/* * fs/nfs/nfs4proc.c * * Client-side procedure declarations for NFSv4. * * Copyright (c) 2002 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nfs4_fs.h" #include "delegation.h" #include "internal.h" #include "iostat.h" #include "callback.h" #include "pnfs.h" #include "netns.h" #define NFSDBG_FACILITY NFSDBG_PROC #define NFS4_POLL_RETRY_MIN (HZ/10) #define NFS4_POLL_RETRY_MAX (15*HZ) #define NFS4_MAX_LOOP_ON_RECOVER (10) static unsigned short max_session_slots = NFS4_DEF_SLOT_TABLE_SIZE; struct nfs4_opendata; static int _nfs4_proc_open(struct nfs4_opendata *data); static int _nfs4_recover_proc_open(struct nfs4_opendata *data); static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *); static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr); static int nfs4_proc_getattr(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *); static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr); static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state); #ifdef CONFIG_NFS_V4_1 static int nfs41_test_stateid(struct nfs_server *, nfs4_stateid *); static int nfs41_free_stateid(struct nfs_server *, nfs4_stateid *); #endif /* Prevent leaks of NFSv4 errors into userland */ static int nfs4_map_errors(int err) { if (err >= -1000) return err; switch (err) { case -NFS4ERR_RESOURCE: return -EREMOTEIO; case -NFS4ERR_WRONGSEC: return -EPERM; case -NFS4ERR_BADOWNER: case -NFS4ERR_BADNAME: return -EINVAL; case -NFS4ERR_SHARE_DENIED: return -EACCES; case -NFS4ERR_MINOR_VERS_MISMATCH: return -EPROTONOSUPPORT; default: dprintk("%s could not handle NFSv4 error %d\n", __func__, -err); break; } return -EIO; } /* * This is our standard bitmap for GETATTR requests. */ const u32 nfs4_fattr_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY }; static const u32 nfs4_pnfs_open_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY, FATTR4_WORD2_MDSTHRESHOLD }; const u32 nfs4_statfs_bitmap[2] = { FATTR4_WORD0_FILES_AVAIL | FATTR4_WORD0_FILES_FREE | FATTR4_WORD0_FILES_TOTAL, FATTR4_WORD1_SPACE_AVAIL | FATTR4_WORD1_SPACE_FREE | FATTR4_WORD1_SPACE_TOTAL }; const u32 nfs4_pathconf_bitmap[2] = { FATTR4_WORD0_MAXLINK | FATTR4_WORD0_MAXNAME, 0 }; const u32 nfs4_fsinfo_bitmap[3] = { FATTR4_WORD0_MAXFILESIZE | FATTR4_WORD0_MAXREAD | FATTR4_WORD0_MAXWRITE | FATTR4_WORD0_LEASE_TIME, FATTR4_WORD1_TIME_DELTA | FATTR4_WORD1_FS_LAYOUT_TYPES, FATTR4_WORD2_LAYOUT_BLKSIZE }; const u32 nfs4_fs_locations_bitmap[2] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID | FATTR4_WORD0_FS_LOCATIONS, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY | FATTR4_WORD1_MOUNTED_ON_FILEID }; static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry, struct nfs4_readdir_arg *readdir) { __be32 *start, *p; BUG_ON(readdir->count < 80); if (cookie > 2) { readdir->cookie = cookie; memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); return; } readdir->cookie = 0; memset(&readdir->verifier, 0, sizeof(readdir->verifier)); if (cookie == 2) return; /* * NFSv4 servers do not return entries for '.' and '..' * Therefore, we fake these entries here. We let '.' * have cookie 0 and '..' have cookie 1. Note that * when talking to the server, we always send cookie 0 * instead of 1 or 2. */ start = p = kmap_atomic(*readdir->pages); if (cookie == 0) { *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_one; /* cookie, second word */ *p++ = xdr_one; /* entry len */ memcpy(p, ".\0\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode)); } *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_two; /* cookie, second word */ *p++ = xdr_two; /* entry len */ memcpy(p, "..\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode)); readdir->pgbase = (char *)p - (char *)start; readdir->count -= readdir->pgbase; kunmap_atomic(start); } static int nfs4_wait_clnt_recover(struct nfs_client *clp) { int res; might_sleep(); res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING, nfs_wait_bit_killable, TASK_KILLABLE); return res; } static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) { int res = 0; might_sleep(); if (*timeout <= 0) *timeout = NFS4_POLL_RETRY_MIN; if (*timeout > NFS4_POLL_RETRY_MAX) *timeout = NFS4_POLL_RETRY_MAX; freezable_schedule_timeout_killable(*timeout); if (fatal_signal_pending(current)) res = -ERESTARTSYS; *timeout <<= 1; return res; } /* This is the error handling routine for processes that are allowed * to sleep. */ static int nfs4_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs_client *clp = server->nfs_client; struct nfs4_state *state = exception->state; struct inode *inode = exception->inode; int ret = errorcode; exception->retry = 0; switch(errorcode) { case 0: return 0; case -NFS4ERR_OPENMODE: if (inode && nfs4_have_delegation(inode, FMODE_READ)) { nfs_inode_return_delegation(inode); exception->retry = 1; return 0; } if (state == NULL) break; nfs4_schedule_stateid_recovery(server, state); goto wait_on_recovery; case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: if (state == NULL) break; nfs_remove_bad_delegation(state->inode); nfs4_schedule_stateid_recovery(server, state); goto wait_on_recovery; case -NFS4ERR_EXPIRED: if (state != NULL) nfs4_schedule_stateid_recovery(server, state); case -NFS4ERR_STALE_STATEID: case -NFS4ERR_STALE_CLIENTID: nfs4_schedule_lease_recovery(clp); goto wait_on_recovery; #if defined(CONFIG_NFS_V4_1) case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: case -NFS4ERR_SEQ_FALSE_RETRY: case -NFS4ERR_SEQ_MISORDERED: dprintk("%s ERROR: %d Reset session\n", __func__, errorcode); nfs4_schedule_session_recovery(clp->cl_session, errorcode); exception->retry = 1; break; #endif /* defined(CONFIG_NFS_V4_1) */ case -NFS4ERR_FILE_OPEN: if (exception->timeout > HZ) { /* We have retried a decent amount, time to * fail */ ret = -EBUSY; break; } case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: case -EKEYEXPIRED: ret = nfs4_delay(server->client, &exception->timeout); if (ret != 0) break; case -NFS4ERR_RETRY_UNCACHED_REP: case -NFS4ERR_OLD_STATEID: exception->retry = 1; break; case -NFS4ERR_BADOWNER: /* The following works around a Linux server bug! */ case -NFS4ERR_BADNAME: if (server->caps & NFS_CAP_UIDGID_NOMAP) { server->caps &= ~NFS_CAP_UIDGID_NOMAP; exception->retry = 1; printk(KERN_WARNING "NFS: v4 server %s " "does not accept raw " "uid/gids. " "Reenabling the idmapper.\n", server->nfs_client->cl_hostname); } } /* We failed to handle the error */ return nfs4_map_errors(ret); wait_on_recovery: ret = nfs4_wait_clnt_recover(clp); if (ret == 0) exception->retry = 1; return ret; } static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp) { spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,timestamp)) clp->cl_last_renewal = timestamp; spin_unlock(&clp->cl_lock); } static void renew_lease(const struct nfs_server *server, unsigned long timestamp) { do_renew_lease(server->nfs_client, timestamp); } #if defined(CONFIG_NFS_V4_1) /* * nfs4_free_slot - free a slot and efficiently update slot table. * * freeing a slot is trivially done by clearing its respective bit * in the bitmap. * If the freed slotid equals highest_used_slotid we want to update it * so that the server would be able to size down the slot table if needed, * otherwise we know that the highest_used_slotid is still in use. * When updating highest_used_slotid there may be "holes" in the bitmap * so we need to scan down from highest_used_slotid to 0 looking for the now * highest slotid in use. * If none found, highest_used_slotid is set to NFS4_NO_SLOT. * * Must be called while holding tbl->slot_tbl_lock */ static void nfs4_free_slot(struct nfs4_slot_table *tbl, u32 slotid) { BUG_ON(slotid >= NFS4_MAX_SLOT_TABLE); /* clear used bit in bitmap */ __clear_bit(slotid, tbl->used_slots); /* update highest_used_slotid when it is freed */ if (slotid == tbl->highest_used_slotid) { slotid = find_last_bit(tbl->used_slots, tbl->max_slots); if (slotid < tbl->max_slots) tbl->highest_used_slotid = slotid; else tbl->highest_used_slotid = NFS4_NO_SLOT; } dprintk("%s: slotid %u highest_used_slotid %d\n", __func__, slotid, tbl->highest_used_slotid); } bool nfs4_set_task_privileged(struct rpc_task *task, void *dummy) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); return true; } /* * Signal state manager thread if session fore channel is drained */ static void nfs4_check_drain_fc_complete(struct nfs4_session *ses) { if (!test_bit(NFS4_SESSION_DRAINING, &ses->session_state)) { rpc_wake_up_first(&ses->fc_slot_table.slot_tbl_waitq, nfs4_set_task_privileged, NULL); return; } if (ses->fc_slot_table.highest_used_slotid != NFS4_NO_SLOT) return; dprintk("%s COMPLETE: Session Fore Channel Drained\n", __func__); complete(&ses->fc_slot_table.complete); } /* * Signal state manager thread if session back channel is drained */ void nfs4_check_drain_bc_complete(struct nfs4_session *ses) { if (!test_bit(NFS4_SESSION_DRAINING, &ses->session_state) || ses->bc_slot_table.highest_used_slotid != NFS4_NO_SLOT) return; dprintk("%s COMPLETE: Session Back Channel Drained\n", __func__); complete(&ses->bc_slot_table.complete); } static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res) { struct nfs4_slot_table *tbl; tbl = &res->sr_session->fc_slot_table; if (!res->sr_slot) { /* just wake up the next guy waiting since * we may have not consumed a slot after all */ dprintk("%s: No slot\n", __func__); return; } spin_lock(&tbl->slot_tbl_lock); nfs4_free_slot(tbl, res->sr_slot - tbl->slots); nfs4_check_drain_fc_complete(res->sr_session); spin_unlock(&tbl->slot_tbl_lock); res->sr_slot = NULL; } static int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { unsigned long timestamp; struct nfs_client *clp; /* * sr_status remains 1 if an RPC level error occurred. The server * may or may not have processed the sequence operation.. * Proceed as if the server received and processed the sequence * operation. */ if (res->sr_status == 1) res->sr_status = NFS_OK; /* don't increment the sequence number if the task wasn't sent */ if (!RPC_WAS_SENT(task)) goto out; /* Check the SEQUENCE operation status */ switch (res->sr_status) { case 0: /* Update the slot's sequence and clientid lease timer */ ++res->sr_slot->seq_nr; timestamp = res->sr_renewal_time; clp = res->sr_session->clp; do_renew_lease(clp, timestamp); /* Check sequence flags */ if (res->sr_status_flags != 0) nfs4_schedule_lease_recovery(clp); break; case -NFS4ERR_DELAY: /* The server detected a resend of the RPC call and * returned NFS4ERR_DELAY as per Section 2.10.6.2 * of RFC5661. */ dprintk("%s: slot=%td seq=%d: Operation in progress\n", __func__, res->sr_slot - res->sr_session->fc_slot_table.slots, res->sr_slot->seq_nr); goto out_retry; default: /* Just update the slot sequence no. */ ++res->sr_slot->seq_nr; } out: /* The session may be reset by one of the error handlers. */ dprintk("%s: Error %d free the slot \n", __func__, res->sr_status); nfs41_sequence_free_slot(res); return 1; out_retry: if (!rpc_restart_call(task)) goto out; rpc_delay(task, NFS4_POLL_RETRY_MAX); return 0; } static int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { if (res->sr_session == NULL) return 1; return nfs41_sequence_done(task, res); } /* * nfs4_find_slot - efficiently look for a free slot * * nfs4_find_slot looks for an unset bit in the used_slots bitmap. * If found, we mark the slot as used, update the highest_used_slotid, * and respectively set up the sequence operation args. * The slot number is returned if found, or NFS4_NO_SLOT otherwise. * * Note: must be called with under the slot_tbl_lock. */ static u32 nfs4_find_slot(struct nfs4_slot_table *tbl) { u32 slotid; u32 ret_id = NFS4_NO_SLOT; dprintk("--> %s used_slots=%04lx highest_used=%u max_slots=%u\n", __func__, tbl->used_slots[0], tbl->highest_used_slotid, tbl->max_slots); slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slots); if (slotid >= tbl->max_slots) goto out; __set_bit(slotid, tbl->used_slots); if (slotid > tbl->highest_used_slotid || tbl->highest_used_slotid == NFS4_NO_SLOT) tbl->highest_used_slotid = slotid; ret_id = slotid; out: dprintk("<-- %s used_slots=%04lx highest_used=%d slotid=%d \n", __func__, tbl->used_slots[0], tbl->highest_used_slotid, ret_id); return ret_id; } static void nfs41_init_sequence(struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { args->sa_session = NULL; args->sa_cache_this = 0; if (cache_reply) args->sa_cache_this = 1; res->sr_session = NULL; res->sr_slot = NULL; } int nfs41_setup_sequence(struct nfs4_session *session, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { struct nfs4_slot *slot; struct nfs4_slot_table *tbl; u32 slotid; dprintk("--> %s\n", __func__); /* slot already allocated? */ if (res->sr_slot != NULL) return 0; tbl = &session->fc_slot_table; spin_lock(&tbl->slot_tbl_lock); if (test_bit(NFS4_SESSION_DRAINING, &session->session_state) && !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) { /* The state manager will wait until the slot table is empty */ rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("%s session is draining\n", __func__); return -EAGAIN; } if (!rpc_queue_empty(&tbl->slot_tbl_waitq) && !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) { rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("%s enforce FIFO order\n", __func__); return -EAGAIN; } slotid = nfs4_find_slot(tbl); if (slotid == NFS4_NO_SLOT) { rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("<-- %s: no free slots\n", __func__); return -EAGAIN; } spin_unlock(&tbl->slot_tbl_lock); rpc_task_set_priority(task, RPC_PRIORITY_NORMAL); slot = tbl->slots + slotid; args->sa_session = session; args->sa_slotid = slotid; dprintk("<-- %s slotid=%d seqid=%d\n", __func__, slotid, slot->seq_nr); res->sr_session = session; res->sr_slot = slot; res->sr_renewal_time = jiffies; res->sr_status_flags = 0; /* * sr_status is only set in decode_sequence, and so will remain * set to 1 if an rpc level failure occurs. */ res->sr_status = 1; return 0; } EXPORT_SYMBOL_GPL(nfs41_setup_sequence); int nfs4_setup_sequence(const struct nfs_server *server, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { struct nfs4_session *session = nfs4_get_session(server); int ret = 0; if (session == NULL) goto out; dprintk("--> %s clp %p session %p sr_slot %td\n", __func__, session->clp, session, res->sr_slot ? res->sr_slot - session->fc_slot_table.slots : -1); ret = nfs41_setup_sequence(session, args, res, task); out: dprintk("<-- %s status=%d\n", __func__, ret); return ret; } struct nfs41_call_sync_data { const struct nfs_server *seq_server; struct nfs4_sequence_args *seq_args; struct nfs4_sequence_res *seq_res; }; static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata) { struct nfs41_call_sync_data *data = calldata; dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server); if (nfs4_setup_sequence(data->seq_server, data->seq_args, data->seq_res, task)) return; rpc_call_start(task); } static void nfs41_call_priv_sync_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs41_call_sync_prepare(task, calldata); } static void nfs41_call_sync_done(struct rpc_task *task, void *calldata) { struct nfs41_call_sync_data *data = calldata; nfs41_sequence_done(task, data->seq_res); } static const struct rpc_call_ops nfs41_call_sync_ops = { .rpc_call_prepare = nfs41_call_sync_prepare, .rpc_call_done = nfs41_call_sync_done, }; static const struct rpc_call_ops nfs41_call_priv_sync_ops = { .rpc_call_prepare = nfs41_call_priv_sync_prepare, .rpc_call_done = nfs41_call_sync_done, }; static int nfs4_call_sync_sequence(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int privileged) { int ret; struct rpc_task *task; struct nfs41_call_sync_data data = { .seq_server = server, .seq_args = args, .seq_res = res, }; struct rpc_task_setup task_setup = { .rpc_client = clnt, .rpc_message = msg, .callback_ops = &nfs41_call_sync_ops, .callback_data = &data }; if (privileged) task_setup.callback_ops = &nfs41_call_priv_sync_ops; task = rpc_run_task(&task_setup); if (IS_ERR(task)) ret = PTR_ERR(task); else { ret = task->tk_status; rpc_put_task(task); } return ret; } int _nfs4_call_sync_session(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { nfs41_init_sequence(args, res, cache_reply); return nfs4_call_sync_sequence(clnt, server, msg, args, res, 0); } #else static inline void nfs41_init_sequence(struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { } static int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { return 1; } #endif /* CONFIG_NFS_V4_1 */ int _nfs4_call_sync(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { nfs41_init_sequence(args, res, cache_reply); return rpc_call_sync(clnt, msg, 0); } static inline int nfs4_call_sync(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { return server->nfs_client->cl_mvops->call_sync(clnt, server, msg, args, res, cache_reply); } static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo) { struct nfs_inode *nfsi = NFS_I(dir); spin_lock(&dir->i_lock); nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; if (!cinfo->atomic || cinfo->before != dir->i_version) nfs_force_lookup_revalidate(dir); dir->i_version = cinfo->after; spin_unlock(&dir->i_lock); } struct nfs4_opendata { struct kref kref; struct nfs_openargs o_arg; struct nfs_openres o_res; struct nfs_open_confirmargs c_arg; struct nfs_open_confirmres c_res; struct nfs4_string owner_name; struct nfs4_string group_name; struct nfs_fattr f_attr; struct dentry *dir; struct dentry *dentry; struct nfs4_state_owner *owner; struct nfs4_state *state; struct iattr attrs; unsigned long timestamp; unsigned int rpc_done : 1; int rpc_status; int cancelled; }; static void nfs4_init_opendata_res(struct nfs4_opendata *p) { p->o_res.f_attr = &p->f_attr; p->o_res.seqid = p->o_arg.seqid; p->c_res.seqid = p->c_arg.seqid; p->o_res.server = p->o_arg.server; nfs_fattr_init(&p->f_attr); nfs_fattr_init_names(&p->f_attr, &p->owner_name, &p->group_name); } static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry, struct nfs4_state_owner *sp, fmode_t fmode, int flags, const struct iattr *attrs, gfp_t gfp_mask) { struct dentry *parent = dget_parent(dentry); struct inode *dir = parent->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_opendata *p; p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) goto