFS_LIMIT_READDIRPLUS) set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); /* Deal with crossing mountpoints */ if (!nfs_fsid_equal(&NFS_SB(sb)->fsid, &fattr->fsid)) { if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) inode->i_op = &nfs_referral_inode_operations; else inode->i_op = &nfs_mountpoint_inode_operations; inode->i_fop = NULL; } } else if (S_ISLNK(inode->i_mode)) inode->i_op = &nfs_symlink_inode_operations; else init_special_inode(inode, inode->i_mode, fattr->rdev); nfsi->read_cache_jiffies = fattr->time_start; nfsi->last_updated = now; nfsi->cache_change_attribute = now; inode->i_atime = fattr->atime; inode->i_mtime = fattr->mtime; inode->i_ctime = fattr->ctime; if (fattr->valid & NFS_ATTR_FATTR_V4) nfsi->change_attr = fattr->change_attr; inode->i_size = nfs_size_to_loff_t(fattr->size); inode->i_nlink = fattr->nlink; inode->i_uid = fattr->uid; inode->i_gid = fattr->gid; if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else { inode->i_blocks = fattr->du.nfs2.blocks; } nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); nfsi->access_cache = RB_ROOT; unlock_new_inode(inode); } else nfs_refresh_inode(inode, fattr); dprintk("NFS: nfs_fhget(%s/%Ld ct=%d)\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode), atomic_read(&inode->i_count)); out: return inode; out_no_inode: dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode)); goto out; } #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET) int nfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode; struct nfs_fattr fattr; int error; nfs_inc_stats(inode, NFSIOS_VFSSETATTR); if (attr->ia_valid & ATTR_SIZE) { if (!S_ISREG(inode->i_mode) || attr->ia_size == i_size_read(inode)) attr->ia_valid &= ~ATTR_SIZE; } /* Optimization: if the end result is no change, don't RPC */ attr->ia_valid &= NFS_VALID_ATTRS; if (attr->ia_valid == 0) return 0; lock_kernel(); nfs_begin_data_update(inode); /* Write all dirty data */ if (S_ISREG(inode->i_mode)) { filemap_write_and_wait(inode->i_mapping); nfs_wb_all(inode); } /* * Return any delegations if we're going to change ACLs */ if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) nfs_inode_return_delegation(inode); error = NFS_PROTO(inode)->setattr(dentry, &fattr, attr); if (error == 0) nfs_refresh_inode(inode, &fattr); nfs_end_data_update(inode); unlock_kernel(); return error; } /** * nfs_setattr_update_inode - Update inode metadata after a setattr call. * @inode: pointer to struct inode * @attr: pointer to struct iattr * * Note: we do this in the *proc.c in order to ensure that * it works for things like exclusive creates too. */ void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr) { if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) { if ((attr->ia_valid & ATTR_MODE) != 0) { int mode = attr->ia_mode & S_IALLUGO; mode |= inode->i_mode & ~S_IALLUGO; inode->i_mode = mode; } if ((attr->ia_valid & ATTR_UID) != 0) inode->i_uid = attr->ia_uid; if ((attr->ia_valid & ATTR_GID) != 0) inode->i_gid = attr->ia_gid; spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; spin_unlock(&inode->i_lock); } if ((attr->ia_valid & ATTR_SIZE) != 0) { nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC); inode->i_size = attr->ia_size; vmtruncate(inode, attr->ia_size); } } static int nfs_wait_schedule(void *word) { if (signal_pending(current)) return -ERESTARTSYS; schedule(); return 0; } /* * Wait for the inode to get unlocked. */ static int nfs_wait_on_inode(struct inode *inode) { struct rpc_clnt *clnt = NFS_CLIENT(inode); struct nfs_inode *nfsi = NFS_I(inode); sigset_t oldmask; int error; rpc_clnt_sigmask(clnt, &oldmask); error = wait_on_bit_lock(&nfsi->flags, NFS_INO_REVALIDATING, nfs_wait_schedule, TASK_INTERRUPTIBLE); rpc_clnt_sigunmask(clnt, &oldmask); return error; } static void nfs_wake_up_inode(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); clear_bit(NFS_INO_REVALIDATING, &nfsi->flags); smp_mb__after_clear_bit(); wake_up_bit(&nfsi->flags, NFS_INO_REVALIDATING); } int nfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME; int err; /* Flush out writes to the server in order to update c/mtime */ if (S_ISREG(inode->i_mode)) nfs_sync_mapping_range(inode->i_mapping, 0, 0, FLUSH_NOCOMMIT); /* * We may force a getattr if the user cares about atime. * * Note that we only have to check the vfsmount flags