err; p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid, gfp_mask); if (p->o_arg.seqid == NULL) goto err_free; nfs_sb_active(dentry->d_sb); p->dentry = dget(dentry); p->dir = parent; p->owner = sp; atomic_inc(&sp->so_count); p->o_arg.fh = NFS_FH(dir); p->o_arg.open_flags = flags; p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE); p->o_arg.clientid = server->nfs_client->cl_clientid; p->o_arg.id.create_time = ktime_to_ns(sp->so_seqid.create_time); p->o_arg.id.uniquifier = sp->so_seqid.owner_id; p->o_arg.name = &dentry->d_name; p->o_arg.server = server; p->o_arg.bitmask = server->attr_bitmask; p->o_arg.open_bitmap = &nfs4_fattr_bitmap[0]; p->o_arg.claim = NFS4_OPEN_CLAIM_NULL; if (attrs != NULL && attrs->ia_valid != 0) { __be32 verf[2]; p->o_arg.u.attrs = &p->attrs; memcpy(&p->attrs, attrs, sizeof(p->attrs)); verf[0] = jiffies; verf[1] = current->pid; memcpy(p->o_arg.u.verifier.data, verf, sizeof(p->o_arg.u.verifier.data)); } p->c_arg.fh = &p->o_res.fh; p->c_arg.stateid = &p->o_res.stateid; p->c_arg.seqid = p->o_arg.seqid; nfs4_init_opendata_res(p); kref_init(&p->kref); return p; err_free: kfree(p); err: dput(parent); return NULL; } static void nfs4_opendata_free(struct kref *kref) { struct nfs4_opendata *p = container_of(kref, struct nfs4_opendata, kref); struct super_block *sb = p->dentry->d_sb; nfs_free_seqid(p->o_arg.seqid); if (p->state != NULL) nfs4_put_open_state(p->state); nfs4_put_state_owner(p->owner); dput(p->dir); dput(p->dentry); nfs_sb_deactive(sb); nfs_fattr_free_names(&p->f_attr); kfree(p); } static void nfs4_opendata_put(struct nfs4_opendata *p) { if (p != NULL) kref_put(&p->kref, nfs4_opendata_free); } static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) { int ret; ret = rpc_wait_for_completion_task(task); return ret; } static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode) { int ret = 0; if (open_mode & (O_EXCL|O_TRUNC)) goto out; switch (mode & (FMODE_READ|FMODE_WRITE)) { case FMODE_READ: ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0 && state->n_rdonly != 0; break; case FMODE_WRITE: ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0 && state->n_wronly != 0; break; case FMODE_READ|FMODE_WRITE: ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0 && state->n_rdwr != 0; } out: return ret; } static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode) { if (delegation == NULL) return 0; if ((delegation->type & fmode) != fmode) return 0; if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags)) return 0; nfs_mark_delegation_referenced(delegation); return 1; } static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode) { switch (fmode) { case FMODE_WRITE: state->n_wronly++; break; case FMODE_READ: state->n_rdonly++; break; case FMODE_READ|FMODE_WRITE: state->n_rdwr++; } nfs4_state_set_mode_locked(state, state->state | fmode); } static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode) { if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) nfs4_stateid_copy(&state->stateid, stateid); nfs4_stateid_copy(&state->open_stateid, stateid); switch (fmode) { case FMODE_READ: set_bit(NFS_O_RDONLY_STATE, &state->flags); break; case FMODE_WRITE: set_bit(NFS_O_WRONLY_STATE, &state->flags); break; case FMODE_READ|FMODE_WRITE: set_bit(NFS_O_RDWR_STATE, &state->flags); } } static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode) { write_seqlock(&state->seqlock); nfs_set_open_stateid_locked(state, stateid, fmode); write_sequnlock(&state->seqlock); } static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode) { /* * Protect the call to nfs4_state_set_mode_locked and * serialise the stateid update */ write_seqlock(&state->seqlock); if (deleg_stateid != NULL) { nfs4_stateid_copy(&state->stateid, deleg_stateid); set_bit(NFS_DELEGATED_STATE, &state->flags); } if (open_stateid != NULL) nfs_set_open_stateid_locked(state, open_stateid, fmode); write_sequnlock(&state->seqlock); spin_lock(&state->owner->so_lock); update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); } static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *deleg_cur; int ret = 0; fmode &= (FMODE_READ|FMODE_WRITE); rcu_read_lock(); deleg_cur = rcu_dereference(nfsi->delegation); if (deleg_cur == NULL) goto no_delegation; spin_lock(&deleg_cur->lock); if (nfsi->delegation != deleg_cur || (deleg_cur->type & fmode) != fmode) goto no_delegation_unlock; if (delegation == NULL) delegation = &deleg_cur->stateid; else if (!nfs4_stateid_match(&deleg_cur->stateid, delegation)) goto no_delegation_unlock; nfs_mark_delegation_referenced(deleg_cur); __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode); ret = 1; no_delegation_unlock: spin_unlock(&deleg_cur->lock); no_delegation: rcu_read_unlock(); if (!ret && open_stateid != NULL) { __update_open_stateid(state, open_stateid, NULL, fmode); ret = 1; } return ret; } static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode) { struct nfs_delegation *delegation; rcu_read_lock(); delegation = rcu_dereference(NFS_I(inode)->delegation); if (delegation == NULL || (delegation->type & fmode) == fmode) { rcu_read_unlock(); return; } rcu_read_unlock(); nfs_inode_return_delegation(inode); } static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata) { struct nfs4_state *state = opendata->state; struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *delegation; int open_mode = opendata->o_arg.open_flags & (O_EXCL|O_TRUNC); fmode_t fmode = opendata->o_arg.fmode; nfs4_stateid stateid; int ret = -EAGAIN; for (;;) { if (can_open_cached(state, fmode, open_mode)) { spin_lock(&state->owner->so_lock); if (can_open_cached(state, fmode, open_mode)) { update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); goto out_return_state; } spin_unlock(&state->owner->so_lock); } rcu_read_lock(); delegation = rcu_dereference(nfsi->delegation); if (!can_open_delegated(delegation, fmode)) { rcu_read_unlock(); break; } /* Save the delegation */ nfs4_stateid_copy(&stateid, &delegation->stateid); rcu_read_unlock(); ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode); if (ret != 0) goto out; ret = -EAGAIN; /* Try to update the stateid using the delegation */ if (update_open_stateid(state, NULL, &stateid, fmode)) goto out_return_state; } out: return ERR_PTR(ret); out_return_state: atomic_inc(&state->count); return state; } static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) { struct inode *inode; struct nfs4_state *state = NULL; struct nfs_delegation *delegation; int ret; if (!data->rpc_done) { state = nfs4_try_open_cached(data); goto out; } ret = -EAGAIN; if (!(data->f_attr.valid & NFS_ATTR_FATTR)) goto err; inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr); ret = PTR_ERR(inode); if (IS_ERR(inode)) goto err; ret = -ENOMEM; state = nfs4_get_open_state(inode, data->owner); if (state == NULL) goto err_put_inode; if (data->o_res.delegation_type != 0) { struct nfs_client *clp = NFS_SERVER(inode)->nfs_client; int delegation_flags = 0; rcu_read_lock(); delegation = rcu_dereference(NFS_I(inode)->delegation); if (delegation) delegation_flags = delegation->flags; rcu_read_unlock(); if (data->o_arg.claim == NFS4_OPEN_CLAIM_DELEGATE_CUR) { pr_err_ratelimited("NFS: Broken NFSv4 server %s is " "returning a delegation for " "OPEN(CLAIM_DELEGATE_CUR)\n", clp->cl_hostname); } else if ((delegation_flags & 1UL<inode, data->owner->so_cred, &data->o_res); else nfs_inode_reclaim_delegation(state->inode, data->owner->so_cred, &data->o_res); } update_open_stateid(state, &data->o_res.stateid, NULL, data->o_arg.fmode); iput(inode); out: return state; err_put_inode: iput(inode); err: return ERR_PTR(ret); } static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_open_context *ctx; spin_lock(&state->inode->i_lock); list_for_each_entry(ctx, &nfsi->open_files, list) { if (ctx->state != state) continue; get_nfs_open_context(ctx); spin_unlock(&state->inode->i_lock); return ctx; } spin_unlock(&state->inode->i_lock); return ERR_PTR(-ENOENT); } static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs4_opendata *opendata; opendata = nfs4_opendata_alloc(ctx->dentry, state->owner, 0, 0, NULL, GFP_NOFS); if (opendata == NULL) return ERR_PTR(-ENOMEM); opendata->state = state; atomic_inc(&state->count); return opendata; } static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res) { struct nfs4_state *newstate; int ret; opendata->o_arg.open_flags = 0; opendata->o_arg.fmode = fmode; memset(&opendata->o_res, 0, sizeof(opendata->o_res)); memset(&opendata->c_res, 0, sizeof(opendata->c_res)); nfs4_init_opendata_res(opendata); ret = _nfs4_recover_proc_open(opendata); if (ret != 0) return ret; newstate = nfs4_opendata_to_nfs4_state(opendata); if (IS_ERR(newstate)) return PTR_ERR(newstate); nfs4_close_state(newstate, fmode); *res = newstate; return 0; } static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) { struct nfs4_state *newstate; int ret; /* memory barrier prior to reading state->n_* */ clear_bit(NFS_DELEGATED_STATE, &state->flags); smp_rmb(); if (state->n_rdwr != 0) { clear_bit(NFS_O_RDWR_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } if (state->n_wronly != 0) { clear_bit(NFS_O_WRONLY_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } if (state->n_rdonly != 0) { clear_bit(NFS_O_RDONLY_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } /* * We may have performed cached opens for all three recoveries. * Check if we need to update the current stateid. */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 && !nfs4_stateid_match(&state->stateid, &state->open_stateid)) { write_seqlock(&state->seqlock); if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) nfs4_stateid_copy(&state->stateid, &state->open_stateid); write_sequnlock(&state->seqlock); } return 0; } /* * OPEN_RECLAIM: * reclaim state on the server after a reboot. */ static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_delegation *delegation; struct nfs4_opendata *opendata; fmode_t delegation_type = 0; int status; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS; opendata->o_arg.fh = NFS_FH(state->inode); rcu_read_lock(); delegation = rcu_dereference(NFS_I(state->inode)->delegation); if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0) delegation_type = delegation->type; rcu_read_unlock(); opendata->o_arg.u.delegation_type = delegation_type; status = nfs4_open_recover(opendata, state); nfs4_opendata_put(opendata); return status; } static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_do_open_reclaim(ctx, state); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = nfs4_do_open_reclaim(ctx, state); put_nfs_open_context(ctx); return ret; } static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) { struct nfs4_opendata *opendata; int ret; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR; nfs4_stateid_copy(&opendata->o_arg.u.delegation, stateid); ret = nfs4_open_recover(opendata, state); nfs4_opendata_put(opendata); return ret; } int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) { struct nfs4_exception exception = { }; struct nfs_server *server = NFS_SERVER(state->inode); int err; do { err = _nfs4_open_delegation_recall(ctx, state, stateid); switch (err) { case 0: case -ENOENT: case -ESTALE: goto out; case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: nfs4_schedule_session_recovery(server->nfs_client->cl_session, err); goto out; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: /* Don't recall a delegation if it was lost */ nfs4_schedule_lease_recovery(server->nfs_client); goto out; case -ERESTARTSYS: /* * The show must go on: exit, but mark the * stateid as needing recovery. */ case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: nfs_inode_find_state_and_recover(state->inode, stateid); nfs4_schedule_stateid_recovery(server, state); case -EKEYEXPIRED: /* * User RPCSEC_GSS context has expired. * We cannot recover this stateid now, so * skip it and allow recovery thread to * proceed. */ case -ENOMEM: err = 0; goto out; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; data->rpc_status = task->tk_status; if (data->rpc_status == 0) { nfs4_stateid_copy(&data->o_res.stateid, &data->c_res.stateid); nfs_confirm_seqid(&data->owner->so_seqid, 0); renew_lease(data->o_res.server, data->timestamp); data->rpc_done = 1; } } static void nfs4_open_confirm_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (!data->rpc_done) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_confirm_ops = { .rpc_call_done = nfs4_open_confirm_done, .rpc_release = nfs4_open_confirm_release, }; /* * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata */ static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) { struct nfs_server *server = NFS_SERVER(data->dir->d_inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], .rpc_argp = &data->c_arg, .rpc_resp = &data->c_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_confirm_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->timestamp = jiffies; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static void nfs4_open_prepare(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state_owner *sp = data->owner; if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) return; /* * Check if we still need to send an OPEN call, or if we can use * a delegation instead. */ if (data->state != NULL) { struct nfs_delegation *delegation; if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags)) goto out_no_action; rcu_read_lock(); delegation = rcu_dereference(NFS_I(data->state->inode)->delegation); if (data->o_arg.claim != NFS4_OPEN_CLAIM_DELEGATE_CUR && can_open_delegated(delegation, data->o_arg.fmode)) goto unlock_no_action; rcu_read_unlock(); } /* Update client id. */ data->o_arg.clientid = sp->so_server->nfs_client->cl_clientid; if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) { task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; nfs_copy_fh(&data->o_res.fh, data->o_arg.fh); } data->timestamp = jiffies; if (nfs4_setup_sequence(data->o_arg.server, &data->o_arg.seq_args, &data->o_res.seq_res, task)) return; rpc_call_start(task); return; unlock_no_action: rcu_read_unlock(); out_no_action: task->tk_action = NULL; } static void nfs4_recover_open_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs4_open_prepare(task, calldata); } static void nfs4_open_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; data->rpc_status = task->tk_status; if (!nfs4_sequence_done(task, &data->o_res.seq_res)) return; if (task->tk_status == 0) { switch (data->o_res.f_attr->mode & S_IFMT) { case S_IFREG: break; case S_IFLNK: data->rpc_status = -ELOOP; break; case S_IFDIR: data->rpc_status = -EISDIR; break; default: data->rpc_status = -ENOTDIR; } renew_lease(data->o_res.server, data->timestamp); if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)) nfs_confirm_seqid(&data->owner->so_seqid, 0); } data->rpc_done = 1; } static void nfs4_open_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (data->rpc_status != 0 || !data->rpc_done) goto out_free; /* In case we need an open_confirm, no cleanup! */ if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_ops = { .rpc_call_prepare = nfs4_open_prepare, .rpc_call_done = nfs4_open_done, .rpc_release = nfs4_open_release, }; static const struct rpc_call_ops nfs4_recover_open_ops = { .rpc_call_prepare = nfs4_recover_open_prepare, .rpc_call_done = nfs4_open_done, .rpc_release = nfs4_open_release, }; static int nfs4_run_open_task(struct nfs4_opendata *data, int isrecover) { struct inode *dir = data->dir->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], .rpc_argp = o_arg, .rpc_resp = o_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; nfs41_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1); kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->cancelled = 0; if (isrecover) task_setup_data.callback_ops = &nfs4_recover_open_ops; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static int _nfs4_recover_proc_open(struct nfs4_opendata *data) { struct inode *dir = data->dir->d_inode; struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 1); if (status != 0 || !data->rpc_done) return status; nfs_fattr_map_and_free_names(NFS_SERVER(dir), &data->f_attr); if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } return status; } /* * Note: On error, nfs4_proc_open will free the struct nfs4_opendata */ static int _nfs4_proc_open(struct nfs4_opendata *data) { struct inode *dir = data->dir->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 0); if (!data->rpc_done) return status; if (status != 0) { if (status == -NFS4ERR_BADNAME && !(o_arg->open_flags & O_CREAT)) return -ENOENT; return status; } nfs_fattr_map_and_free_names(server, &data->f_attr); if (o_arg->open_flags & O_CREAT) update_changeattr(dir, &o_res->cinfo); if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0) server->caps &= ~NFS_CAP_POSIX_LOCK; if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr); return 0; } static int nfs4_client_recover_expired_lease(struct nfs_client *clp) { unsigned int loop; int ret; for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) { ret = nfs4_wait_clnt_recover(clp); if (ret != 0) break; if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) && !test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state)) break; nfs4_schedule_state_manager(clp); ret = -EIO; } return ret; } static int nfs4_recover_expired_lease(struct nfs_server *server) { return nfs4_client_recover_expired_lease(server->nfs_client); } /* * OPEN_EXPIRED: * reclaim state on the server after a network partition. * Assumes caller holds the appropriate lock */ static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs4_opendata *opendata; int ret; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); ret = nfs4_open_recover(opendata, state); if (ret == -ESTALE) d_drop(ctx->dentry); nfs4_opendata_put(opendata); return ret; } static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_open_expired(ctx, state); switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = nfs4_do_open_expired(ctx, state); put_nfs_open_context(ctx); return ret; } #if defined(CONFIG_NFS_V4_1) static int nfs41_check_expired_stateid(struct nfs4_state *state, nfs4_stateid *stateid, unsigned int flags) { int status = NFS_OK; struct nfs_server *server = NFS_SERVER(state->inode); if (state->flags & flags) { status = nfs41_test_stateid(server, stateid); if (status != NFS_OK) { nfs41_free_stateid(server, stateid); state->flags &= ~flags; } } return status; } static int nfs41_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { int deleg_status, open_status; int deleg_flags = 1 << NFS_DELEGATED_STATE; int open_flags = (1 << NFS_O_RDONLY_STATE) | (1 << NFS_O_WRONLY_STATE) | (1 << NFS_O_RDWR_STATE); deleg_status = nfs41_check_expired_stateid(state, &state->stateid, deleg_flags); open_status = nfs41_check_expired_stateid(state, &state->open_stateid, open_flags); if ((deleg_status == NFS_OK) && (open_status == NFS_OK)) return NFS_OK; return nfs4_open_expired(sp, state); } #endif /* * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-* * fields corresponding to attributes that were used to store the verifier. * Make sure we clobber those fields in the later setattr call */ static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr) { if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) && !(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) && !(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; } /* * Returns a referenced nfs4_state */ static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res, struct nfs4_threshold **ctx_th) { struct nfs4_state_owner *sp; struct nfs4_state *state = NULL; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_opendata *opendata; int status; /* Protect against reboot recovery conflicts */ status = -ENOMEM; sp = nfs4_get_state_owner(server, cred, GFP_KERNEL); if (sp == NULL) { dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); goto out_err; } status = nfs4_recover_expired_lease(server); if (status != 0) goto err_put_state_owner; if (dentry->d_inode != NULL) nfs4_return_incompatible_delegation(dentry->d_inode, fmode); status = -ENOMEM; opendata = nfs4_opendata_alloc(dentry, sp, fmode, flags, sattr, GFP_KERNEL); if (opendata == NULL) goto err_put_state_owner; if (ctx_th && server->attr_bitmask[2] & FATTR4_WORD2_MDSTHRESHOLD) { opendata->f_attr.mdsthreshold = pnfs_mdsthreshold_alloc(); if (!opendata->f_attr.mdsthreshold) goto err_opendata_put; opendata->o_arg.open_bitmap = &nfs4_pnfs_open_bitmap[0]; } if (dentry->d_inode != NULL) opendata->state = nfs4_get_open_state(dentry->d_inode, sp); status = _nfs4_proc_open(opendata); if (status != 0) goto err_opendata_put; state = nfs4_opendata_to_nfs4_state(opendata); status = PTR_ERR(state); if (IS_ERR(state)) goto err_opendata_put; if (server->caps & NFS_CAP_POSIX_LOCK) set_bit(NFS_STATE_POSIX_LOCKS, &state->flags); if (opendata->o_arg.open_flags & O_EXCL) { nfs4_exclusive_attrset(opendata, sattr); nfs_fattr_init(opendata->o_res.f_attr); status = nfs4_do_setattr(state->inode, cred, opendata->o_res.f_attr, sattr, state); if (status == 0) nfs_setattr_update_inode(state->inode, sattr); nfs_post_op_update_inode(state->inode, opendata->o_res.f_attr); } if (pnfs_use_threshold(ctx_th, opendata->f_attr.mdsthreshold, server)) *ctx_th = opendata->f_attr.mdsthreshold; else kfree(opendata->f_attr.mdsthreshold); opendata->f_attr.mdsthreshold = NULL; nfs4_opendata_put(opendata); nfs4_put_state_owner(sp); *res = state; return 0; err_opendata_put: kfree(opendata->f_attr.mdsthreshold); nfs4_opendata_put(opendata); err_put_state_owner: nfs4_put_state_owner(sp); out_err: *res = NULL; return status; } static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_threshold **ctx_th) { struct nfs4_exception exception = { }; struct nfs4_state *res; int status; fmode &= FMODE_READ|FMODE_WRITE; do { status = _nfs4_do_open(dir, dentry, fmode, flags, sattr, cred, &res, ctx_th); if (status == 0) break; /* NOTE: BAD_SEQID means the server and client disagree about the * book-keeping w.r.t. state-changing operations * (OPEN/CLOSE/LOCK/LOCKU...) * It is actually a sign of a bug on the client or on the server. * * If we receive a BAD_SEQID error in the particular case of * doing an OPEN, we assume that nfs_increment_open_seqid() will * have unhashed the old state_owner for us, and that we can * therefore safely retry using a new one. We should still warn * the user though... */ if (status == -NFS4ERR_BAD_SEQID) { pr_warn_ratelimited("NFS: v4 server %s " " returned a bad sequence-id error!\n", NFS_SERVER(dir)->nfs_client->cl_hostname); exception.retry = 1; continue; } /* * BAD_STATEID on OPEN means that the server cancelled our * state before it received the OPEN_CONFIRM. * Recover by retrying the request as per the discussion * on Page 181 of RFC3530. */ if (status == -NFS4ERR_BAD_STATEID) { exception.retry = 1; continue; } if (status == -EAGAIN) { /* We must have found a delegation */ exception.retry = 1; continue; } res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), status, &exception)); } while (exception.retry); return res; } static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_setattrargs arg = { .fh = NFS_FH(inode), .iap = sattr, .server = server, .bitmask = server->attr_bitmask, }; struct nfs_setattrres res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred, }; unsigned long timestamp = jiffies; int status; nfs_fattr_init(fattr); if (state != NULL) { nfs4_select_rw_stateid(&arg.stateid, state, FMODE_WRITE, current->files, current->tgid); } else if (nfs4_copy_delegation_stateid(&arg.stateid, inode, FMODE_WRITE)) { /* Use that stateid */ } else nfs4_stateid_copy(&arg.stateid, &zero_stateid); status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); if (status == 0 && state != NULL) renew_lease(server, timestamp); return status; } static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { .state = state, .inode = inode, }; int err; do { err = _nfs4_do_setattr(inode, cred, fattr, sattr, state); switch (err) { case -NFS4ERR_OPENMODE: if (state && !(state->state & FMODE_WRITE)) { err = -EBADF; if (sattr->ia_valid & ATTR_OPEN) err = -EACCES; goto out; } } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } struct nfs4_closedata { struct inode *inode; struct nfs4_state *state; struct nfs_closeargs arg; struct nfs_closeres res; struct nfs_fattr fattr; unsigned long timestamp; bool roc; u32 roc_barrier; }; static void nfs4_free_closedata(void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state_owner *sp = calldata->state->owner; struct super_block *sb = calldata->state->inode->i_sb; if (calldata->roc) pnfs_roc_release(calldata->state->inode); nfs4_put_open_state(calldata->state); nfs_free_seqid(calldata->arg.seqid); nfs4_put_state_owner(sp); nfs_sb_deactive(sb); kfree(calldata); } static void nfs4_close_clear_stateid_flags(struct nfs4_state *state, fmode_t fmode) { spin_lock(&state->owner->so_lock); if (!(fmode & FMODE_READ)) clear_bit(NFS_O_RDONLY_STATE, &state->flags); if (!(fmode & FMODE_WRITE)) clear_bit(NFS_O_WRONLY_STATE, &state->flags); clear_bit(NFS_O_RDWR_STATE, &state->flags); spin_unlock(&state->owner->so_lock); } static void nfs4_close_done(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; struct nfs_server *server = NFS_SERVER(calldata->inode); dprintk("%s: begin!\n", __func__); if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; /* hmm. we are done with the inode, and in the process of freeing * the state_owner. we keep this around to process errors */ switch (task->tk_status) { case 0: if (calldata->roc) pnfs_roc_set_barrier(state->inode, calldata->roc_barrier); nfs_set_open_stateid(state, &calldata->res.stateid, 0); renew_lease(server, calldata->timestamp); nfs4_close_clear_stateid_flags(state, calldata->arg.fmode); break; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_EXPIRED: if (calldata->arg.fmode == 0) break; default: if (nfs4_async_handle_error(task, server, state) == -EAGAIN) rpc_restart_call_prepare(task); } nfs_release_seqid(calldata->arg.seqid); nfs_refresh_inode(calldata->inode, calldata->res.fattr); dprintk("%s: done, ret = %d!\n", __func__, task->tk_status); } static void nfs4_close_prepare(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; int call_close = 0; dprintk("%s: begin!\n", __func__); if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) return; task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; calldata->arg.fmode = FMODE_READ|FMODE_WRITE; spin_lock(&state->owner->so_lock); /* Calculate the change in open mode */ if (state->n_rdwr == 0) { if (state->n_rdonly == 0) { call_close |= test_bit(NFS_O_RDONLY_STATE, &state->flags); call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags); calldata->arg.fmode &= ~FMODE_READ; } if (state->n_wronly == 0) { call_close |= test_bit(NFS_O_WRONLY_STATE, &state->flags); call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags); calldata->arg.fmode &= ~FMODE_WRITE; } } spin_unlock(&state->owner->so_lock); if (!call_close) { /* Note: exit _without_ calling nfs4_close_done */ task->tk_action = NULL; goto out; } if (calldata->arg.fmode == 0) { task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE]; if (calldata->roc && pnfs_roc_drain(calldata->inode, &calldata->roc_barrier)) { rpc_sleep_on(&NFS_SERVER(calldata->inode)->roc_rpcwaitq, task, NULL); goto out; } } nfs_fattr_init(calldata->res.fattr); calldata->timestamp = jiffies; if (nfs4_setup_sequence(NFS_SERVER(calldata->inode), &calldata->arg.seq_args, &calldata->res.seq_res, task)) goto out; rpc_call_start(task); out: dprintk("%s: done!\n", __func__); } static const struct rpc_call_ops nfs4_close_ops = { .rpc_call_prepare = nfs4_close_prepare, .rpc_call_done = nfs4_close_done, .rpc_release = nfs4_free_closedata, }; /* * It is possible for data to be read/written from a mem-mapped file * after the sys_close call (which hits the vfs layer as a flush). * This means that we can't safely call nfsv4 close on a file until * the inode is cleared. This in turn means that we are not good * NFSv4 citizens - we do not indicate to the server to update the file's * share state even when we are done with one of the three share * stateid's in the inode. * * NOTE: Caller must be holding the sp->so_owner semaphore! */ int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait, bool roc) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_closedata *calldata; struct nfs4_state_owner *sp = state->owner; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_close_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; calldata = kzalloc(sizeof(*calldata), gfp_mask); if (calldata == NULL) goto out; nfs41_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 1); calldata->inode = state->inode; calldata->state = state; calldata->arg.fh = NFS_FH(state->inode); calldata->arg.stateid = &state->open_stateid; /* Serialization for the sequence id */ calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid, gfp_mask); if (calldata->arg.seqid == NULL) goto out_free_calldata; calldata->arg.fmode = 0; calldata->arg.bitmask = server->cache_consistency_bitmask; calldata->res.fattr = &calldata->fattr; calldata->res.seqid = calldata->arg.seqid; calldata->res.server = server; calldata->roc = roc; nfs_sb_active(calldata->inode->i_sb); msg.rpc_argp = &calldata->arg; msg.rpc_resp = &calldata->res; task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = 0; if (wait) status = rpc_wait_for_completion_task(task); rpc_put_task(task); return status; out_free_calldata: kfree(calldata); out: if (roc) pnfs_roc_release(state->inode); nfs4_put_open_state(state); nfs4_put_state_owner(sp); return status; } static struct inode * nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx, int open_flags, struct iattr *attr) { struct nfs4_state *state; /* Protect against concurrent sillydeletes */ state = nfs4_do_open(dir, ctx->dentry, ctx->mode, open_flags, attr, ctx->cred, &ctx->mdsthreshold); if (IS_ERR(state)) return ERR_CAST(state); ctx->state = state; return igrab(state->inode); } static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync) { if (ctx->state == NULL) return; if (is_sync) nfs4_close_sync(ctx->state, ctx->mode); else nfs4_close_state(ctx->state, ctx->mode); } static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_server_caps_arg args = { .fhandle = fhandle, }; struct nfs4_server_caps_res res = {}; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], .rpc_argp = &args, .rpc_resp = &res, }; int status; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == 0) { memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); server->caps &= ~(NFS_CAP_ACLS|NFS_CAP_HARDLINKS| NFS_CAP_SYMLINKS|NFS_CAP_FILEID| NFS_CAP_MODE|NFS_CAP_NLINK|NFS_CAP_OWNER| NFS_CAP_OWNER_GROUP|NFS_CAP_ATIME| NFS_CAP_CTIME|NFS_CAP_MTIME); if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) server->caps |= NFS_CAP_ACLS; if (res.has_links != 0) server->caps |= NFS_CAP_HARDLINKS; if (res.has_symlinks != 0) server->caps |= NFS_CAP_SYMLINKS; if (res.attr_bitmask[0] & FATTR4_WORD0_FILEID) server->caps |= NFS_CAP_FILEID; if (res.attr_bitmask[1] & FATTR4_WORD1_MODE) server->caps |= NFS_CAP_MODE; if (res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS) server->caps |= NFS_CAP_NLINK; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER) server->caps |= NFS_CAP_OWNER; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP) server->caps |= NFS_CAP_OWNER_GROUP; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS) server->caps |= NFS_CAP_ATIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA) server->caps |= NFS_CAP_CTIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY) server->caps |= NFS_CAP_MTIME; memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask)); server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE; server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY; server->acl_bitmask = res.acl_bitmask; server->fh_expire_type = res.fh_expire_type; } return status; } int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_server_capabilities(server, fhandle), &exception); } while (exception.retry); return err; } static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_lookup_root_arg args = { .bitmask = nfs4_fattr_bitmap, }; struct nfs4_lookup_res res = { .server = server, .fattr = info->fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(info->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_lookup_root(server, fhandle, info); switch (err) { case 0: case -NFS4ERR_WRONGSEC: goto out; default: err = nfs4_handle_exception(server, err, &exception); } } while (exception.retry); out: return err; } static int nfs4_lookup_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, rpc_authflavor_t flavor) { struct rpc_auth *auth; int ret; auth = rpcauth_create(flavor, server->client); if (!auth) { ret = -EIO; goto out; } ret = nfs4_lookup_root(server, fhandle, info); out: return ret; } static int nfs4_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int i, len, status = 0; rpc_authflavor_t flav_array[NFS_MAX_SECFLAVORS]; len = gss_mech_list_pseudoflavors(&flav_array[0]); flav_array[len] = RPC_AUTH_NULL; len += 1; for (i = 0; i < len; i++) { status = nfs4_lookup_root_sec(server, fhandle, info, flav_array[i]); if (status == -NFS4ERR_WRONGSEC || status == -EACCES) continue; break; } /* * -EACCESS could mean that the user doesn't have correct permissions * to access the mount. It could also mean that we tried to mount * with a gss auth flavor, but rpc.gssd isn't running. Either way, * existing mount programs don't handle -EACCES very well so it should * be mapped to -EPERM instead. */ if (status == -EACCES) status = -EPERM; return status; } /* * get the file handle for the "/" directory on the server */ int nfs4_proc_get_rootfh(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int minor_version = server->nfs_client->cl_minorversion; int status = nfs4_lookup_root(server, fhandle, info); if ((status == -NFS4ERR_WRONGSEC) && !