here: * - NFS always sets S_NOATIME by so checking it would give a * bogus result * - NFS never sets MS_NOATIME or MS_NODIRATIME so there is * no point in checking those. */ if ((mnt->mnt_flags & MNT_NOATIME) || ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) need_atime = 0; if (need_atime) err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); else err = nfs_revalidate_inode(NFS_SERVER(inode), inode); if (!err) generic_fillattr(inode, stat); return err; } static struct nfs_open_context *alloc_nfs_open_context(struct vfsmount *mnt, struct dentry *dentry, struct rpc_cred *cred) { struct nfs_open_context *ctx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (ctx != NULL) { atomic_set(&ctx->count, 1); ctx->dentry = dget(dentry); ctx->vfsmnt = mntget(mnt); ctx->cred = get_rpccred(cred); ctx->state = NULL; ctx->lockowner = current->files; ctx->error = 0; ctx->dir_cookie = 0; } return ctx; } struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx) { if (ctx != NULL) atomic_inc(&ctx->count); return ctx; } void put_nfs_open_context(struct nfs_open_context *ctx) { if (atomic_dec_and_test(&ctx->count)) { if (!list_empty(&ctx->list)) { struct inode *inode = ctx->dentry->d_inode; spin_lock(&inode->i_lock); list_del(&ctx->list); spin_unlock(&inode->i_lock); } if (ctx->state != NULL) nfs4_close_state(ctx->state, ctx->mode); if (ctx->cred != NULL) put_rpccred(ctx->cred); dput(ctx->dentry); mntput(ctx->vfsmnt); kfree(ctx); } } /* * Ensure that mmap has a recent RPC credential for use when writing out * shared pages */ static void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx) { struct inode *inode = filp->f_path.dentry->d_inode; struct nfs_inode *nfsi = NFS_I(inode); filp->private_data = get_nfs_open_context(ctx); spin_lock(&inode->i_lock); list_add(&ctx->list, &nfsi->open_files); spin_unlock(&inode->i_lock); } /* * Given an inode, search for an open context with the desired characteristics */ struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, int mode) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs_open_context *pos, *ctx = NULL; spin_lock(&inode->i_lock); list_for_each_entry(pos, &nfsi->open_files, list) { if (cred != NULL && pos->cred != cred) continue; if ((pos->mode & mode) == mode) { ctx = get_nfs_open_context(pos); break; } } spin_unlock(&inode->i_lock); return ctx; } static void nfs_file_clear_open_context(struct file *filp) { struct inode *inode = filp->f_path.dentry->d_inode; struct nfs_open_context *ctx = (struct nfs_open_context *)filp->private_data; if (ctx) { filp->private_data = NULL; spin_lock(&inode->i_lock); list_move_tail(&ctx->list, &NFS_I(inode)->open_files); spin_unlock(&inode->i_lock); put_nfs_open_context(ctx); } } /* * These allocate and release file read/write context information. */ int nfs_open(struct inode *inode, struct file *filp) { struct nfs_open_context *ctx; struct rpc_cred *cred; cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); if (IS_ERR(cred)) return PTR_ERR(cred); ctx = alloc_nfs_open_context(filp->f_path.mnt, filp->f_path.dentry, cred); put_rpccred(cred); if (ctx == NULL) return -ENOMEM; ctx->mode = filp->f_mode; nfs_file_set_open_context(filp, ctx); put_nfs_open_context(ctx); return 0; } int nfs_release(struct inode *inode, struct file *filp) { nfs_file_clear_open_context(filp); return 0; } /* * This function is called whenever some part of NFS notices that * the cached attributes have to be refreshed. */ int __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) { int status = -ESTALE; struct nfs_fattr fattr; struct nfs_inode *nfsi = NFS_I(inode); dfprintk(PAGECACHE, "NFS: revalidating (%s/%Ld)\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode)); nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE); lock_kernel(); if (is_bad_inode(inode)) goto out_nowait; if (NFS_STALE(inode)) goto out_nowait; status = nfs_wait_on_inode(inode); if (status < 0) goto out; if (NFS_STALE(inode)) { status = -ESTALE; /* Do we trust the cached ESTALE? */ if (NFS_ATTRTIMEO(inode) != 0) { if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ATIME)) { /* no */ } else goto out; } } status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), &fattr); if (status != 0) { dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) getattr failed, error=%d\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode), status); if (status == -ESTALE) { nfs_zap_caches(inode); if (!S_ISDIR(inode->i_mode)) set_bit(NFS_INO_STALE, &NFS_FLAGS(inode)); } goto out; } spin_lock(&inode->i_lock); status = nfs_update_inode(inode, &fattr); if (status) { spin_unlock(&inode->i_lock); dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) refresh failed, error=%d\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode), status); goto out; } spin_unlock(&inode->i_lock); if (nfsi->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); dfprintk(PAGECACHE, "NFS: (%s/%Ld) revalidation complete\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode)); out: nfs_wake_up_inode(inode); out_nowait: unlock_kernel(); return status; } int nfs_attribute_timeout(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); if (nfs_have_delegation(inode, FMODE_READ)) return 0; return time_after(jiffies, nfsi->read_cache_jiffies+nfsi->attrtimeo); } /** * nfs_revalidate_inode - Revalidate the inode attributes * @server - pointer to nfs_server struct * @inode - pointer to inode struct * * Updates inode attribute information by retrieving the data from the server. */ int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) { if (!(NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATTR) && !nfs_attribute_timeout(inode)) return NFS_STALE(inode) ? -ESTALE : 0; return __nfs_revalidate_inode(server, inode); } static int nfs_invalidate_mapping_nolock(struct inode *inode, struct address_space *mapping) { struct nfs_inode *nfsi = NFS_I(inode); if (mapping->nrpages != 0) { int ret = invalidate_inode_pages2(mapping); if (ret < 0) return ret; } spin_lock(&inode->i_lock); nfsi->cache_validity &= ~NFS_INO_INVALID_DATA; if (S_ISDIR(inode->i_mode)) { memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); /* This ensures we revalidate child dentries */ nfsi->cache_change_attribute = jiffies; } spin_unlock(&inode->i_lock); nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE); dfprintk(PAGECACHE, "NFS: (%s/%Ld) data cache invalidated\n", inode->i_sb->s_id, (long long)NFS_FILEID(inode)); return 0; } static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping) { int ret = 0; mutex_lock(&inode->i_mutex); if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_DATA) { ret = nfs_sync_mapping(mapping); if (ret == 0) ret = nfs_invalidate_mapping_nolock(inode, mapping); } mutex_unlock(&inode->i_mutex); return ret; } /** * nfs_revalidate_mapping_nolock - Revalidate the pagecache * @inode - pointer to host inode * @mapping - pointer to mapping */ int nfs_revalidate_mapping_nolock(struct inode *inode, struct address_space *mapping) { struct nfs_inode *nfsi = NFS_I(inode); int ret = 0; if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) || nfs_attribute_timeout(inode) || NFS_STALE(inode)) { ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); if (ret < 0) goto out; } if (nfsi->cache_validity & NFS_INO_INVALID_DATA) ret = nfs_invalidate_mapping_nolock(inode, mapping); out: return ret; } /** * nfs_revalidate_mapping - Revalidate the pagecache * @inode - pointer to host inode * @mapping - pointer to mapping * * This version of the function will take the inode->i_mutex and attempt to * flush out all dirty data if it needs to invalidate the page cache. */ int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping) { struct nfs_inode *nfsi = NFS_I(inode); int ret = 0; if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) || nfs_attribute_timeout(inode) || NFS_STALE(inode)) { ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); if (ret < 0) goto out; } if (nfsi->cache_validity & NFS_INO_INVALID_DATA) ret = nfs_invalidate_mapping(inode, mapping); out: return ret; } /** * nfs_begin_data_update * @inode - pointer to inode * Declare that a set of operations will update file data on the server */ void nfs_begin_data_update(struct inode *inode) { atomic_inc(&NFS_I(inode)->data_updates); } /** * nfs_end_data_update * @inode - pointer to inode * Declare end of the operations that will update file data * This will mark the inode as immediately needing revalidation * of its attribute cache. */ void nfs_end_data_update(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); /* Directories: invalidate page cache */ if (S_ISDIR(inode->i_mode)) { spin_lock(&inode->i_lock); nfsi->cache_validity |= NFS_INO_INVALID_DATA; spin_unlock(&inode->i_lock); } nfsi->cache_change_attribute = jiffies; atomic_dec(&nfsi->data_updates); } static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long now = jiffies; /* If we have atomic WCC data, we may update some attributes */ if ((fattr->valid & NFS_ATTR_WCC) != 0) { if (timespec_equal(&inode->i_ctime, &fattr->pre_ctime)) { memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime)); nfsi->cache_change_attribute = now; } if (timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) { memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime)); nfsi->cache_change_attribute = now; } if (inode->i_size == fattr->pre_size && nfsi->npages == 0) { inode->i_size = fattr->size; nfsi->cache_change_attribute = now; } } } /** * nfs_check_inode_attributes - verify consistency of the inode attribute cache * @inode - pointer to inode * @fattr - updated attributes * * Verifies the attribute cache. If we have just changed the attributes, * so that fattr carries weak cache consistency data, then it may * also update the ctime/mtime/change_attribute. */ static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_size, new_isize; int data_unstable; /* Has the inode gone and changed behind our back? */ if (nfsi->fileid != fattr->fileid || (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) { return -EIO; } /* Are we in the process of updating data on the server? */ data_unstable = nfs_caches_unstable(inode); /* Do atomic weak cache consistency updates */ nfs_wcc_update_inode(inode, fattr); if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 && nfsi->change_attr != fattr->change_attr) nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; /* Verify a few of the more important attributes */ if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; cur_size = i_size_read(inode); new_isize = nfs_size_to_loff_t(fattr->size); if (cur_size != new_isize && nfsi->npages == 0) nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; /* Have any file permissions changed? */ if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) || inode->i_uid != fattr->uid || inode->i_gid != fattr->gid) nfsi->cache_validity |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; /* Has the link count changed? */ if (inode->i_nlink != fattr->nlink) nfsi->cache_validity |= NFS_INO_INVALID_ATTR; if (!timespec_equal(&inode->i_atime, &fattr->atime)) nfsi->cache_validity |= NFS_INO_INVALID_ATIME; nfsi->read_cache_jiffies = fattr->time_start; return 0; } /** * nfs_refresh_inode - try to update the inode attribute cache * @inode - pointer to inode * @fattr - updated attributes * * Check that an RPC call that returned attributes has not overlapped with * other recent updates of the inode metadata, then decide whether it is * safe to do a full update of the inode attributes, or whether just to * call nfs_check_inode_attributes. */ int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); int status; if ((fattr->valid & NFS_ATTR_FATTR) == 0) return 0; spin_lock(&inode->i_lock); if (time_after(fattr->time_start, nfsi->last_updated)) status = nfs_update_inode(inode, fattr); else status = nfs_check_inode_attributes(inode, fattr); spin_unlock(&inode->i_lock); return status; } /** * nfs_post_op_update_inode - try to update the inode attribute cache * @inode - pointer to inode * @fattr - updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. * * NB: if the server didn't return any post op attributes, this * function will force the retrieval of attributes before the next * NFS request. Thus it should be used only for operations that * are expected to change one or more attributes, to avoid * unnecessary NFS requests and trips through nfs_update_inode(). */ int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); int status = 0; spin_lock(&inode->i_lock); if (unlikely((fattr->valid & NFS_ATTR_FATTR) == 0)) { nfsi->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; goto out; } status = nfs_update_inode(inode, fattr); out: spin_unlock(&inode->i_lock); return status; } /* * Many nfs protocol calls return the new file attributes after * an operation. Here we update the inode to reflect the state * of the server's inode. * * This is a bit tricky because we have to make sure all dirty pages * have been sent off to the