(server->flags & NFS_MOUNT_SECFLAVOUR)) /* * A status of -NFS4ERR_WRONGSEC will be mapped to -EPERM * by nfs4_map_errors() as this function exits. */ status = nfs_v4_minor_ops[minor_version]->find_root_sec(server, fhandle, info); if (status == 0) status = nfs4_server_capabilities(server, fhandle); if (status == 0) status = nfs4_do_fsinfo(server, fhandle, info); return nfs4_map_errors(status); } static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *mntfh, struct nfs_fsinfo *info) { int error; struct nfs_fattr *fattr = info->fattr; error = nfs4_server_capabilities(server, mntfh); if (error < 0) { dprintk("nfs4_get_root: getcaps error = %d\n", -error); return error; } error = nfs4_proc_getattr(server, mntfh, fattr); if (error < 0) { dprintk("nfs4_get_root: getattr error = %d\n", -error); return error; } if (fattr->valid & NFS_ATTR_FATTR_FSID && !nfs_fsid_equal(&server->fsid, &fattr->fsid)) memcpy(&server->fsid, &fattr->fsid, sizeof(server->fsid)); return error; } /* * Get locations and (maybe) other attributes of a referral. * Note that we'll actually follow the referral later when * we detect fsid mismatch in inode revalidation */ static int nfs4_get_referral(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle) { int status = -ENOMEM; struct page *page = NULL; struct nfs4_fs_locations *locations = NULL; page = alloc_page(GFP_KERNEL); if (page == NULL) goto out; locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL); if (locations == NULL) goto out; status = nfs4_proc_fs_locations(client, dir, name, locations, page); if (status != 0) goto out; /* Make sure server returned a different fsid for the referral */ if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) { dprintk("%s: server did not return a different fsid for" " a referral at %s\n", __func__, name->name); status = -EIO; goto out; } /* Fixup attributes for the nfs_lookup() call to nfs_fhget() */ nfs_fixup_referral_attributes(&locations->fattr); /* replace the lookup nfs_fattr with the locations nfs_fattr */ memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr)); memset(fhandle, 0, sizeof(struct nfs_fh)); out: if (page) __free_page(page); kfree(locations); return status; } static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_getattr_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_getattr_res res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getattr(server, fhandle, fattr), &exception); } while (exception.retry); return err; } /* * The file is not closed if it is opened due to the a request to change * the size of the file. The open call will not be needed once the * VFS layer lookup-intents are implemented. * * Close is called when the inode is destroyed. * If we haven't opened the file for O_WRONLY, we * need to in the size_change case to obtain a stateid. * * Got race? * Because OPEN is always done by name in nfsv4, it is * possible that we opened a different file by the same * name. We can recognize this race condition, but we * can't do anything about it besides returning an error. * * This will be fixed with VFS changes (lookup-intent). */ static int nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, struct iattr *sattr) { struct inode *inode = dentry->d_inode; struct rpc_cred *cred = NULL; struct nfs4_state *state = NULL; int status; if (pnfs_ld_layoutret_on_setattr(inode)) pnfs_return_layout(inode); nfs_fattr_init(fattr); /* Deal with open(O_TRUNC) */ if (sattr->ia_valid & ATTR_OPEN) sattr->ia_valid &= ~(ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); /* Optimization: if the end result is no change, don't RPC */ if ((sattr->ia_valid & ~(ATTR_FILE)) == 0) return 0; /* Search for an existing open(O_WRITE) file */ if (sattr->ia_valid & ATTR_FILE) { struct nfs_open_context *ctx; ctx = nfs_file_open_context(sattr->ia_file); if (ctx) { cred = ctx->cred; state = ctx->state; } } status = nfs4_do_setattr(inode, cred, fattr, sattr, state); if (status == 0) nfs_setattr_update_inode(inode, sattr); return status; } static int _nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_server *server = NFS_SERVER(dir); int status; struct nfs4_lookup_arg args = { .bitmask = server->attr_bitmask, .dir_fh = NFS_FH(dir), .name = name, }; struct nfs4_lookup_res res = { .server = server, .fattr = fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); dprintk("NFS call lookup %s\n", name->name); status = nfs4_call_sync(clnt, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("NFS reply lookup: %d\n", status); return status; } static void nfs_fixup_secinfo_attributes(struct nfs_fattr *fattr) { fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE | NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_MOUNTPOINT; fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO; fattr->nlink = 2; } static int nfs4_proc_lookup_common(struct rpc_clnt **clnt, struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; struct rpc_clnt *client = *clnt; int err; do { err = _nfs4_proc_lookup(client, dir, name, fhandle, fattr); switch (err) { case -NFS4ERR_BADNAME: err = -ENOENT; goto out; case -NFS4ERR_MOVED: err = nfs4_get_referral(client, dir, name, fattr, fhandle); goto out; case -NFS4ERR_WRONGSEC: err = -EPERM; if (client != *clnt) goto out; client = nfs4_create_sec_client(client, dir, name); if (IS_ERR(client)) return PTR_ERR(client); exception.retry = 1; break; default: err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } } while (exception.retry); out: if (err == 0) *clnt = client; else if (client != *clnt) rpc_shutdown_client(client); return err; } static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { int status; struct rpc_clnt *client = NFS_CLIENT(dir); status = nfs4_proc_lookup_common(&client, dir, name, fhandle, fattr); if (client != NFS_CLIENT(dir)) { rpc_shutdown_client(client); nfs_fixup_secinfo_attributes(fattr); } return status; } struct rpc_clnt * nfs4_proc_lookup_mountpoint(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { int status; struct rpc_clnt *client = rpc_clone_client(NFS_CLIENT(dir)); status = nfs4_proc_lookup_common(&client, dir, name, fhandle, fattr); if (status < 0) { rpc_shutdown_client(client); return ERR_PTR(status); } return client; } static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_accessargs args = { .fh = NFS_FH(inode), .bitmask = server->cache_consistency_bitmask, }; struct nfs4_accessres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status; /* * Determine which access bits we want to ask for... */ if (mode & MAY_READ) args.access |= NFS4_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_EXECUTE; } res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) return -ENOMEM; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (!status) { entry->mask = 0; if (res.access & NFS4_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; nfs_refresh_inode(inode, res.fattr); } nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_access(inode, entry), &exception); } while (exception.retry); return err; } /* * TODO: For the time being, we don't try to get any attributes * along with any of the zero-copy operations READ, READDIR, * READLINK, WRITE. * * In the case of the first three, we want to put the GETATTR * after the read-type operation -- this is because it is hard * to predict the length of a GETATTR response in v4, and thus * align the READ data correctly. This means that the GETATTR * may end up partially falling into the page cache, and we should * shift it into the 'tail' of the xdr_buf before processing. * To do this efficiently, we need to know the total length * of data received, which doesn't seem to be available outside * of the RPC layer. * * In the case of WRITE, we also want to put the GETATTR after * the operation -- in this case because we want to make sure * we get the post-operation mtime and size. * * Both of these changes to the XDR layer would in fact be quite * minor, but I decided to leave them for a subsequent patch. */ static int _nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_readlink args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page, }; struct nfs4_readlink_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_readlink(inode, page, pgbase, pglen), &exception); } while (exception.retry); return err; } /* * Got race? * We will need to arrange for the VFS layer to provide an atomic open. * Until then, this create/open method is prone to inefficiency and race * conditions due to the lookup, create, and open VFS calls from sys_open() * placed on the wire. * * Given the above sorry state of affairs, I'm simply sending an OPEN. * The file will be opened again in the subsequent VFS open call * (nfs4_proc_file_open). * * The open for read will just hang around to be used by any process that * opens the file O_RDONLY. This will all be resolved with the VFS changes. */ static int nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nfs_open_context *ctx) { struct dentry *de = dentry; struct nfs4_state *state; struct rpc_cred *cred = NULL; struct nfs4_threshold **thp = NULL; fmode_t fmode = 0; int status = 0; if (ctx != NULL) { cred = ctx->cred; de = ctx->dentry; fmode = ctx->mode; thp = &ctx->mdsthreshold; } sattr->ia_mode &= ~current_umask(); state = nfs4_do_open(dir, de, fmode, flags, sattr, cred, thp); d_drop(dentry); if (IS_ERR(state)) { status = PTR_ERR(state); goto out; } d_add(dentry, igrab(state->inode)); nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); if (ctx != NULL) ctx->state = state; else nfs4_close_sync(state, fmode); out: return status; } static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs args = { .fh = NFS_FH(dir), .name = *name, }; struct nfs_removeres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], .rpc_argp = &args, .rpc_resp = &res, }; int status; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 1); if (status == 0) update_changeattr(dir, &res.cinfo); return status; } static int nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_remove(dir, name), &exception); } while (exception.retry); return err; } static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs *args = msg->rpc_argp; struct nfs_removeres *res = msg->rpc_resp; res->server = server; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; nfs41_init_sequence(&args->seq_args, &res->seq_res, 1); } static void nfs4_proc_unlink_rpc_prepare(struct rpc_task *task, struct nfs_unlinkdata *data) { if (nfs4_setup_sequence(NFS_SERVER(data->dir), &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir) { struct nfs_removeres *res = task->tk_msg.rpc_resp; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN) return 0; update_changeattr(dir, &res->cinfo); return 1; } static void nfs4_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_renameargs *arg = msg->rpc_argp; struct nfs_renameres *res = msg->rpc_resp; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME]; res->server = server; nfs41_init_sequence(&arg->seq_args, &res->seq_res, 1); } static void nfs4_proc_rename_rpc_prepare(struct rpc_task *task, struct nfs_renamedata *data) { if (nfs4_setup_sequence(NFS_SERVER(data->old_dir), &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { struct nfs_renameres *res = task->tk_msg.rpc_resp; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN) return 0; update_changeattr(old_dir, &res->old_cinfo); update_changeattr(new_dir, &res->new_cinfo); return 1; } static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_server *server = NFS_SERVER(old_dir); struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .new_dir = NFS_FH(new_dir), .old_name = old_name, .new_name = new_name, }; struct nfs_renameres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); if (!status) { update_changeattr(old_dir, &res.old_cinfo); update_changeattr(new_dir, &res.new_cinfo); } return status; } static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(old_dir), _nfs4_proc_rename(old_dir, old_name, new_dir, new_name), &exception); } while (exception.retry); return err; } static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_link_arg arg = { .fh = NFS_FH(inode), .dir_fh = NFS_FH(dir), .name = name, .bitmask = server->attr_bitmask, }; struct nfs4_link_res res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) goto out; status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); if (!status) { update_changeattr(dir, &res.cinfo); nfs_post_op_update_inode(inode, res.fattr); } out: nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_link(inode, dir, name), &exception); } while (exception.retry); return err; } struct nfs4_createdata { struct rpc_message msg; struct nfs4_create_arg arg; struct nfs4_create_res res; struct nfs_fh fh; struct nfs_fattr fattr; }; static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir, struct qstr *name, struct iattr *sattr, u32 ftype) { struct nfs4_createdata *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { struct nfs_server *server = NFS_SERVER(dir); data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE]; data->msg.rpc_argp = &data->arg; data->msg.rpc_resp = &data->res; data->arg.dir_fh = NFS_FH(dir); data->arg.server = server; data->arg.name = name; data->arg.attrs = sattr; data->arg.ftype = ftype; data->arg.bitmask = server->attr_bitmask; data->res.server = server; data->res.fh = &data->fh; data->res.fattr = &data->fattr; nfs_fattr_init(data->res.fattr); } return data; } static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data) { int status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &data->msg, &data->arg.seq_args, &data->res.seq_res, 1); if (status == 0) { update_changeattr(dir, &data->res.dir_cinfo); status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); } return status; } static void nfs4_free_createdata(struct nfs4_createdata *data) { kfree(data); } static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs4_createdata *data; int status = -ENAMETOOLONG; if (len > NFS4_MAXPATHLEN) goto out; status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK); if (data == NULL) goto out; data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK]; data->arg.u.symlink.pages = &page; data->arg.u.symlink.len = len; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_symlink(dir, dentry, page, len, sattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_createdata *data; int status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR); if (data == NULL) goto out; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_exception exception = { }; int err; sattr->ia_mode &= ~current_umask(); do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mkdir(dir, dentry, sattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs4_readdir_arg args = { .fh = NFS_FH(dir), .pages = pages, .pgbase = 0, .count = count, .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, .plus = plus, }; struct nfs4_readdir_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__, dentry->d_parent->d_name.name, dentry->d_name.name, (unsigned long long)cookie); nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); res.pgbase = args.pgbase; status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0); if (status >= 0) { memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); status += args.pgbase; } nfs_invalidate_atime(dir); dprintk("%s: returns %d\n", __func__, status); return status; } static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), _nfs4_proc_readdir(dentry, cred, cookie, pages, count, plus), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_createdata *data; int mode = sattr->ia_mode; int status = -ENOMEM; BUG_ON(!(sattr->ia_valid & ATTR_MODE)); BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK); if (data == NULL) goto out; if (S_ISFIFO(mode)) data->arg.ftype = NF4FIFO; else if (S_ISBLK(mode)) { data->arg.ftype = NF4BLK; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } else if (S_ISCHR(mode)) { data->arg.ftype = NF4CHR; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_exception exception = { }; int err; sattr->ia_mode &= ~current_umask(); do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mknod(dir, dentry, sattr, rdev), &exception); } while (exception.retry); return err; } static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_statfs_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_statfs_res res = { .fsstat = fsstat, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fsstat->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_statfs(server, fhandle, fsstat), &exception); } while (exception.retry); return err; } static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_fsinfo_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_fsinfo_res res = { .fsinfo = fsinfo, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_do_fsinfo(server, fhandle, fsinfo), &exception); } while (exception.retry); return err; } static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { int error; nfs_fattr_init(fsinfo->fattr); error = nfs4_do_fsinfo(server, fhandle, fsinfo); if (error == 0) set_pnfs_layoutdriver(server, fhandle, fsinfo->layouttype); return error; } static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_pathconf_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_pathconf_res res = { .pathconf = pathconf, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], .rpc_argp = &args, .rpc_resp = &res, }; /* None of the pathconf attributes are mandatory to implement */ if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { memset(pathconf, 0, sizeof(*pathconf)); return 0; } nfs_fattr_init(pathconf->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_pathconf(server, fhandle, pathconf), &exception); } while (exception.retry); return err; } void __nfs4_read_done_cb(struct nfs_read_data *data) { nfs_invalidate_atime(data->header->inode); } static int nfs4_read_done_cb(struct rpc_task *task, struct nfs_read_data *data) { struct nfs_server *server = NFS_SERVER(data->header->inode); if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } __nfs4_read_done_cb(data); if (task->tk_status > 0) renew_lease(server, data->timestamp); return 0; } static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data) { dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; return data->read_done_cb ? data->read_done_cb(task, data) : nfs4_read_done_cb(task, data); } static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { data->timestamp = jiffies; data->read_done_cb = nfs4_read_done_cb; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ]; nfs41_init_sequence(&data->args.seq_args, &data->res.seq_res, 0); } static void nfs4_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data) { if (nfs4_setup_sequence(NFS_SERVER(data->header->inode), &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static int nfs4_write_done_cb(struct rpc_task *task, struct nfs_write_data *data) { struct inode *inode = data->header->inode; if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } if (task->tk_status >= 0) { renew_lease(NFS_SERVER(inode), data->timestamp); nfs_post_op_update_inode_force_wcc(inode, &data->fattr); } return 0; } static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; return data->write_done_cb ? data->write_done_cb(task, data) : nfs4_write_done_cb(task, data); } static bool nfs4_write_need_cache_consistency_data(const struct nfs_write_data *data) { const struct nfs_pgio_header *hdr = data->header; /* Don't request attributes for pNFS or O_DIRECT writes */ if (data->ds_clp != NULL || hdr->dreq != NULL) return false; /* Otherwise, request attributes if and only if we don't hold * a delegation */ return nfs4_have_delegation(hdr->inode, FMODE_READ) == 0; } static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(data->header->inode); if (!nfs4_write_need_cache_consistency_data(data)) { data->args.bitmask = NULL; data->res.fattr = NULL; } else data->args.bitmask = server->cache_consistency_bitmask; if (!data->write_done_cb) data->write_done_cb = nfs4_write_done_cb; data->res.server = server; data->timestamp = jiffies; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE]; nfs41_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); } static void nfs4_proc_write_rpc_prepare(struct rpc_task *task, struct nfs_write_data *data) { if (nfs4_setup_sequence(NFS_SERVER(data->header->inode), &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static void nfs4_proc_commit_rpc_prepare(struct rpc_task *task, struct nfs_commit_data *data) { if (nfs4_setup_sequence(NFS_SERVER(data->inode), &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static int nfs4_commit_done_cb(struct rpc_task *task, struct nfs_commit_data *data) { struct inode *inode = data->inode; if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } return 0; } static int nfs4_commit_done(struct rpc_task *task, struct nfs_commit_data *data) { if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; return data->commit_done_cb(task, data); } static void nfs4_proc_commit_setup(struct nfs_commit_data *data, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(data->inode); if (data->commit_done_cb == NULL) data->commit_done_cb = nfs4_commit_done_cb; data->res.server = server; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT]; nfs41_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); } struct nfs4_renewdata { struct nfs_client *client; unsigned long timestamp; }; /* * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special * standalone procedure for queueing an asynchronous RENEW. */ static void nfs4_renew_release(void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(data); } static void nfs4_renew_done(struct rpc_task *task, void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; unsigned long timestamp = data->timestamp; if (task->tk_status < 0) { /* Unless we're shutting down, schedule state recovery! */ if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) == 0) return; if (task->tk_status != NFS4ERR_CB_PATH_DOWN) { nfs4_schedule_lease_recovery(clp); return; } nfs4_schedule_path_down_recovery(clp); } do_renew_lease(clp, timestamp); } static const struct rpc_call_ops nfs4_renew_ops = { .rpc_call_done = nfs4_renew_done, .rpc_release = nfs4_renew_release, }; static int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; struct nfs4_renewdata *data; if (renew_flags == 0) return 0; if (!atomic_inc_not_zero(&clp->cl_count)) return -EIO; data = kmalloc(sizeof(*data), GFP_NOFS); if (data == NULL) return -ENOMEM; data->client = clp; data->timestamp = jiffies; return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, &nfs4_renew_ops, data); } static int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; unsigned long now = jiffies; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status < 0) return status; do_renew_lease(clp, now); return 0; } static inline int nfs4_server_supports_acls(struct nfs_server *server) { return (server->caps & NFS_CAP_ACLS) && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); } /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on * the stack. */ #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) static int buf_to_pages_noslab(const void *buf, size_t buflen, struct page **pages, unsigned int *pgbase) { struct page *newpage, **spages; int rc = 0; size_t len; spages = pages; do { len = min_t(size_t, PAGE_CACHE_SIZE, buflen); newpage = alloc_page(GFP_KERNEL); if (newpage == NULL) goto unwind; memcpy(page_address(newpage), buf, len); buf += len; buflen -= len; *pages++ = newpage; rc++; } while (buflen != 0); return rc; unwind: for(; rc > 0; rc--) __free_page(spages[rc-1]); return -ENOMEM; } struct nfs4_cached_acl { int cached; size_t len; char data[0]; }; static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) { struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); kfree(nfsi->nfs4_acl); nfsi->nfs4_acl = acl; spin_unlock(&inode->i_lock); } static void nfs4_zap_acl_attr(struct inode *inode) { nfs4_set_cached_acl(inode, NULL); } static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs4_cached_acl *acl; int ret = -ENOENT; spin_lock(&inode->i_lock); acl = nfsi->nfs4_acl; if (acl == NULL) goto out; if (buf == NULL) /* user is just asking for length */ goto out_len; if (acl->cached == 0) goto out; ret = -ERANGE; /* see getxattr(2) man page */ if (acl->len > buflen) goto out; memcpy(buf, acl->data, acl->len); out_len: ret = acl->len; out: spin_unlock(&inode->i_lock); return ret; } static void nfs4_write_cached_acl(struct inode *inode, struct page **pages, size_t pgbase, size_t acl_len) { struct nfs4_cached_acl *acl; if (pages && acl_len <= PAGE_SIZE) { acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 1; _copy_from_pages(acl->data, pages, pgbase, acl_len); } else { acl = kmalloc(sizeof(*acl), GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 0; } acl->len = acl_len; out: nfs4_set_cached_acl(inode, acl); } /* * The getxattr API returns the required buffer length when called with a * NULL buf. The NFSv4 acl tool then calls getxattr again after allocating * the required buf. On a NULL buf, we send a page of data to the server * guessing that the ACL request can be serviced by a page. If so, we cache * up to the page of ACL data, and the 2nd call to getxattr is serviced by * the cache. If not so, we throw away the page, and cache the required * length. The next getxattr call will then produce another round trip to * the server, this time with the input buf of the required size. */ static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct page *pages[NFS4ACL_MAXPAGES] = {NULL, }; struct nfs_getaclargs args = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_getaclres res = { .acl_len = buflen, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], .rpc_argp = &args, .rpc_resp = &res, }; int ret = -ENOMEM, npages, i, acl_len = 0; npages = (buflen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* As long as we're doing a round trip to the server anyway, * let's be prepared for a page of acl data. */ if (npages == 0) npages = 1; /* Add an extra page to handle the bitmap returned */ npages++; for (i = 0; i < npages; i++) { pages[i] = alloc_page(GFP_KERNEL); if (!pages[i]) goto out_free; } /* for decoding across pages */ res.acl_scratch = alloc_page(GFP_KERNEL); if (!res.acl_scratch) goto out_free; args.acl_len = npages * PAGE_SIZE; args.acl_pgbase = 0; /* Let decode_getfacl know not to fail if the ACL data is larger than * the page we send as a guess */ if (buf == NULL) res.acl_flags |= NFS4_ACL_LEN_REQUEST; dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n", __func__, buf, buflen, npages, args.acl_len); ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0); if (ret) goto out_free; acl_len = res.acl_len - res.acl_data_offset; if (acl_len > args.acl_len) nfs4_write_cached_acl(inode, NULL, 0, acl_len); else nfs4_write_cached_acl(inode, pages, res.acl_data_offset, acl_len); if (buf) { ret = -ERANGE; if (acl_len > buflen) goto out_free; _copy_from_pages(buf, pages, res.acl_data_offset, acl_len); } ret = acl_len; out_free: for (i = 0; i < npages; i++) if (pages[i]) __free_page(pages[i]); if (res.acl_scratch) __free_page(res.acl_scratch); return ret; } static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct nfs4_exception exception = { }; ssize_t ret; do { ret = __nfs4_get_acl_uncached(inode, buf, buflen); if (ret >= 0) break; ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception); } while (exception.retry); return ret; } static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; ret = nfs_revalidate_inode(server, inode); if (ret < 0) return ret; if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); ret = nfs4_read_cached_acl(inode, buf, buflen); if (ret != -ENOENT) /* -ENOENT is returned if there is no ACL or if there is an ACL * but no cached acl data, just the acl length */ return ret; return nfs4_get_acl_uncached(inode, buf, buflen); } static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_setaclargs arg = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_setaclres res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], .rpc_argp = &arg, .rpc_resp = &res, }; int ret, i; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; i = buf_to_pages_noslab(buf, buflen, arg.acl_pages, &arg.acl_pgbase); if (i < 0) return i; nfs_inode_return_delegation(inode); ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); /* * Free each page after tx, so the only ref left is * held by the network stack */ for (; i > 0; i--) put_page(pages[i-1]); /* * Acl update can result in inode attribute update. * so mark the attribute cache invalid. */ spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; spin_unlock(&inode->i_lock); nfs_access_zap_cache(inode); nfs_zap_acl_cache(inode); return ret; } static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), __nfs4_proc_set_acl(inode, buf, buflen), &exception); } while (exception.retry); return err; } static int nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs4_state *state) { struct nfs_client *clp = server->nfs_client; if (task->tk_status >= 0) return 0; switch(task->tk_status) { case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: if (state == NULL) break; nfs_remove_bad_delegation(state->inode); case -NFS4ERR_OPENMODE: if (state == NULL) break; nfs4_schedule_stateid_recovery(server, state); goto wait_on_recovery; case -NFS4ERR_EXPIRED: if (state != NULL) nfs4_schedule_stateid_recovery(server, state); case -NFS4ERR_STALE_STATEID: case -NFS4ERR_STALE_CLIENTID: nfs4_schedule_lease_recovery(clp); goto wait_on_recovery; #if defined(CONFIG_NFS_V4_1) case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_DEADSESSION: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_SEQ_FALSE_RETRY: case -NFS4ERR_SEQ_MISORDERED: dprintk("%s ERROR %d, Reset session\n", __func__, task->tk_status); nfs4_schedule_session_recovery(clp->cl_session, task->tk_status); task->tk_status = 0; return -EAGAIN; #endif /* CONFIG_NFS_V4_1 */ case -NFS4ERR_DELAY: nfs_inc_server_stats(server, NFSIOS_DELAY); case -NFS4ERR_GRACE: case -EKEYEXPIRED: rpc_delay(task, NFS4_POLL_RETRY_MAX); task->tk_status = 0; return -EAGAIN; case -NFS4ERR_RETRY_UNCACHED_REP: case -NFS4ERR_OLD_STATEID: task->tk_status = 0; return -EAGAIN; } task->tk_status = nfs4_map_errors(task->tk_status); return 0; wait_on_recovery: rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL); if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0) rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task); task->tk_status = 0; return -EAGAIN; } static void nfs4_init_boot_verifier(const struct nfs_client *clp, nfs4_verifier *bootverf) { __be32 verf[2]; if (test_bit(NFS4CLNT_PURGE_STATE, &clp->cl_state)) { /* An impossible timestamp guarantees this value * will never match a generated boot time. */ verf[0] = 0; verf[1] = (__be32)(NSEC_PER_SEC + 1); } else { struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id); verf[0] = (__be32)nn->boot_time.tv_sec; verf[1] = (__be32)nn->boot_time.tv_nsec; } memcpy(bootverf->data, verf, sizeof(bootverf->data)); } int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred, struct nfs4_setclientid_res *res) { nfs4_verifier sc_verifier; struct nfs4_setclientid setclientid = { .sc_verifier = &sc_verifier, .sc_prog = program, .sc_cb_ident = clp->cl_cb_ident, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], .rpc_argp = &setclientid, .rpc_resp = res, .rpc_cred = cred, }; int loop = 0; int status; nfs4_init_boot_verifier(clp, &sc_verifier); for(;;) { rcu_read_lock(); setclientid.sc_name_len = scnprintf(setclientid.sc_name, sizeof(setclientid.sc_name), "%s/%s %s %s %u", clp->cl_ipaddr, rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR), rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_PROTO), clp->cl_rpcclient->cl_auth->au_ops->au_name, clp->cl_id_uniquifier); setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, sizeof(setclientid.sc_netid), rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_NETID)); setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, sizeof(setclientid.sc_uaddr), "%s.%u.%u", clp->cl_ipaddr, port >> 8, port & 255); rcu_read_unlock(); status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status != -NFS4ERR_CLID_INUSE) break; if (loop != 0) { ++clp->cl_id_uniquifier; break; } ++loop; ssleep(clp->cl_lease_time / HZ + 1); } return status; } int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct nfs4_setclientid_res *arg, struct rpc_cred *cred) { struct nfs_fsinfo fsinfo; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], .rpc_argp = arg, .rpc_resp = &fsinfo, .rpc_cred = cred, }; unsigned long now; int status; now = jiffies; status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status == 0) { spin_lock(&clp->cl_lock); clp->cl_lease_time = fsinfo.lease_time * HZ; clp->cl_last_renewal = now; spin_unlock(&clp->cl_lock); } return status; } struct nfs4_delegreturndata { struct nfs4_delegreturnargs args; struct nfs4_delegreturnres res; struct nfs_fh fh; nfs4_stateid stateid; unsigned long timestamp; struct nfs_fattr fattr; int rpc_status; }; static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) { struct nfs4_delegreturndata *data = calldata; if (!nfs4_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: case 0: renew_lease(data->res.server, data->timestamp); break; default: if (nfs4_async_handle_error(task, data->res.server, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } data->rpc_status = task->tk_status; } static void nfs4_delegreturn_release(void *calldata) { kfree(calldata); } #if defined(CONFIG_NFS_V4_1) static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data) { struct nfs4_delegreturndata *d_data; d_data = (struct nfs4_delegreturndata *)data; if (nfs4_setup_sequence(d_data->res.server, &d_data->args.seq_args, &d_data->res.seq_res, task)) return; rpc_call_start(task); } #endif /* CONFIG_NFS_V4_1 */ static const struct rpc_call_ops nfs4_delegreturn_ops = { #if defined(CONFIG_NFS_V4_1) .rpc_call_prepare = nfs4_delegreturn_prepare, #endif /* CONFIG_NFS_V4_1 */ .rpc_call_done = nfs4_delegreturn_done, .rpc_release = nfs4_delegreturn_release, }; static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs4_delegreturndata *data; struct nfs_server *server = NFS_SERVER(inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_delegreturn_ops, .flags = RPC_TASK_ASYNC, }; int status = 0; data = kzalloc(sizeof(*data), GFP_NOFS); if (data == NULL) return -ENOMEM; nfs41_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); data->args.fhandle = &data->fh; data->args.stateid = &data->stateid; data->args.bitmask = server->cache_consistency_bitmask; nfs_copy_fh(&data->fh, NFS_FH(inode)); nfs4_stateid_copy(&data->stateid, stateid); data->res.fattr = &data->fattr; data->res.server = server; nfs_fattr_init(data->res.fattr); data->timestamp = jiffies; data->rpc_status = 0; task_setup_data.callback_data = data; msg.rpc_argp = &data->args; msg.rpc_resp = &data->res; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (!issync) goto out; status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) goto out; status = data->rpc_status; if (status == 0) nfs_post_op_update_inode_force_wcc(inode, &data->fattr); else nfs_refresh_inode(inode, &data->fattr); out: rpc_put_task(task); return status; } int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_delegreturn(inode, cred, stateid, issync); switch (err) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: case 0: return 0; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } #define NFS4_LOCK_MINTIMEOUT (1 * HZ) #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) /* * sleep, with exponential backoff, and retry the LOCK operation. */ static unsigned long nfs4_set_lock_task_retry(unsigned long timeout) { freezable_schedule_timeout_killable(timeout); timeout <<= 1; if (timeout > NFS4_LOCK_MAXTIMEOUT) return NFS4_LOCK_MAXTIMEOUT; return timeout; } static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = server->nfs_client; struct nfs_lockt_args arg = { .fh = NFS_FH(inode), .fl = request, }; struct nfs_lockt_res res = { .denied = request, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = state->owner->so_cred, }; struct nfs4_lock_state *lsp; int status; arg.lock_owner.clientid = clp->cl_clientid; status = nfs4_set_lock_state(state, request); if (status != 0) goto out; lsp = request->fl_u.nfs4_fl.owner; arg.lock_owner.id = lsp->ls_seqid.owner_id; arg.lock_owner.s_dev = server->s_dev; status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); switch (status) { case 0: request->fl_type = F_UNLCK; break; case -NFS4ERR_DENIED: status = 0; } request->fl_ops->fl_release_private(request); out: return status; } static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(state->inode), _nfs4_proc_getlk(state, cmd, request), &exception); } while (exception.retry); return err; } static int do_vfs_lock(struct file *file, struct file_lock *fl) { int res = 0; switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { case FL_POSIX: res = posix_lock_file_wait(file, fl); break; case FL_FLOCK: res = flock_lock_file_wait(file, fl); break; default: BUG(); } return res; } struct nfs4_unlockdata { struct nfs_locku_args arg; struct nfs_locku_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; const struct nfs_server *server; unsigned long timestamp; }; static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *p; struct inode *inode = lsp->ls_state->inode; p = kzalloc(sizeof(*p), GFP_NOFS); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.seqid = seqid; p->res.seqid = seqid; p->arg.stateid = &lsp->ls_stateid; p->lsp = lsp; atomic_inc(&lsp->ls_count); /* Ensure we don't close file until we're done freeing locks! */ p->ctx = get_nfs_open_context(ctx); memcpy(&p->fl, fl, sizeof(p->fl)); p->server = NFS_SERVER(inode); return p; } static void nfs4_locku_release_calldata(void *data) { struct nfs4_unlockdata *calldata = data; nfs_free_seqid(calldata->arg.seqid); nfs4_put_lock_state(calldata->lsp); put_nfs_open_context(calldata->ctx); kfree(calldata); } static void nfs4_locku_done(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; switch (task->tk_status) { case 0: nfs4_stateid_copy(&calldata->lsp->ls_stateid, &calldata->res.stateid); renew_lease(calldata->server, calldata->timestamp); break; case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: break; default: if (nfs4_async_handle_error(task, calldata->server, NULL) == -EAGAIN) rpc_restart_call_prepare(task); } } static void nfs4_locku_prepare(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) return; if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { /* Note: exit _without_ running nfs4_locku_done */ task->tk_action = NULL; return; } calldata->timestamp = jiffies; if (nfs4_setup_sequence(calldata->server, &calldata->arg.seq_args, &calldata->res.seq_res, task)) return; rpc_call_start(task); } static const struct rpc_call_ops nfs4_locku_ops = { .rpc_call_prepare = nfs4_locku_prepare, .rpc_call_done = nfs4_locku_done, .rpc_release = nfs4_locku_release_calldata, }; static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *data; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], .rpc_cred = ctx->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(lsp->ls_state->inode), .rpc_message = &msg, .callback_ops = &nfs4_locku_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; /* Ensure this is an unlock - when canceling a lock, the * canceled lock is passed in, and it won't be an unlock. */ fl->fl_type = F_UNLCK; data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); if (data == NULL) { nfs_free_seqid(seqid); return ERR_PTR(-ENOMEM); } nfs41_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1); msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; task_setup_data.callback_data = data; return rpc_run_task(&task_setup_data); } static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_seqid *seqid; struct nfs4_lock_state *lsp; struct rpc_task *task; int status = 0; unsigned char fl_flags = request->fl_flags; status = nfs4_set_lock_state(state, request); /* Unlock _before_ we do the RPC call */ request->fl_flags |= FL_EXISTS; down_read(&nfsi->rwsem); if (do_vfs_lock(request->fl_file, request) == -ENOENT) { up_read(&nfsi->rwsem); goto out; } up_read(&nfsi->rwsem); if (status != 0) goto out; /* Is this a delegated lock? */ if (test_bit(NFS_DELEGATED_STATE, &state->flags)) goto out; lsp = request->fl_u.nfs4_fl.owner; seqid = nfs_alloc_seqid(&lsp->ls_seqid, GFP_KERNEL); status = -ENOMEM; if (seqid == NULL) goto out; task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid); status = PTR_ERR(task); if (IS_ERR(task)) goto out; status = nfs4_wait_for_completion_rpc_task(task); rpc_put_task(task); out: request->fl_flags = fl_flags; return status; } struct nfs4_lockdata { struct nfs_lock_args arg; struct nfs_lock_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; unsigned long timestamp; int rpc_status; int cancelled; struct nfs_server *server; }; static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, gfp_t gfp_mask) { struct nfs4_lockdata *p; struct inode *inode = lsp->ls_state->inode; struct nfs_server *server = NFS_SERVER(inode); p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask); if (p->arg.open_seqid == NULL) goto out_free; p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid, gfp_mask); if (p->arg.lock_seqid == NULL) goto out_free_seqid; p->arg.lock_stateid = &lsp->ls_stateid; p->arg.lock_owner.clientid = server->nfs_client->cl_clientid; p->arg.lock_owner.id = lsp->ls_seqid.owner_id; p->arg.lock_owner.s_dev = server->s_dev; p->res.lock_seqid = p->arg.lock_seqid; p->lsp = lsp; p->server = server; atomic_inc(&lsp->ls_count); p->ctx = get_nfs_open_context(ctx); memcpy(&p->fl, fl, sizeof(p->fl)); return p; out_free_seqid: nfs_free_seqid(p->arg.open_seqid); out_free: kfree(p); return NULL; } static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; struct nfs4_state *state = data->lsp->ls_state; dprintk("%s: begin!\n", __func__); if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) return; /* Do we need to do an open_to_lock_owner? */ if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) { if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) return; data->arg.open_stateid = &state->stateid; data->arg.new_lock_owner = 1; data->res.open_seqid = data->arg.open_seqid; } else data->arg.new_lock_owner = 0; data->timestamp = jiffies; if (nfs4_setup_sequence(data->server, &data->arg.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status); } static void nfs4_recover_lock_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs4_lock_prepare(task, calldata); } static void nfs4_lock_done(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; dprintk("%s: begin!\n", __func__); if (!nfs4_sequence_done(task, &data->res.seq_res)) return; data->rpc_status = task->tk_status; if (data->arg.new_lock_owner != 0) { if (data->rpc_status == 0) nfs_confirm_seqid(&data->lsp->ls_seqid, 0); else goto out; } if (data->rpc_status == 0) { nfs4_stateid_copy(&data->lsp->ls_stateid, &data->res.stateid); data->lsp->ls_flags |= NFS_LOCK_INITIALIZED; renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp); } out: dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status); } static void nfs4_lock_release(void *calldata) { struct nfs4_lockdata *data = calldata; dprintk("%s: begin!\n", __func__); nfs_free_seqid(data->arg.open_seqid); if (data->cancelled != 0) { struct rpc_task *task; task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, data->arg.lock_seqid); if (!IS_ERR(task)) rpc_put_task_async(task); dprintk("%s: cancelling lock!\n", __func__); } else nfs_free_seqid(data->arg.lock_seqid); nfs4_put_lock_state(data->lsp); put_nfs_open_context(data->ctx); kfree(data); dprintk("%s: done!\n", __func__); } static const struct rpc_call_ops nfs4_lock_ops = { .rpc_call_prepare = nfs4_lock_prepare, .rpc_call_done = nfs4_lock_done, .rpc_release = nfs4_lock_release, }; static const struct rpc_call_ops nfs4_recover_lock_ops = { .rpc_call_prepare = nfs4_recover_lock_prepare, .rpc_call_done = nfs4_lock_done, .rpc_release = nfs4_lock_release, }; static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error) { switch (error) { case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; if (new_lock_owner != 0 || (lsp->ls_flags & NFS_LOCK_INITIALIZED) != 0) nfs4_schedule_stateid_recovery(server, lsp->ls_state); break; case -NFS4ERR_STALE_STATEID: lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; case -NFS4ERR_EXPIRED: nfs4_schedule_lease_recovery(server->nfs_client); }; } static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type) { struct nfs4_lockdata *data; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(state->inode), .rpc_message = &msg, .callback_ops = &nfs4_lock_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int ret; dprintk("%s: begin!\n", __func__); data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file), fl->fl_u.nfs4_fl.owner, recovery_type == NFS_LOCK_NEW ? GFP_KERNEL : GFP_NOFS); if (data == NULL) return -ENOMEM; if (IS_SETLKW(cmd)) data->arg.block = 1; if (recovery_type > NFS_LOCK_NEW) { if (recovery_type == NFS_LOCK_RECLAIM) data->arg.reclaim = NFS_LOCK_RECLAIM; task_setup_data.callback_ops = &nfs4_recover_lock_ops; } nfs41_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1); msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; task_setup_data.callback_data = data; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); ret = nfs4_wait_for_completion_rpc_task(task); if (ret == 0) { ret = data->rpc_status; if (ret) nfs4_handle_setlk_error(data->server, data->lsp, data->arg.new_lock_owner, ret); } else data->cancelled = 1; rpc_put_task(task); dprintk("%s: done, ret = %d!\n", __func__, ret); return ret; } static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { .inode = state->inode, }; int err; do { /* Cache the lock if possible... */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { .inode = state->inode, }; int err; err = nfs4_set_lock_state(state, request); if (err != 0) return err; do { if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED); switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } #if defined(CONFIG_NFS_V4_1) static int nfs41_check_expired_locks(struct nfs4_state *state) { int status, ret = NFS_OK; struct nfs4_lock_state *lsp; struct nfs_server *server = NFS_SERVER(state->inode); list_for_each_entry(lsp, &state->lock_states, ls_locks) { if (lsp->ls_flags & NFS_LOCK_INITIALIZED) { status = nfs41_test_stateid(server, &lsp->ls_stateid); if (status != NFS_OK) { nfs41_free_stateid(server, &lsp->ls_stateid); lsp->ls_flags &= ~NFS_LOCK_INITIALIZED; ret = status; } } }; return ret; } static int nfs41_lock_expired(struct nfs4_state *state, struct file_lock *request) { int status = NFS_OK; if (test_bit(LK_STATE_IN_USE, &state->flags)) status = nfs41_check_expired_locks(state); if (status == NFS_OK) return status; return nfs4_lock_expired(state, request); } #endif static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs_inode *nfsi = NFS_I(state->inode); unsigned char fl_flags = request->fl_flags; int status = -ENOLCK; if ((fl_flags & FL_POSIX) && !test_bit(NFS_STATE_POSIX_LOCKS, &state->flags)) goto out; /* Is this a delegated open? */ status = nfs4_set_lock_state(state, request); if (status != 0) goto out; request->fl_flags |= FL_ACCESS; status = do_vfs_lock(request->fl_file, request); if (status < 0) goto out; down_read(&nfsi->rwsem); if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { /* Yes: cache locks! */ /* ...but avoid races with delegation recall... */ request->fl_flags = fl_flags & ~FL_SLEEP; status = do_vfs_lock(request->fl_file, request); goto out_unlock; } status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW); if (status != 0) goto out_unlock; /* Note: we always want to sleep here! */ request->fl_flags = fl_flags | FL_SLEEP; if (do_vfs_lock(request->fl_file, request) < 0) printk(KERN_WARNING "NFS: %s: VFS is out of sync with lock " "manager!\n", __func__); out_unlock: up_read(&nfsi->rwsem); out: request->fl_flags = fl_flags; return status; } static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { .state = state, .inode = state->inode, }; int err; do { err = _nfs4_proc_setlk(state, cmd, request); if (err == -NFS4ERR_DENIED) err = -EAGAIN; err = nfs4_handle_exception(NFS_SERVER(state->inode), err, &exception); } while (exception.retry); return err; } static int nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) { struct nfs_open_context *ctx; struct nfs4_state *state; unsigned long timeout = NFS4_LOCK_MINTIMEOUT; int status; /* verify open state */ ctx = nfs_file_open_context(filp); state = ctx->state; if (request->fl_start < 0 || request->fl_end < 0) return -EINVAL; if (IS_GETLK(cmd)) { if (state != NULL) return nfs4_proc_getlk(state, F_GETLK, request); return 0; } if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) return -EINVAL; if (request->fl_type == F_UNLCK) { if (state != NULL) return nfs4_proc_unlck(state, cmd, request); return 0; } if (state == NULL) return -ENOLCK; /* * Don't rely on the VFS having checked the file open mode, * since it won't do this for flock() locks. */ switch (request->fl_type & (F_RDLCK|F_WRLCK|F_UNLCK)) { case F_RDLCK: if (!(filp->f_mode & FMODE_READ)) return -EBADF; break; case F_WRLCK: if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; } do { status = nfs4_proc_setlk(state, cmd, request); if ((status != -EAGAIN) || IS_SETLK(cmd)) break; timeout = nfs4_set_lock_task_retry(timeout); status = -ERESTARTSYS; if (signalled()) break; } while(status < 0); return status; } int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; err = nfs4_set_lock_state(state, fl); if (err != 0) goto out; do { err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW); switch (err) { default: printk(KERN_ERR "NFS: %s: unhandled error " "%d.\n", __func__, err); case 0: case -ESTALE: goto out; case -NFS4ERR_EXPIRED: nfs4_schedule_stateid_recovery(server, state); case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: nfs4_schedule_lease_recovery(server->nfs_client); goto out; case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: nfs4_schedule_session_recovery(server->nfs_client->cl_session, err); goto out; case -ERESTARTSYS: /* * The show must go on: exit, but mark the * stateid as needing recovery. */ case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OPENMODE: nfs4_schedule_stateid_recovery(server, state); err = 0; goto out; case -EKEYEXPIRED: /* * User RPCSEC_GSS context has expired. * We cannot recover this stateid now, so * skip it and allow recovery thread to * proceed. */ err = 0; goto out; case -ENOMEM: case -NFS4ERR_DENIED: /* kill_proc(fl->fl_pid, SIGLOST, 1); */ err = 0; goto out; case -NFS4ERR_DELAY: break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } struct nfs_release_lockowner_data { struct nfs4_lock_state *lsp; struct nfs_server *server; struct nfs_release_lockowner_args args; }; static void nfs4_release_lockowner_release(void *calldata) { struct nfs_release_lockowner_data *data = calldata; nfs4_free_lock_state(data->server, data->lsp); kfree(calldata); } static const struct rpc_call_ops nfs4_release_lockowner_ops = { .rpc_release = nfs4_release_lockowner_release, }; int nfs4_release_lockowner(struct nfs4_lock_state *lsp) { struct nfs_server *server = lsp->ls_state->owner->so_server; struct nfs_release_lockowner_data *data; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER], }; if (server->nfs_client->cl_mvops->minor_version != 0) return -EINVAL; data = kmalloc(sizeof(*data), GFP_NOFS); if (!data) return -ENOMEM; data->lsp = lsp; data->server = server; data->args.lock_owner.clientid = server->nfs_client->cl_clientid; data->args.lock_owner.id = lsp->ls_seqid.owner_id; data->args.lock_owner.s_dev = server->s_dev; msg.rpc_argp = &data->args; rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, data); return 0; } #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" static int nfs4_xattr_set_nfs4_acl(struct dentry *dentry, const char *key, const void *buf, size_t buflen, int flags, int type) { if (strcmp(key, "") != 0) return -EINVAL; return nfs4_proc_set_acl(dentry->d_inode, buf, buflen); } static int nfs4_xattr_get_nfs4_acl(struct dentry *dentry, const char *key, void *buf, size_t buflen, int type) { if (strcmp(key, "") != 0) return -EINVAL; return nfs4_proc_get_acl(dentry->d_inode, buf, buflen); } static size_t nfs4_xattr_list_nfs4_acl(struct dentry *dentry, char *list, size_t list_len, const char *name, size_t name_len, int type) { size_t len = sizeof(XATTR_NAME_NFSV4_ACL); if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode))) return 0; if (list && len <= list_len) memcpy(list, XATTR_NAME_NFSV4_ACL, len); return len; } /* * nfs_fhget will use either the mounted_on_fileid or the fileid */ static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr) { if (!(((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) || (fattr->valid & NFS_ATTR_FATTR_FILEID)) && (fattr->valid & NFS_ATTR_FATTR_FSID) && (fattr->valid & NFS_ATTR_FATTR_V4_LOCATIONS))) return; fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE | NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_V4_REFERRAL; fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO; fattr->nlink = 2; } static int _nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs4_fs_locations *fs_locations, struct page *page) { struct nfs_server *server = NFS_SERVER(dir); u32 bitmask[2] = { [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, }; struct nfs4_fs_locations_arg args = { .dir_fh = NFS_FH(dir), .name = name, .page = page, .bitmask = bitmask, }; struct nfs4_fs_locations_res res = { .fs_locations = fs_locations, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("%s: start\n", __func__); /* Ask for the fileid of the absent filesystem if mounted_on_fileid * is not supported */ if (NFS_SERVER(dir)->attr_bitmask[1] & FATTR4_WORD1_MOUNTED_ON_FILEID) bitmask[1] |= FATTR4_WORD1_MOUNTED_ON_FILEID; else bitmask[0] |= FATTR4_WORD0_FILEID; nfs_fattr_init(&fs_locations->fattr); fs_locations->server = server; fs_locations->nlocations = 0; status = nfs4_call_sync(client, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("%s: returned status = %d\n", __func__, status); return status; } int nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs4_fs_locations *fs_locations, struct page *page) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_fs_locations(client, dir, name, fs_locations, page), &exception); } while (exception.retry); return err; } static int _nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors) { int status; struct nfs4_secinfo_arg args = { .dir_fh = NFS_FH(dir), .name = name, }; struct nfs4_secinfo_res res = { .flavors = flavors, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO], .rpc_argp = &args, .rpc_resp = &res, }; dprintk("NFS call secinfo %s\n", name->name); status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0); dprintk("NFS reply secinfo: %d\n", status); return status; } int nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_secinfo(dir, name, flavors), &exception); } while (exception.retry); return err; } #ifdef CONFIG_NFS_V4_1 /* * Check the exchange flags returned by the server for invalid flags, having * both PNFS and NON_PNFS flags set, and not having one of NON_PNFS, PNFS, or * DS flags set. */ static int nfs4_check_cl_exchange_flags(u32 flags) { if (flags & ~EXCHGID4_FLAG_MASK_R) goto out_inval; if ((flags & EXCHGID4_FLAG_USE_PNFS_MDS) && (flags & EXCHGID4_FLAG_USE_NON_PNFS)) goto out_inval; if (!(flags & (EXCHGID4_FLAG_MASK_PNFS))) goto out_inval; return NFS_OK; out_inval: return -NFS4ERR_INVAL; } static bool nfs41_same_server_scope(struct nfs41_server_scope *a, struct nfs41_server_scope *b) { if (a->server_scope_sz == b->server_scope_sz && memcmp(a->server_scope, b->server_scope, a->server_scope_sz) == 0) return true; return false; } /* * nfs4_proc_bind_conn_to_session() * * The 4.1 client currently uses the same TCP connection for the * fore and backchannel. */ int nfs4_proc_bind_conn_to_session(struct nfs_client *clp, struct rpc_cred *cred) { int status; struct nfs41_bind_conn_to_session_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_BIND_CONN_TO_SESSION], .rpc_argp = clp, .rpc_resp = &res, .rpc_cred = cred, }; dprintk("--> %s\n", __func__); BUG_ON(clp == NULL); res.session = kzalloc(sizeof(struct nfs4_session), GFP_NOFS); if (unlikely(res.session == NULL)) { status = -ENOMEM; goto out; } status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status == 0) { if (memcmp(res.session->sess_id.data, clp->cl_session->sess_id.data, NFS4_MAX_SESSIONID_LEN)) { dprintk("NFS: %s: Session ID mismatch\n", __func__); status = -EIO; goto out_session; } if (res.dir != NFS4_CDFS4_BOTH) { dprintk("NFS: %s: Unexpected direction from server\n", __func__); status = -EIO; goto out_session; } if (res.use_conn_in_rdma_mode) { dprintk("NFS: %s: Server returned RDMA mode = true\n", __func__); status = -EIO; goto out_session; } } out_session: kfree(res.session); out: dprintk("<-- %s status= %d\n", __func__, status); return status; } /* * nfs4_proc_exchange_id() * * Since the clientid has expired, all compounds using sessions * associated with the stale clientid will be returning * NFS4ERR_BADSESSION in the sequence operation, and will therefore * be in some phase of session reset. */ int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred) { nfs4_verifier verifier; struct nfs41_exchange_id_args args = { .verifier = &verifier, .client = clp, .flags = EXCHGID4_FLAG_SUPP_MOVED_REFER, }; struct nfs41_exchange_id_res res = { 0 }; int status; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; dprintk("--> %s\n", __func__); BUG_ON(clp == NULL); nfs4_init_boot_verifier(clp, &verifier); args.id_len = scnprintf(args.id, sizeof(args.id), "%s/%s/%u", clp->cl_ipaddr, clp->cl_rpcclient->cl_nodename, clp->cl_rpcclient->cl_auth->au_flavor); res.server_owner = kzalloc(sizeof(struct nfs41_server_owner), GFP_NOFS); if (unlikely(res.server_owner == NULL)) { status = -ENOMEM; goto out; } res.server_scope = kzalloc(sizeof(struct nfs41_server_scope), GFP_NOFS); if (unlikely(res.server_scope == NULL)) { status = -ENOMEM; goto out_server_owner; } res.impl_id = kzalloc(sizeof(struct nfs41_impl_id), GFP_NOFS); if (unlikely(res.impl_id == NULL)) { status = -ENOMEM; goto out_server_scope; } status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status == 0) status = nfs4_check_cl_exchange_flags(res.flags); if (status == 0) { clp->cl_clientid = res.clientid; clp->cl_exchange_flags = (res.flags & ~EXCHGID4_FLAG_CONFIRMED_R); if (!