server before calling invalidate_inode_pages. * To make sure no other process adds more write requests while we try * our best to flush them, we make them sleep during the attribute refresh. * * A very similar scenario holds for the dir cache. */ static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_server *server; struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_isize, new_isize; unsigned int invalid = 0; unsigned long now = jiffies; int data_stable; dfprintk(VFS, "NFS: %s(%s/%ld ct=%d info=0x%x)\n", __FUNCTION__, inode->i_sb->s_id, inode->i_ino, atomic_read(&inode->i_count), fattr->valid); if (nfsi->fileid != fattr->fileid) goto out_fileid; /* * Make sure the inode's type hasn't changed. */ if ((inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) goto out_changed; server = NFS_SERVER(inode); /* Update the fsid if and only if this is the root directory */ if (inode == inode->i_sb->s_root->d_inode && !nfs_fsid_equal(&server->fsid, &fattr->fsid)) server->fsid = fattr->fsid; /* * Update the read time so we don't revalidate too often. */ nfsi->read_cache_jiffies = fattr->time_start; nfsi->last_updated = now; /* Fix a wraparound issue with nfsi->cache_change_attribute */ if (time_before(now, nfsi->cache_change_attribute)) nfsi->cache_change_attribute = now - 600*HZ; /* Are we racing with known updates of the metadata on the server? */ data_stable = nfs_verify_change_attribute(inode, fattr->time_start); if (data_stable) nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_ATIME); /* Do atomic weak cache consistency updates */ nfs_wcc_update_inode(inode, fattr); /* Check if our cached file size is stale */ new_isize = nfs_size_to_loff_t(fattr->size); cur_isize = i_size_read(inode); if (new_isize != cur_isize) { /* Do we perhaps have any outstanding writes? */ if (nfsi->npages == 0) { /* No, but did we race with nfs_end_data_update()? */ if (data_stable) { inode->i_size = new_isize; invalid |= NFS_INO_INVALID_DATA; } invalid |= NFS_INO_INVALID_ATTR; } else if (new_isize > cur_isize) { inode->i_size = new_isize; invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; } nfsi->cache_change_attribute = now; dprintk("NFS: isize change on server for file %s/%ld\n", inode->i_sb->s_id, inode->i_ino); } /* Check if the mtime agrees */ if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) { memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime)); dprintk("NFS: mtime change on server for file %s/%ld\n", inode->i_sb->s_id, inode->i_ino); invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; nfsi->cache_change_attribute = now; } /* If ctime has changed we should definitely clear access+acl caches */ if (!timespec_equal(&inode->i_ctime, &fattr->ctime)) { invalid |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime)); nfsi->cache_change_attribute = now; } memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime)); if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) || inode->i_uid != fattr->uid || inode->i_gid != fattr->gid) invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; inode->i_mode = fattr->mode; inode->i_nlink = fattr->nlink; inode->i_uid = fattr->uid; inode->i_gid = fattr->gid; if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else { inode->i_blocks = fattr->du.nfs2.blocks; } if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 && nfsi->change_attr != fattr->change_attr) { dprintk("NFS: change_attr change on server for file %s/%ld\n", inode->i_sb->s_id, inode->i_ino); nfsi->change_attr = fattr->change_attr; invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; nfsi->cache_change_attribute = now; } /* Update attrtimeo value if we're out of the unstable period */ if (invalid & NFS_INO_INVALID_ATTR) { nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; } else if (time_after(now, nfsi->attrtimeo_timestamp+nfsi->attrtimeo)) { if ((nfsi->attrtimeo <<= 1) > NFS_MAXATTRTIMEO(inode)) nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; } /* Don't invalidate the data if we were to blame */ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) invalid &= ~NFS_INO_INVALID_DATA; if (data_stable) invalid &= ~(NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ATIME|NFS_INO_REVAL_PAGECACHE); if (!nfs_have_delegation(inode, FMODE_READ)) nfsi->cache_validity |= invalid; return 0; out_changed: /* * Big trouble! The inode has become a different object. */ printk(KERN_DEBUG "%s: inode %ld mode changed, %07o to %07o\n", __FUNCTION__, inode->i_ino, inode->i_mode, fattr->mode); out_err: /* * No need to worry about unhashing the dentry, as the * lookup validation will know that the inode is bad. * (But we fall through to invalidate the caches.) */ nfs_invalidate_inode(inode); return -ESTALE; out_fileid: printk(KERN_ERR "NFS: server %s error: fileid changed\n" "fsid %s: expected fileid 0x%Lx, got 0x%Lx\n", NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id, (long long)nfsi->fileid, (long long)fattr->fileid); goto out_err; } #ifdef CONFIG_NFS_V4 /* * Clean out any remaining NFSv4 state that might be left over due * to open() calls that passed nfs_atomic_lookup, but failed to call * nfs_open(). */ void nfs4_clear_inode(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); /* If we are holding a delegation, return it! */ nfs_inode_return_delegation(inode); /* First call standard NFS clear_inode() code */ nfs_clear_inode(inode); /* Now clear out any remaining state */ while (!list_empty(&nfsi->open_states)) { struct nfs4_state *state; state = list_entry(nfsi->open_states.next, struct nfs4_state, inode_states); dprintk("%s(%s/%Ld): found unclaimed NFSv4 state %p\n", __FUNCTION__, inode->i_sb->s_id, (long long)NFS_FILEID(inode), state); BUG_ON(atomic_read(&state->count) != 1); nfs4_close_state(state, state->state); } } #endif struct inode *nfs_alloc_inode(struct super_block *sb) { struct nfs_inode *nfsi; nfsi = (struct nfs_inode *)kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL); if (!nfsi) return NULL; nfsi->flags = 0UL; nfsi->cache_validity = 0UL; #ifdef CONFIG_NFS_V3_ACL nfsi->acl_access = ERR_PTR(-EAGAIN); nfsi->acl_default = ERR_PTR(-EAGAIN); #endif #ifdef CONFIG_NFS_V4 nfsi->nfs4_acl = NULL; #endif /* CONFIG_NFS_V4 */ return &nfsi->vfs_inode; } void nfs_destroy_inode(struct inode *inode) { kmem_cache_free(nfs_inode_cachep, NFS_I(inode)); } static inline void nfs4_init_once(struct nfs_inode *nfsi) { #ifdef CONFIG_NFS_V4 INIT_LIST_HEAD(&nfsi->open_states); nfsi->delegation = NULL; nfsi->delegation_state = 0; init_rwsem(&nfsi->rwsem); #endif } static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) { struct nfs_inode *nfsi = (struct nfs_inode *) foo; if (flags & SLAB_CTOR_CONSTRUCTOR) { inode_init_once(&nfsi->vfs_inode); spin_lock_init(&nfsi->req_lock); INIT_LIST_HEAD(&nfsi->dirty); INIT_LIST_HEAD(&nfsi->commit); INIT_LIST_HEAD(&nfsi->open_files); INIT_LIST_HEAD(&nfsi->access_cache_entry_lru); INIT_LIST_HEAD(&nfsi->access_cache_inode_lru); INIT_RADIX_TREE(&nfsi->nfs_page_tree, GFP_ATOMIC); atomic_set(&nfsi->data_updates, 0); nfsi->ndirty = 0; nfsi->ncommit = 0; nfsi->npages = 0; nfs4_init_once(nfsi); } } static int __init nfs_init_inodecache(void) { nfs_inode_cachep = kmem_cache_create("nfs_inode_cache", sizeof(struct nfs_inode), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once, NULL); if (nfs_inode_cachep == NULL) return -ENOMEM; return 0; } static void nfs_destroy_inodecache(void) { kmem_cache_destroy(nfs_inode_cachep); } /* * Initialize NFS */ static int __init init_nfs_fs(void) { int err; err = nfs_fs_proc_init(); if (err) goto out5; err = nfs_init_nfspagecache(); if (err) goto out4; err = nfs_init_inodecache(); if (err) goto out3; err = nfs_init_readpagecache(); if (err) goto out2; err = nfs_init_writepagecache(); if (err) goto out1; err = nfs_init_directcache(); if (err) goto out0; #ifdef CONFIG_PROC_FS rpc_proc_register(&nfs_rpcstat); #endif if ((err = register_nfs_fs()) != 0) goto out; return 0; out: #ifdef CONFIG_PROC_FS rpc_proc_unregister("nfs"); #endif nfs_destroy_directcache(); out0: nfs_destroy_writepagecache(); out1: nfs_destroy_readpagecache(); out2: nfs_destroy_inodecache(); out3: nfs_destroy_nfspagecache(); out4: nfs_fs_proc_exit(); out5: return err; } static void __exit exit_nfs_fs(void) { nfs_destroy_directcache(); nfs_destroy_writepagecache(); nfs_destroy_readpagecache(); nfs_destroy_inodecache(); nfs_destroy_nfspagecache(); #ifdef CONFIG_PROC_FS rpc_proc_unregister("nfs"); #endif unregister_nfs_fs(); nfs_fs_proc_exit(); } /* Not quite true; I just maintain it */ MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_LICENSE("GPL"); module_init(init_nfs_fs) module_exit(exit_nfs_fs)