(res.flags & EXCHGID4_FLAG_CONFIRMED_R)) clp->cl_seqid = res.seqid; kfree(clp->cl_serverowner); clp->cl_serverowner = res.server_owner; res.server_owner = NULL; /* use the most recent implementation id */ kfree(clp->cl_implid); clp->cl_implid = res.impl_id; if (clp->cl_serverscope != NULL && !nfs41_same_server_scope(clp->cl_serverscope, res.server_scope)) { dprintk("%s: server_scope mismatch detected\n", __func__); set_bit(NFS4CLNT_SERVER_SCOPE_MISMATCH, &clp->cl_state); kfree(clp->cl_serverscope); clp->cl_serverscope = NULL; } if (clp->cl_serverscope == NULL) { clp->cl_serverscope = res.server_scope; goto out; } } else kfree(res.impl_id); out_server_owner: kfree(res.server_owner); out_server_scope: kfree(res.server_scope); out: if (clp->cl_implid != NULL) dprintk("%s: Server Implementation ID: " "domain: %s, name: %s, date: %llu,%u\n", __func__, clp->cl_implid->domain, clp->cl_implid->name, clp->cl_implid->date.seconds, clp->cl_implid->date.nseconds); dprintk("<-- %s status= %d\n", __func__, status); return status; } static int _nfs4_proc_destroy_clientid(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_CLIENTID], .rpc_argp = clp, .rpc_cred = cred, }; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status) dprintk("NFS: Got error %d from the server %s on " "DESTROY_CLIENTID.", status, clp->cl_hostname); return status; } static int nfs4_proc_destroy_clientid(struct nfs_client *clp, struct rpc_cred *cred) { unsigned int loop; int ret; for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) { ret = _nfs4_proc_destroy_clientid(clp, cred); switch (ret) { case -NFS4ERR_DELAY: case -NFS4ERR_CLIENTID_BUSY: ssleep(1); break; default: return ret; } } return 0; } int nfs4_destroy_clientid(struct nfs_client *clp) { struct rpc_cred *cred; int ret = 0; if (clp->cl_mvops->minor_version < 1) goto out; if (clp->cl_exchange_flags == 0) goto out; cred = nfs4_get_exchange_id_cred(clp); ret = nfs4_proc_destroy_clientid(clp, cred); if (cred) put_rpccred(cred); switch (ret) { case 0: case -NFS4ERR_STALE_CLIENTID: clp->cl_exchange_flags = 0; } out: return ret; } struct nfs4_get_lease_time_data { struct nfs4_get_lease_time_args *args; struct nfs4_get_lease_time_res *res; struct nfs_client *clp; }; static void nfs4_get_lease_time_prepare(struct rpc_task *task, void *calldata) { int ret; struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); /* just setup sequence, do not trigger session recovery since we're invoked within one */ ret = nfs41_setup_sequence(data->clp->cl_session, &data->args->la_seq_args, &data->res->lr_seq_res, task); BUG_ON(ret == -EAGAIN); rpc_call_start(task); dprintk("<-- %s\n", __func__); } /* * Called from nfs4_state_manager thread for session setup, so don't recover * from sequence operation or clientid errors. */ static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata) { struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, &data->res->lr_seq_res)) return; switch (task->tk_status) { case -NFS4ERR_DELAY: case -NFS4ERR_GRACE: dprintk("%s Retry: tk_status %d\n", __func__, task->tk_status); rpc_delay(task, NFS4_POLL_RETRY_MIN); task->tk_status = 0; /* fall through */ case -NFS4ERR_RETRY_UNCACHED_REP: rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_get_lease_time_ops = { .rpc_call_prepare = nfs4_get_lease_time_prepare, .rpc_call_done = nfs4_get_lease_time_done, }; int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo) { struct rpc_task *task; struct nfs4_get_lease_time_args args; struct nfs4_get_lease_time_res res = { .lr_fsinfo = fsinfo, }; struct nfs4_get_lease_time_data data = { .args = &args, .res = &res, .clp = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME], .rpc_argp = &args, .rpc_resp = &res, }; struct rpc_task_setup task_setup = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_get_lease_time_ops, .callback_data = &data, .flags = RPC_TASK_TIMEOUT, }; int status; nfs41_init_sequence(&args.la_seq_args, &res.lr_seq_res, 0); dprintk("--> %s\n", __func__); task = rpc_run_task(&task_setup); if (IS_ERR(task)) status = PTR_ERR(task); else { status = task->tk_status; rpc_put_task(task); } dprintk("<-- %s return %d\n", __func__, status); return status; } static struct nfs4_slot *nfs4_alloc_slots(u32 max_slots, gfp_t gfp_flags) { return kcalloc(max_slots, sizeof(struct nfs4_slot), gfp_flags); } static void nfs4_add_and_init_slots(struct nfs4_slot_table *tbl, struct nfs4_slot *new, u32 max_slots, u32 ivalue) { struct nfs4_slot *old = NULL; u32 i; spin_lock(&tbl->slot_tbl_lock); if (new) { old = tbl->slots; tbl->slots = new; tbl->max_slots = max_slots; } tbl->highest_used_slotid = -1; /* no slot is currently used */ for (i = 0; i < tbl->max_slots; i++) tbl->slots[i].seq_nr = ivalue; spin_unlock(&tbl->slot_tbl_lock); kfree(old); } /* * (re)Initialise a slot table */ static int nfs4_realloc_slot_table(struct nfs4_slot_table *tbl, u32 max_reqs, u32 ivalue) { struct nfs4_slot *new = NULL; int ret = -ENOMEM; dprintk("--> %s: max_reqs=%u, tbl->max_slots %d\n", __func__, max_reqs, tbl->max_slots); /* Does the newly negotiated max_reqs match the existing slot table? */ if (max_reqs != tbl->max_slots) { new = nfs4_alloc_slots(max_reqs, GFP_NOFS); if (!new) goto out; } ret = 0; nfs4_add_and_init_slots(tbl, new, max_reqs, ivalue); dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__, tbl, tbl->slots, tbl->max_slots); out: dprintk("<-- %s: return %d\n", __func__, ret); return ret; } /* Destroy the slot table */ static void nfs4_destroy_slot_tables(struct nfs4_session *session) { if (session->fc_slot_table.slots != NULL) { kfree(session->fc_slot_table.slots); session->fc_slot_table.slots = NULL; } if (session->bc_slot_table.slots != NULL) { kfree(session->bc_slot_table.slots); session->bc_slot_table.slots = NULL; } return; } /* * Initialize or reset the forechannel and backchannel tables */ static int nfs4_setup_session_slot_tables(struct nfs4_session *ses) { struct nfs4_slot_table *tbl; int status; dprintk("--> %s\n", __func__); /* Fore channel */ tbl = &ses->fc_slot_table; status = nfs4_realloc_slot_table(tbl, ses->fc_attrs.max_reqs, 1); if (status) /* -ENOMEM */ return status; /* Back channel */ tbl = &ses->bc_slot_table; status = nfs4_realloc_slot_table(tbl, ses->bc_attrs.max_reqs, 0); if (status && tbl->slots == NULL) /* Fore and back channel share a connection so get * both slot tables or neither */ nfs4_destroy_slot_tables(ses); return status; } struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp) { struct nfs4_session *session; struct nfs4_slot_table *tbl; session = kzalloc(sizeof(struct nfs4_session), GFP_NOFS); if (!session) return NULL; tbl = &session->fc_slot_table; tbl->highest_used_slotid = NFS4_NO_SLOT; spin_lock_init(&tbl->slot_tbl_lock); rpc_init_priority_wait_queue(&tbl->slot_tbl_waitq, "ForeChannel Slot table"); init_completion(&tbl->complete); tbl = &session->bc_slot_table; tbl->highest_used_slotid = NFS4_NO_SLOT; spin_lock_init(&tbl->slot_tbl_lock); rpc_init_wait_queue(&tbl->slot_tbl_waitq, "BackChannel Slot table"); init_completion(&tbl->complete); session->session_state = 1<clp = clp; return session; } void nfs4_destroy_session(struct nfs4_session *session) { struct rpc_xprt *xprt; struct rpc_cred *cred; cred = nfs4_get_exchange_id_cred(session->clp); nfs4_proc_destroy_session(session, cred); if (cred) put_rpccred(cred); rcu_read_lock(); xprt = rcu_dereference(session->clp->cl_rpcclient->cl_xprt); rcu_read_unlock(); dprintk("%s Destroy backchannel for xprt %p\n", __func__, xprt); xprt_destroy_backchannel(xprt, NFS41_BC_MIN_CALLBACKS); nfs4_destroy_slot_tables(session); kfree(session); } /* * Initialize the values to be used by the client in CREATE_SESSION * If nfs4_init_session set the fore channel request and response sizes, * use them. * * Set the back channel max_resp_sz_cached to zero to force the client to * always set csa_cachethis to FALSE because the current implementation * of the back channel DRC only supports caching the CB_SEQUENCE operation. */ static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args) { struct nfs4_session *session = args->client->cl_session; unsigned int mxrqst_sz = session->fc_attrs.max_rqst_sz, mxresp_sz = session->fc_attrs.max_resp_sz; if (mxrqst_sz == 0) mxrqst_sz = NFS_MAX_FILE_IO_SIZE; if (mxresp_sz == 0) mxresp_sz = NFS_MAX_FILE_IO_SIZE; /* Fore channel attributes */ args->fc_attrs.max_rqst_sz = mxrqst_sz; args->fc_attrs.max_resp_sz = mxresp_sz; args->fc_attrs.max_ops = NFS4_MAX_OPS; args->fc_attrs.max_reqs = max_session_slots; dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u " "max_ops=%u max_reqs=%u\n", __func__, args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz, args->fc_attrs.max_ops, args->fc_attrs.max_reqs); /* Back channel attributes */ args->bc_attrs.max_rqst_sz = PAGE_SIZE; args->bc_attrs.max_resp_sz = PAGE_SIZE; args->bc_attrs.max_resp_sz_cached = 0; args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS; args->bc_attrs.max_reqs = 1; dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u " "max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n", __func__, args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz, args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops, args->bc_attrs.max_reqs); } static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { struct nfs4_channel_attrs *sent = &args->fc_attrs; struct nfs4_channel_attrs *rcvd = &session->fc_attrs; if (rcvd->max_resp_sz > sent->max_resp_sz) return -EINVAL; /* * Our requested max_ops is the minimum we need; we're not * prepared to break up compounds into smaller pieces than that. * So, no point even trying to continue if the server won't * cooperate: */ if (rcvd->max_ops < sent->max_ops) return -EINVAL; if (rcvd->max_reqs == 0) return -EINVAL; if (rcvd->max_reqs > NFS4_MAX_SLOT_TABLE) rcvd->max_reqs = NFS4_MAX_SLOT_TABLE; return 0; } static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { struct nfs4_channel_attrs *sent = &args->bc_attrs; struct nfs4_channel_attrs *rcvd = &session->bc_attrs; if (rcvd->max_rqst_sz > sent->max_rqst_sz) return -EINVAL; if (rcvd->max_resp_sz < sent->max_resp_sz) return -EINVAL; if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached) return -EINVAL; /* These would render the backchannel useless: */ if (rcvd->max_ops != sent->max_ops) return -EINVAL; if (rcvd->max_reqs != sent->max_reqs) return -EINVAL; return 0; } static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { int ret; ret = nfs4_verify_fore_channel_attrs(args, session); if (ret) return ret; return nfs4_verify_back_channel_attrs(args, session); } static int _nfs4_proc_create_session(struct nfs_client *clp, struct rpc_cred *cred) { struct nfs4_session *session = clp->cl_session; struct nfs41_create_session_args args = { .client = clp, .cb_program = NFS4_CALLBACK, }; struct nfs41_create_session_res res = { .client = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; nfs4_init_channel_attrs(&args); args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN); status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (!status) /* Verify the session's negotiated channel_attrs values */ status = nfs4_verify_channel_attrs(&args, session); if (!status) { /* Increment the clientid slot sequence id */ clp->cl_seqid++; } return status; } /* * Issues a CREATE_SESSION operation to the server. * It is the responsibility of the caller to verify the session is * expired before calling this routine. */ int nfs4_proc_create_session(struct nfs_client *clp, struct rpc_cred *cred) { int status; unsigned *ptr; struct nfs4_session *session = clp->cl_session; dprintk("--> %s clp=%p session=%p\n", __func__, clp, session); status = _nfs4_proc_create_session(clp, cred); if (status) goto out; /* Init or reset the session slot tables */ status = nfs4_setup_session_slot_tables(session); dprintk("slot table setup returned %d\n", status); if (status) goto out; ptr = (unsigned *)&session->sess_id.data[0]; dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__, clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]); out: dprintk("<-- %s\n", __func__); return status; } /* * Issue the over-the-wire RPC DESTROY_SESSION. * The caller must serialize access to this routine. */ int nfs4_proc_destroy_session(struct nfs4_session *session, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION], .rpc_argp = session, .rpc_cred = cred, }; int status = 0; dprintk("--> nfs4_proc_destroy_session\n"); /* session is still being setup */ if (session->clp->cl_cons_state != NFS_CS_READY) return status; status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status) dprintk("NFS: Got error %d from the server on DESTROY_SESSION. " "Session has been destroyed regardless...\n", status); dprintk("<-- nfs4_proc_destroy_session\n"); return status; } /* * With sessions, the client is not marked ready until after a * successful EXCHANGE_ID and CREATE_SESSION. * * Map errors cl_cons_state errors to EPROTONOSUPPORT to indicate * other versions of NFS can be tried. */ static int nfs41_check_session_ready(struct nfs_client *clp) { int ret; if (clp->cl_cons_state == NFS_CS_SESSION_INITING) { ret = nfs4_client_recover_expired_lease(clp); if (ret) return ret; } if (clp->cl_cons_state < NFS_CS_READY) return -EPROTONOSUPPORT; smp_rmb(); return 0; } int nfs4_init_session(struct nfs_server *server) { struct nfs_client *clp = server->nfs_client; struct nfs4_session *session; unsigned int rsize, wsize; if (!nfs4_has_session(clp)) return 0; session = clp->cl_session; spin_lock(&clp->cl_lock); if (test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state)) { rsize = server->rsize; if (rsize == 0) rsize = NFS_MAX_FILE_IO_SIZE; wsize = server->wsize; if (wsize == 0) wsize = NFS_MAX_FILE_IO_SIZE; session->fc_attrs.max_rqst_sz = wsize + nfs41_maxwrite_overhead; session->fc_attrs.max_resp_sz = rsize + nfs41_maxread_overhead; } spin_unlock(&clp->cl_lock); return nfs41_check_session_ready(clp); } int nfs4_init_ds_session(struct nfs_client *clp, unsigned long lease_time) { struct nfs4_session *session = clp->cl_session; int ret; spin_lock(&clp->cl_lock); if (test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state)) { /* * Do not set NFS_CS_CHECK_LEASE_TIME instead set the * DS lease to be equal to the MDS lease. */ clp->cl_lease_time = lease_time; clp->cl_last_renewal = jiffies; } spin_unlock(&clp->cl_lock); ret = nfs41_check_session_ready(clp); if (ret) return ret; /* Test for the DS role */ if (!is_ds_client(clp)) return -ENODEV; return 0; } EXPORT_SYMBOL_GPL(nfs4_init_ds_session); /* * Renew the cl_session lease. */ struct nfs4_sequence_data { struct nfs_client *clp; struct nfs4_sequence_args args; struct nfs4_sequence_res res; }; static void nfs41_sequence_release(void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(calldata); } static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); return -EAGAIN; default: nfs4_schedule_lease_recovery(clp); } return 0; } static void nfs41_sequence_call_done(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp)) return; if (task->tk_status < 0) { dprintk("%s ERROR %d\n", __func__, task->tk_status); if (atomic_read(&clp->cl_count) == 1) goto out; if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred); out: dprintk("<-- %s\n", __func__); } static void nfs41_sequence_prepare(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_args *args; struct nfs4_sequence_res *res; args = task->tk_msg.rpc_argp; res = task->tk_msg.rpc_resp; if (nfs41_setup_sequence(clp->cl_session, args, res, task)) return; rpc_call_start(task); } static const struct rpc_call_ops nfs41_sequence_ops = { .rpc_call_done = nfs41_sequence_call_done, .rpc_call_prepare = nfs41_sequence_prepare, .rpc_release = nfs41_sequence_release, }; static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct nfs4_sequence_data *calldata; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs41_sequence_ops, .flags = RPC_TASK_ASYNC | RPC_TASK_SOFT, }; if (!atomic_inc_not_zero(&clp->cl_count)) return ERR_PTR(-EIO); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) { nfs_put_client(clp); return ERR_PTR(-ENOMEM); } nfs41_init_sequence(&calldata->args, &calldata->res, 0); msg.rpc_argp = &calldata->args; msg.rpc_resp = &calldata->res; calldata->clp = clp; task_setup_data.callback_data = calldata; return rpc_run_task(&task_setup_data); } static int nfs41_proc_async_sequence(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags) { struct rpc_task *task; int ret = 0; if ((renew_flags & NFS4_RENEW_TIMEOUT) == 0) return 0; task = _nfs41_proc_sequence(clp, cred); if (IS_ERR(task)) ret = PTR_ERR(task); else rpc_put_task_async(task); dprintk("<-- %s status=%d\n", __func__, ret); return ret; } static int nfs4_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_task *task; int ret; task = _nfs41_proc_sequence(clp, cred); if (IS_ERR(task)) { ret = PTR_ERR(task); goto out; } ret = rpc_wait_for_completion_task(task); if (!ret) { struct nfs4_sequence_res *res = task->tk_msg.rpc_resp; if (task->tk_status == 0) nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags); ret = task->tk_status; } rpc_put_task(task); out: dprintk("<-- %s status=%d\n", __func__, ret); return ret; } struct nfs4_reclaim_complete_data { struct nfs_client *clp; struct nfs41_reclaim_complete_args arg; struct nfs41_reclaim_complete_res res; }; static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); if (nfs41_setup_sequence(calldata->clp->cl_session, &calldata->arg.seq_args, &calldata->res.seq_res, task)) return; rpc_call_start(task); } static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case 0: case -NFS4ERR_COMPLETE_ALREADY: case -NFS4ERR_WRONG_CRED: /* What to do here? */ break; case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); /* fall through */ case -NFS4ERR_RETRY_UNCACHED_REP: return -EAGAIN; default: nfs4_schedule_lease_recovery(clp); } return 0; } static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_res *res = &calldata->res.seq_res; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, res)) return; if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static void nfs4_free_reclaim_complete_data(void *data) { struct nfs4_reclaim_complete_data *calldata = data; kfree(calldata); } static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = { .rpc_call_prepare = nfs4_reclaim_complete_prepare, .rpc_call_done = nfs4_reclaim_complete_done, .rpc_release = nfs4_free_reclaim_complete_data, }; /* * Issue a global reclaim complete. */ static int nfs41_proc_reclaim_complete(struct nfs_client *clp) { struct nfs4_reclaim_complete_data *calldata; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE], }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_reclaim_complete_call_ops, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; dprintk("--> %s\n", __func__); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) goto out; calldata->clp = clp; calldata->arg.one_fs = 0; nfs41_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 0); msg.rpc_argp = &calldata->arg; msg.rpc_resp = &calldata->res; task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) { status = PTR_ERR(task); goto out; } status = nfs4_wait_for_completion_rpc_task(task); if (status == 0) status = task->tk_status; rpc_put_task(task); return 0; out: dprintk("<-- %s status=%d\n", __func__, status); return status; } static void nfs4_layoutget_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; struct nfs_server *server = NFS_SERVER(lgp->args.inode); dprintk("--> %s\n", __func__); /* Note the is a race here, where a CB_LAYOUTRECALL can come in * right now covering the LAYOUTGET we are about to send. * However, that is not so catastrophic, and there seems * to be no way to prevent it completely. */ if (nfs4_setup_sequence(server, &lgp->args.seq_args, &lgp->res.seq_res, task)) return; if (pnfs_choose_layoutget_stateid(&lgp->args.stateid, NFS_I(lgp->args.inode)->layout, lgp->args.ctx->state)) { rpc_exit(task, NFS4_OK); return; } rpc_call_start(task); } static void nfs4_layoutget_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; struct nfs_server *server = NFS_SERVER(lgp->args.inode); dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &lgp->res.seq_res)) return; switch (task->tk_status) { case 0: break; case -NFS4ERR_LAYOUTTRYLATER: case -NFS4ERR_RECALLCONFLICT: task->tk_status = -NFS4ERR_DELAY; /* Fall through */ default: if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } dprintk("<-- %s\n", __func__); } static void nfs4_layoutget_release(void *calldata) { struct nfs4_layoutget *lgp = calldata; dprintk("--> %s\n", __func__); put_nfs_open_context(lgp->args.ctx); kfree(calldata); dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_layoutget_call_ops = { .rpc_call_prepare = nfs4_layoutget_prepare, .rpc_call_done = nfs4_layoutget_done, .rpc_release = nfs4_layoutget_release, }; int nfs4_proc_layoutget(struct nfs4_layoutget *lgp) { struct nfs_server *server = NFS_SERVER(lgp->args.inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET], .rpc_argp = &lgp->args, .rpc_resp = &lgp->res, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_layoutget_call_ops, .callback_data = lgp, .flags = RPC_TASK_ASYNC, }; int status = 0; dprintk("--> %s\n", __func__); lgp->res.layoutp = &lgp->args.layout; lgp->res.seq_res.sr_slot = NULL; nfs41_init_sequence(&lgp->args.seq_args, &lgp->res.seq_res, 0); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status == 0) status = task->tk_status; if (status == 0) status = pnfs_layout_process(lgp); rpc_put_task(task); dprintk("<-- %s status=%d\n", __func__, status); return status; } static void nfs4_layoutreturn_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutreturn *lrp = calldata; dprintk("--> %s\n", __func__); if (nfs41_setup_sequence(lrp->clp->cl_session, &lrp->args.seq_args, &lrp->res.seq_res, task)) return; rpc_call_start(task); } static void nfs4_layoutreturn_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutreturn *lrp = calldata; struct nfs_server *server; struct pnfs_layout_hdr *lo = lrp->args.layout; dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &lrp->res.seq_res)) return; server = NFS_SERVER(lrp->args.inode); if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } spin_lock(&lo->plh_inode->i_lock); if (task->tk_status == 0) { if (lrp->res.lrs_present) { pnfs_set_layout_stateid(lo, &lrp->res.stateid, true); } else BUG_ON(!list_empty(&lo->plh_segs)); } lo->plh_block_lgets--; spin_unlock(&lo->plh_inode->i_lock); dprintk("<-- %s\n", __func__); } static void nfs4_layoutreturn_release(void *calldata) { struct nfs4_layoutreturn *lrp = calldata; dprintk("--> %s\n", __func__); put_layout_hdr(lrp->args.layout); kfree(calldata); dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_layoutreturn_call_ops = { .rpc_call_prepare = nfs4_layoutreturn_prepare, .rpc_call_done = nfs4_layoutreturn_done, .rpc_release = nfs4_layoutreturn_release, }; int nfs4_proc_layoutreturn(struct nfs4_layoutreturn *lrp) { struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTRETURN], .rpc_argp = &lrp->args, .rpc_resp = &lrp->res, }; struct rpc_task_setup task_setup_data = { .rpc_client = lrp->clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_layoutreturn_call_ops, .callback_data = lrp, }; int status; dprintk("--> %s\n", __func__); nfs41_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = task->tk_status; dprintk("<-- %s status=%d\n", __func__, status); rpc_put_task(task); return status; } /* * Retrieve the list of Data Server devices from the MDS. */ static int _nfs4_getdevicelist(struct nfs_server *server, const struct nfs_fh *fh, struct pnfs_devicelist *devlist) { struct nfs4_getdevicelist_args args = { .fh = fh, .layoutclass = server->pnfs_curr_ld->id, }; struct nfs4_getdevicelist_res res = { .devlist = devlist, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICELIST], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("--> %s\n", __func__); status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("<-- %s status=%d\n", __func__, status); return status; } int nfs4_proc_getdevicelist(struct nfs_server *server, const struct nfs_fh *fh, struct pnfs_devicelist *devlist) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_getdevicelist(server, fh, devlist), &exception); } while (exception.retry); dprintk("%s: err=%d, num_devs=%u\n", __func__, err, devlist->num_devs); return err; } EXPORT_SYMBOL_GPL(nfs4_proc_getdevicelist); static int _nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev) { struct nfs4_getdeviceinfo_args args = { .pdev = pdev, }; struct nfs4_getdeviceinfo_res res = { .pdev = pdev, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("--> %s\n", __func__); status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("<-- %s status=%d\n", __func__, status); return status; } int nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getdeviceinfo(server, pdev), &exception); } while (exception.retry); return err; } EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo); static void nfs4_layoutcommit_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutcommit_data *data = calldata; struct nfs_server *server = NFS_SERVER(data->args.inode); if (nfs4_setup_sequence(server, &data->args.seq_args, &data->res.seq_res, task)) return; rpc_call_start(task); } static void nfs4_layoutcommit_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutcommit_data *data = calldata; struct nfs_server *server = NFS_SERVER(data->args.inode); if (!nfs4_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { /* Just ignore these failures */ case -NFS4ERR_DELEG_REVOKED: /* layout was recalled */ case -NFS4ERR_BADIOMODE: /* no IOMODE_RW layout for range */ case -NFS4ERR_BADLAYOUT: /* no layout */ case -NFS4ERR_GRACE: /* loca_recalim always false */ task->tk_status = 0; break; case 0: nfs_post_op_update_inode_force_wcc(data->args.inode, data->res.fattr); break; default: if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } } static void nfs4_layoutcommit_release(void *calldata) { struct nfs4_layoutcommit_data *data = calldata; struct pnfs_layout_segment *lseg, *tmp; unsigned long *bitlock = &NFS_I(data->args.inode)->flags; pnfs_cleanup_layoutcommit(data); /* Matched by references in pnfs_set_layoutcommit */ list_for_each_entry_safe(lseg, tmp, &data->lseg_list, pls_lc_list) { list_del_init(&lseg->pls_lc_list); if (test_and_clear_bit(NFS_LSEG_LAYOUTCOMMIT, &lseg->pls_flags)) put_lseg(lseg); } clear_bit_unlock(NFS_INO_LAYOUTCOMMITTING, bitlock); smp_mb__after_clear_bit(); wake_up_bit(bitlock, NFS_INO_LAYOUTCOMMITTING); put_rpccred(data->cred); kfree(data); } static const struct rpc_call_ops nfs4_layoutcommit_ops = { .rpc_call_prepare = nfs4_layoutcommit_prepare, .rpc_call_done = nfs4_layoutcommit_done, .rpc_release = nfs4_layoutcommit_release, }; int nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data, bool sync) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTCOMMIT], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct rpc_task_setup task_setup_data = { .task = &data->task, .rpc_client = NFS_CLIENT(data->args.inode), .rpc_message = &msg, .callback_ops = &nfs4_layoutcommit_ops, .callback_data = data, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; int status = 0; dprintk("NFS: %4d initiating layoutcommit call. sync %d " "lbw: %llu inode %lu\n", data->task.tk_pid, sync, data->args.lastbytewritten, data->args.inode->i_ino); nfs41_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (sync == false) goto out; status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) goto out; status = task->tk_status; out: dprintk("%s: status %d\n", __func__, status); rpc_put_task(task); return status; } static int _nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors) { struct nfs41_secinfo_no_name_args args = { .style = SECINFO_STYLE_CURRENT_FH, }; struct nfs4_secinfo_res res = { .flavors = flavors, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO_NO_NAME], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors) { struct nfs4_exception exception = { }; int err; do { err = _nfs41_proc_secinfo_no_name(server, fhandle, info, flavors); switch (err) { case 0: case -NFS4ERR_WRONGSEC: case -NFS4ERR_NOTSUPP: goto out; default: err = nfs4_handle_exception(server, err, &exception); } } while (exception.retry); out: return err; } static int nfs41_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int err; struct page *page; rpc_authflavor_t flavor; struct nfs4_secinfo_flavors *flavors; page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto out; } flavors = page_address(page); err = nfs41_proc_secinfo_no_name(server, fhandle, info, flavors); /* * Fall back on "guess and check" method if * the server doesn't support SECINFO_NO_NAME */ if (err == -NFS4ERR_WRONGSEC || err == -NFS4ERR_NOTSUPP) { err = nfs4_find_root_sec(server, fhandle, info); goto out_freepage; } if (err) goto out_freepage; flavor = nfs_find_best_sec(flavors); if (err == 0) err = nfs4_lookup_root_sec(server, fhandle, info, flavor); out_freepage: put_page(page); if (err == -EACCES) return -EPERM; out: return err; } static int _nfs41_test_stateid(struct nfs_server *server, nfs4_stateid *stateid) { int status; struct nfs41_test_stateid_args args = { .stateid = stateid, }; struct nfs41_test_stateid_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_TEST_STATEID], .rpc_argp = &args, .rpc_resp = &res, }; nfs41_init_sequence(&args.seq_args, &res.seq_res, 0); status = nfs4_call_sync_sequence(server->client, server, &msg, &args.seq_args, &res.seq_res, 1); if (status == NFS_OK) return res.status; return status; } static int nfs41_test_stateid(struct nfs_server *server, nfs4_stateid *stateid) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs41_test_stateid(server, stateid), &exception); } while (exception.retry); return err; } static int _nfs4_free_stateid(struct nfs_server *server, nfs4_stateid *stateid) { struct nfs41_free_stateid_args args = { .stateid = stateid, }; struct nfs41_free_stateid_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FREE_STATEID], .rpc_argp = &args, .rpc_resp = &res, }; nfs41_init_sequence(&args.seq_args, &res.seq_res, 0); return nfs4_call_sync_sequence(server->client, server, &msg, &args.seq_args, &res.seq_res, 1); } static int nfs41_free_stateid(struct nfs_server *server, nfs4_stateid *stateid) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_free_stateid(server, stateid), &exception); } while (exception.retry); return err; } static bool nfs41_match_stateid(const nfs4_stateid *s1, const nfs4_stateid *s2) { if (memcmp(s1->other, s2->other, sizeof(s1->other)) != 0) return false; if (s1->seqid == s2->seqid) return true; if (s1->seqid == 0 || s2->seqid == 0) return true; return false; } #endif /* CONFIG_NFS_V4_1 */ static bool nfs4_match_stateid(const nfs4_stateid *s1, const nfs4_stateid *s2) { return nfs4_stateid_match(s1, s2); } static const struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs4_init_clientid, .get_clid_cred = nfs4_get_setclientid_cred, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs41_init_clientid, .get_clid_cred = nfs4_get_exchange_id_cred, .reclaim_complete = nfs41_proc_reclaim_complete, }; #endif /* CONFIG_NFS_V4_1 */ static const struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs4_open_expired, .recover_lock = nfs4_lock_expired, .establish_clid = nfs4_init_clientid, .get_clid_cred = nfs4_get_setclientid_cred, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs41_open_expired, .recover_lock = nfs41_lock_expired, .establish_clid = nfs41_init_clientid, .get_clid_cred = nfs4_get_exchange_id_cred, }; #endif /* CONFIG_NFS_V4_1 */ static const struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = { .sched_state_renewal = nfs4_proc_async_renew, .get_state_renewal_cred_locked = nfs4_get_renew_cred_locked, .renew_lease = nfs4_proc_renew, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = { .sched_state_renewal = nfs41_proc_async_sequence, .get_state_renewal_cred_locked = nfs4_get_machine_cred_locked, .renew_lease = nfs4_proc_sequence, }; #endif static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = { .minor_version = 0, .call_sync = _nfs4_call_sync, .match_stateid = nfs4_match_stateid, .find_root_sec = nfs4_find_root_sec, .reboot_recovery_ops = &nfs40_reboot_recovery_ops, .nograce_recovery_ops = &nfs40_nograce_recovery_ops, .state_renewal_ops = &nfs40_state_renewal_ops, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = { .minor_version = 1, .call_sync = _nfs4_call_sync_session, .match_stateid = nfs41_match_stateid, .find_root_sec = nfs41_find_root_sec, .reboot_recovery_ops = &nfs41_reboot_recovery_ops, .nograce_recovery_ops = &nfs41_nograce_recovery_ops, .state_renewal_ops = &nfs41_state_renewal_ops, }; #endif const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = { [0] = &nfs_v4_0_minor_ops, #if defined(CONFIG_NFS_V4_1) [1] = &nfs_v4_1_minor_ops, #endif }; static const struct inode_operations nfs4_file_inode_operations = { .permission = nfs_permission, .getattr = nfs_getattr, .setattr = nfs_setattr, .getxattr = generic_getxattr, .setxattr = generic_setxattr, .listxattr = generic_listxattr, .removexattr = generic_removexattr, }; const struct nfs_rpc_ops nfs_v4_clientops = { .version = 4, /* protocol version */ .dentry_ops = &nfs4_dentry_operations, .dir_inode_ops = &nfs4_dir_inode_operations, .file_inode_ops = &nfs4_file_inode_operations, .file_ops = &nfs4_file_operations, .getroot = nfs4_proc_get_root, .submount = nfs4_submount, .getattr = nfs4_proc_getattr, .setattr = nfs4_proc_setattr, .lookup = nfs4_proc_lookup, .access = nfs4_proc_access, .readlink = nfs4_proc_readlink, .create = nfs4_proc_create, .remove = nfs4_proc_remove, .unlink_setup = nfs4_proc_unlink_setup, .unlink_rpc_prepare = nfs4_proc_unlink_rpc_prepare, .unlink_done = nfs4_proc_unlink_done, .rename = nfs4_proc_rename, .rename_setup = nfs4_proc_rename_setup, .rename_rpc_prepare = nfs4_proc_rename_rpc_prepare, .rename_done = nfs4_proc_rename_done, .link = nfs4_proc_link, .symlink = nfs4_proc_symlink, .mkdir = nfs4_proc_mkdir, .rmdir = nfs4_proc_remove, .readdir = nfs4_proc_readdir, .mknod = nfs4_proc_mknod, .statfs = nfs4_proc_statfs, .fsinfo = nfs4_proc_fsinfo, .pathconf = nfs4_proc_pathconf, .set_capabilities = nfs4_server_capabilities, .decode_dirent = nfs4_decode_dirent, .read_setup = nfs4_proc_read_setup, .read_rpc_prepare = nfs4_proc_read_rpc_prepare, .read_done = nfs4_read_done, .write_setup = nfs4_proc_write_setup, .write_rpc_prepare = nfs4_proc_write_rpc_prepare, .write_done = nfs4_write_done, .commit_setup = nfs4_proc_commit_setup, .commit_rpc_prepare = nfs4_proc_commit_rpc_prepare, .commit_done = nfs4_commit_done, .lock = nfs4_proc_lock, .clear_acl_cache = nfs4_zap_acl_attr, .close_context = nfs4_close_context, .open_context = nfs4_atomic_open, .have_delegation = nfs4_have_delegation, .init_client = nfs4_init_client, }; static const struct xattr_handler nfs4_xattr_nfs4_acl_handler = { .prefix = XATTR_NAME_NFSV4_ACL, .list = nfs4_xattr_list_nfs4_acl, .get = nfs4_xattr_get_nfs4_acl, .set = nfs4_xattr_set_nfs4_acl, }; const struct xattr_handler *nfs4_xattr_handlers[] = { &nfs4_xattr_nfs4_acl_handler, NULL }; module_param(max_session_slots, ushort, 0644); MODULE_PARM_DESC(max_session_slots, "Maximum number of outstanding NFSv4.1 " "requests the client will negotiate"); /* * Local variables: * c-basic-offset: 8 * End: */